PROGRESSION 5 EME 1) PRIORITES OPERATOIRES COMPETENCES DU SOCLE : NOMBRES ENTIERS ET DECIMAUX

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PROGRESSION 5 EME 1) PRIORITES OPERATOIRES COMPETENCES DU SOCLE : NOMBRES ENTIERS ET DECIMAUX"

Transcription

1 1 PROGRESSION 5 EME 1) PRIORITES OPERATOIRES NOMBRES ENTIERS ET DECIMAUX POSITIFS : CALCUL, DIVISIBILITE SUR LES ENTIERS Enchainement d opérations. Effectuer une succession d opération sous diverses formes (calcul mental, à la main, instrumenté) sur des exemples numériques. Ecrire une expression correspondant à une succession donnée d opérations. 1) NOMBRES ENTIERS ET DECIMAUX POSITIFS : Effectuer une succession d'opérations sur des exemples numériques (connaître les priorités opératoires). Résoudre un problème. Mener à bien un calcul numérique à l'aide de la calculatrice (priorités opératoires).

2 2 2) SYMETRIE CENTRALE SYMETRIE Symétrie axiale. Symétrie centrale. Construire le symétrique d une droite. Construire le symétrique d un point, d un segment, d une droite, d un cercle. Construire le symétrique d une demi- droite. Construire ou compléter à l aide des instruments usuels la figure symétrique d une figure donnée. ANGLES Maîtriser l utilisation du rapporteur. 1) SYMETRIE CENTRALE : Connaître la symétrie centrale (constructions sur quadrillage, trouver un centre de symétrie éventuel). Construire l'image d'un point, d'un segment, d'une droite ou demi- droite, d'un cercle par symétrie centrale. Connaître / utiliser les propriétés de conservation de la symétrie centrale.

3 3 3) NOMBRES EN ECRITURE FRACTIONNAIRES 1/3 NOMBRES ENTIERS ET DECIMAUX POSITIFS : CALCUL, DIVISIBILITE SR LES ENTIERS Division par un décimal. Multiples et diviseurs, divisibilité. Ramener une division dont le diviseur est décimal à une division dont le diviseur est entier. Reconnaître, dans des cas simples, si un nombre entier positif est multiple ou diviseur d un autre nombre entier positif. NOMBRES POSITIFS EN ECRITURE FRACTIONNAIRE : SENS ET CALCULS Sens de l écriture fractionnaire. Utiliser l écriture fractionnaire comme expression d une proportion, d une fréquence. Simplifier une écriture fractionnaire. 1) NOMBRES ENTIERS ET DECIMAUX POSITIFS : Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). 2) ÉCRITURE FRACTIONNAIRE POSITIVE: Utiliser l'écriture fractionnaire comme l'expression d'une proportion, d'une fréquence. Utiliser des écritures fractionnaires égales.

4 4 4) TRIANGLES 1/3 FIGURES PLANES Propriétés des triangles usuels. Somme des angles d un triangle. Construction de triangle et inégalité triangulaire. Connaître et utiliser, dans une situation donnée, le résultat sur la somme des angles d un triangle. Connaître et utiliser l inégalité triangulaire. Construire un triangle connaissant la longueur d un côté et deux angles ; les longueurs de deux côtés et l angle compris entre ces deux côtés ; les longueurs des trois côtés. ANGLES Maîtriser l utilisation du rapporteur. 1) TRIANGLES : Connaître / utiliser le résultat sur la somme des angles d'un triangle. Connaître / utiliser l'inégalité triangulaire ; construire un triangle connaissant les longueurs des trois côtés. Construire un triangle connaissant la longueur d'un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l'angle compris entre ces côtés.

5 5 5) NOMBRES EN ECRITURE FRACTIONNAIRES 2/3 NOMBRES ENTIERS ET DECIMAUX POSITIFS : CALCUL, DIVISIBILITE SR LES ENTIERS Division par un décimal. Multiples et diviseurs, divisibilité. Ramener une division dont le diviseur est décimal à une division dont le diviseur est entier. Reconnaître, dans des cas simples, si un nombre entier positif est multiple ou diviseur d un autre nombre entier positif. NOMBRES POSITIFS EN ECRITURE FRACTIONNAIRE : SENS ET CALCULS Sens de l écriture fractionnaire. Addition et soustraction. Utiliser l écriture fractionnaire comme expression d une proportion, d une fréquence. Simplifier une écriture fractionnaire. Additionner et soustraire deux nombres en écriture fractionnaire. 1) NOMBRES ENTIERS ET DECIMAUX POSITIFS : Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). 2) ÉCRITURE FRACTIONNAIRE POSITIVE: Utiliser l'écriture fractionnaire comme l'expression d'une proportion, d'une fréquence. Utiliser des écritures fractionnaires égales. Additionner / soustraire des écritures fractionnaires de dénominateurs communs ou multiples.

6 6 6) TRIANGLES 2/3 FIGURES PLANES Propriétés des triangles usuels. Somme des angles d un triangle. Construction de triangle et inégalité triangulaire. Médiatrice d un segment. Connaître les propriétés relatives aux angles des triangles isocèles, équilatéraux et rectangles. Connaître et utiliser, dans une situation donnée, le résultat sur la somme des angles d un triangle. Savoir l appliquer aux triangles particuliers. Connaître et utiliser l inégalité triangulaire. Construire un triangle connaissant la longueur d un côté et deux angles ; les longueurs de deux côtés et l angle compris entre ces deux côtés ; les longueurs des trois côtés. ANGLES Maîtriser l utilisation du rapporteur. 1) TRIANGLES : Connaître / utiliser les propriétés relatives aux angles des triangles particuliers. Connaître / utiliser le résultat sur la somme des angles d'un triangle ; l'appliquer aux triangles particuliers. Connaître / utiliser l'inégalité triangulaire ; construire un triangle connaissant les longueurs des trois côtés. Construire un triangle connaissant la longueur d'un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l'angle compris entre ces côtés.

7 7 7) NOMBRES EN ECRITURE FRACTIONNAIRES 3/3 NOMBRES ENTIERS ET DECIMAUX POSITIFS : CALCUL, DIVISIBILITE SR LES ENTIERS Division par un décimal. Multiples et diviseurs, divisibilité. Ramener une division dont le diviseur est décimal à une division dont le diviseur est entier. Reconnaître, dans des cas simples, si un nombre entier positif est multiple ou diviseur d un autre nombre entier positif. NOMBRES POSITIFS EN ECRITURE FRACTIONNAIRE : SENS ET CALCULS Sens de l écriture fractionnaire. Addition et soustraction. Multiplication. Utiliser l écriture fractionnaire comme expression d une proportion, d une fréquence. Simplifier une écriture fractionnaire. Additionner et soustraire deux nombres en écriture fractionnaire. Effectuer le produit de deux nombres écrits sous forme fractionnaire ou décimale. 1) NOMBRES ENTIERS ET DECIMAUX POSITIFS : Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). 2) ÉCRITURE FRACTIONNAIRE POSITIVE: Utiliser l'écriture fractionnaire comme l'expression d'une proportion, d'une fréquence. Utiliser des écritures fractionnaires égales. Additionner / soustraire des écritures fractionnaires de dénominateurs communs ou multiples. Multiplier des écritures fractionnaires (y compris par un nombre décimal).

8 8 8) TRIANGLES 3/3 FIGURES PLANES Propriétés des triangles usuels. Somme des angles d un triangle. Construction de triangle et inégalité triangulaire. Médiatrice d un segment. Cercle circonscrit à un triangle. Médianes et hauteurs d un triangle. Connaître les propriétés relatives aux angles des triangles isocèles, équilatéraux et rectangles. Connaître et utiliser, dans une situation donnée, le résultat sur la somme des angles d un triangle. Savoir l appliquer aux triangles particuliers. Connaître et utiliser l inégalité triangulaire. Construire un triangle connaissant la longueur d un côté et deux angles ; les longueurs de deux côtés et l angle compris entre ces deux côtés ; les longueurs des trois côtés. Connaître et utiliser la définition de la médiatrice ainsi que la caractérisation de ses points par la propriété d équidistance. Tracer la médiatrice d un segment. Construire le cercle circonscrit à un triangle. Connaître et utiliser la définition d une médiane et d une hauteur d un triangle. Démonstration. ANGLES Maîtriser l utilisation du rapporteur. AIRES Calculer l aire d un triangle. 1) TRIANGLES : Connaître / utiliser les propriétés relatives aux angles des triangles particuliers. Connaître / utiliser le résultat sur la somme des angles d'un triangle ; l'appliquer aux triangles particuliers. Connaître / utiliser l'inégalité triangulaire ; construire un triangle connaissant les longueurs des trois côtés. Construire un triangle connaissant la longueur d'un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l'angle compris entre ces côtés.

9 9 2) DROITES REMARQUABLES: Connaître / construire le cercle circonscrit à un triangle (en utilisant ses médiatrices). Connaître / utiliser la définition d'une hauteur d'un triangle (en lien avec le calcul d'aire). Connaître / utiliser la définition d'une médiane d'un triangle (en lien avec le calcul d'aire).

10 10 9) PROPORTIONNALITE - POURCENTAGE PROPORTIONNALITE Propriété de linéarité. Tableau de proportionnalité. «Règle de trois». Pourcentage. Échelle. Compléter un tableau de nombres représentant une relation de proportionnalité. Déterminer une quatrième proportionnelle. Reconnaître si un tableau complet de nombre est un tableau de proportionnalité (ou non). Utiliser la proportionnalité pour : Comparer des proportions Utiliser un pourcentage Calculer un pourcentage Utiliser l échelle d une carte ou d un dessin Calculer l échelle d une carte ou d un dessin COMMENTAIRE : Un travail sera effectué sur les résultats statistiques obtenus par les élèves lors d une sortie au bowling. 1) PROPORTIONNALITE : Reconnaître si un tableau de nombres relève de la proportionnalité. Compléter un tableau de proportionnalité (utiliser le coefficient, des proportions, l'image de l'unité). Comparer des proportions (effectifs de populations différentes, mélanges). Calculer / utiliser un pourcentage. Calculer / utiliser l'échelle d'une carte ou d'un dessin.

11 11 10) CENTRE DE SYMETRIE FIGURES PLANES Figures simples ayant un centre de symétrie ou des axes de symétrie. Connaître et utiliser une définition et les propriétés du carré, rectangle, losange. Démonstration. 1) SYMETRIE CENTRALE : Connaître la symétrie centrale (constructions sur quadrillage, trouver un centre de symétrie éventuel).

12 12 11) TRAITEMENT ET ORGANISATION DE DONNEES REPRESENTATION ET TRAITEMENT DE DONNEES Effectifs. Fréquences. Classes. Tableau de données, représentations graphiques de données. Calculer des effectifs. Calculer des fréquences. Regrouper des données en classes d égale amplitude. Lire et interpréter des informations à partir d un tableau pu d une représentation graphique. Présenter des données sous la forme d un tableau, les représenter sous la forme d un diagramme ou d un histogramme. COMMENTAIRE : Un travail sera effectué sur les résultats statistiques obtenu par les élèves lors d une sortie au bowling. 1) REPRESENTATION ET TRAITEMENT DE DONNEES : Calculer des effectifs. Calculer des fréquences. Lire / interpréter un tableau ou une représentation graphique (histogramme, diagrammes divers). [tice] Présenter des données sous forme d'un tableau ou d'un graphique (histogramme, diagrammes divers).

13 13 12) ANGLES 1/2 FIGURES PLANES Angles Reproduire un angle. Démonstration. ANGLES Maîtriser l utilisation du rapporteur. 1) ANGLES : Connaître / utiliser le vocabulaire : opposés par le sommet, adjacents, complémentaires, supplémentaires. Connaître / utiliser le vocabulaire : alternes- internes, alternes- externes, correspondants. Maîtriser l'utilisation du rapporteur pour mesurer ou construire un angle ; reproduire un angle avec le compas.

14 14 13) NOMBRES RELATIFS 1/2 ACTIVITES GRAPHIQUES Repérage sur une droite graduée. Repérage dans le plan. Sur une droite graduée : Lire l abscisse d un point donnée Placer un point d abscisse donnée Déterminer la distance de deux points d abscisses données. Dans le plan muni d un repère orthogonal : Lire les coordonnées d un point donné Placer un point de coordonnées données Connaître et utiliser le vocabulaire «origine», «coordonnées», «abscisse» et «ordonnée». NOMBRES RELATIFS ENTIERS ET DECIMAUX : SENS ET CALCULS Notion de nombre relatif. Ordre.. Utilisation de la notion d opposé. Ranger des nombres relatifs courants en écriture décimale. 1) REPÉRAGE: Connaître / utiliser le vocabulaire et les notations : repère, origine, abscisse, ordonnée, coordonnées. Droite graduée : lire l'abscisse d'un point, placer un point d'abscisse donnée. Droite graduée : déterminer la distance entre deux points d'abscisses données. Plan repéré : lire les coordonnées d'un point, placer un point de coordonnées données. Choisir une échelle, graduer une droite ou produire un graphique pour y placer des points donnés. 2) NOMBRES RELATIFS : Connaître les nombres relatifs, utiliser la notion d'opposé. Ranger des nombres relatifs en écriture décimale.

15 15 14) PARALLELOGRAMMES 1/2 FIGURES PLANES Parallélogramme. Connaître et utiliser une définition et les propriétés du parallélogramme. Construire, sur un papier uni, un parallélogramme donné en utilisant ses propriétés. Démonstration. AIRES Calculer l aire d un parallélogramme. 1) QUADRILATERES : Connaître la définition et les propriétés du parallélogramme. Construire un parallélogramme en utilisant ses propriétés. Démontrer qu'un quadrilatère est un parallélogramme (connaître / utiliser les propriétés réciproques). Connaître la définition et les propriétés du rectangle / losange / carré. Construire un rectangle / losange / carré en utilisant ses propriétés. Démontrer qu'un parallélogramme est un rectangle / losange (connaître / utiliser les propriétés réciproques). 2) AIRES : Calculer l'aire d'un parallélogramme.

16 16 15) NOMBRES RELATIFS 2/2 NOMBRES RELATIFS ENTIERS ET DECIMAUX : SENS ET CALCULS Addition et soustraction de nombres relatifs. Calculer la somme ou la différence de deux nombres relatifs. Calculer, sur des exemples numériques, une expression dans laquelle interviennent des additions et des soustractions (éventuellement avec des parenthèses) de nombres relatifs. Sur des exemples numériques, écrire en utilisant des parenthèses, un programme de calcul portant sur des sommes ou des différences de nombres relatifs. 1) NOMBRES RELATIFS : Additionner / soustraire deux nombres relatifs en écriture décimale. Calculer une expression avec des sommes ou différences de nombres relatifs (valeurs numériques). Écrire un programme de calcul avec des sommes ou différences de nombres relatifs (valeurs numériques).

17 17 16) PARALLELOGRAMMES 2/2 FIGURES PLANES Parallélogramme. Connaître et utiliser une définition et les propriétés du parallélogramme. Construire, sur un papier uni, un parallélogramme donné en utilisant ses propriétés. Démonstration. AIRES Calculer l aire d un parallélogramme. 1) QUADRILATERES : Connaître la définition et les propriétés du parallélogramme. Construire un parallélogramme en utilisant ses propriétés. Démontrer qu'un quadrilatère est un parallélogramme (connaître / utiliser les propriétés réciproques). Connaître la définition et les propriétés du rectangle / losange / carré. Construire un rectangle / losange / carré en utilisant ses propriétés. Démontrer qu'un parallélogramme est un rectangle / losange (connaître / utiliser les propriétés réciproques). 2) AIRES : Calculer l'aire d'un parallélogramme.

18 18 17) PRISMES DROITS - VOLUME PRISMES DROITS, CYLINDRES DE REVOLUTION Fabriquer un prisme droit dont la base est un triangle ou un parallélogramme et dont les dimensions sont données, en particuliers à partir d un patron. Dessiner à main levée une représentation en perspective cavalière de ces deux solides. Reconnaître dans une représentation en perspective cavalière d un prisme droit les arêtes de même longueur, les angles droits, les arêtes, les faces parallèles ou perpendiculaires. FIGURES PLANES Prisme, cylindre de révolution. Calculer le volume d un parallélépipède rectangle. Calculer le volume d un prisme droit, d un cylindre de révolution. Effectuer des changements d unités de mesure. AIRES Calculer l aire d une surface plane ou celle d un solide, par décomposition en surface dont les aires sont facilement calculables. 1) PRISMES DROITS CYLINDRES DE REVOLUTION : Connaître le prisme droit et le vocabulaire de l'espace associé. Reconnaître / interpréter / fabriquer un patron d'un prisme droit (base triangle ou parallélogramme). 2) AIRES : Calculer l'aire d'une surface plane ou d'un solide par décomposition en surfaces simples. 3) VOLUMES : Calculer le volume d'un prisme droit (en particulier d'un pavé droit).

19 19 18) CALCUL LITTERAL EXPRESSION LITTERAL Utiliser une expression littérale. Produire une expression littérale. NOMBRES ENTIERS ET DECIMAUX POSITIFS : CALCUL, DIVISIBILITE SR LES ENTIERS Distributivité de la multiplication par rapport à l addition. Sur des exemples numériques et littéraux, utiliser dans les deux sens les égalités : k a + b = ka + kb et k a b = ka kb. INITIATION A LA NOTION D EQUATION Tester si une égalité comportant un ou deux nombres indéterminés est vraie lorsqu on leur attribue des valeurs numériques. 1) Expression littérale : Produire / utiliser une expression littérale. Connaître les conventions d'écriture pour simplifier une expression littérale. Développer en utilisant k(a + b) = ka + kb et k(a b) = ka kb sur des exemples littéraux. Factoriser en utilisant ka + kb = k(a + b) et ka kb = k(a b) sur des exemples littéraux. Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données.

20 20 19) CYLINDRES DE REVOLUTION PRISMES DROITS, CYLINDRES DE REVOLUTION FIGURES PLANES Fabriquer un cylindre de révolution dont le rayon du cercle de base est donné. Dessiner à main levée une représentation en perspective cavalière de ces deux solides. Prisme, cylindre de révolution. Calculer le volume d un prisme droit, d un cylindre de révolution. Effectuer des changements d unités de mesure. AIRES Calculer l aire d une surface plane ou celle d un solide, par décomposition en surface dont les aires sont facilement calculables. 1) PRISMES DROITS CYLINDRES DE REVOLUTION : Connaître le cylindre de révolution et le vocabulaire de l'espace associé. Reconnaître / interpréter / fabriquer un patron d'un cylindre de révolution de rayon donné. 2) AIRES : Calculer l'aire d'une surface plane ou d'un solide par décomposition en surfaces simples. 3) VOLUMES : Calculer le volume d'un cylindre de révolution.

21 21 20) ANGLES 2/2 FIGURES PLANES Angles Caractérisation angulaire du parallélisme. Reproduire un angle. Connaître et utiliser les propriétés relatives aux angles formés par deux parallèles et une sécante et leurs réciproques. Démonstration. ANGLES Maîtriser l utilisation du rapporteur. 1) ANGLES : Caractériser deux droites parallèles par les angles qu'elles forment avec une sécante. Connaître / utiliser les propriétés des angles formés par deux parallèles et une sécante pour calculer un angle.

22 22 21) PERIMETRE LONGUEURS, MASSES, DUREES Calculer le périmètre d une figure. COMMENTAIRE : Notions filées tout au long de l année. Notions travaillées en fiche rituelle. 1) LONGUEURS MASSES DUREES : Calculer le périmètre d'une figure. 22) DUREES LONGUEURS, MASSES, DUREES Calculer des durées, des horaires. 1) LONGUEURS MASSES DUREES Calculer des durées ou des horaires (procédures raisonnées).

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :...

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... 6D1 6D10 6D11 6D12 6D2 6D20 6D21 6D22 Proportionnalité (situations problèmes) Reconnaître si une situation relève

Plus en détail

Livret d'évaluation et du socle commun en mathématiques

Livret d'évaluation et du socle commun en mathématiques Photo? Livret d'évaluation et du socle commun en mathématiques Niveau Cycle d'adaptation - 6ème Nom et prénom Classe Année scolaire 2... - 2... Il y a dans ce livret 4 grands thèmes : Nombres et Calculs

Plus en détail

Compétences devant être acquises en fin de cycle 2

Compétences devant être acquises en fin de cycle 2 Compétences devant être acquises en fin de cycle 2 Programme français 1 - EXPLOITATION DE DONNÉES NUMÉRIQUES 1.1 Problèmes résolus en utilisant une procédure experte - utiliser le dénombrement pour comparer

Plus en détail

Ce livret appartient à

Ce livret appartient à Ce livret appartient à N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 Lire et écrire des nombres entiers Système de numération

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

TRAVAUX NUMERIQUES ( T.N. )

TRAVAUX NUMERIQUES ( T.N. ) TRAVAUX NUMERIQUES ( T.N. ) Unité T.N.1 : LES NOMBRES RELATIFS VOCABULAIRE ET DEFINITION E1 E2 E3 E4 E5 E6 E7 T N 1 0 1 Trouver l'opposé d'un nombre relatif T N 1 0 2 Trouver l'inverse d'un nombre relatif

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Ressources pour l école élémentaire

Ressources pour l école élémentaire Ressources pour l école élémentaire éduscol Mathématiques Progressions pour le cours élémentaire deuxième année et le cours moyen Ces documents peuvent être utilisés et modifiés librement dans le cadre

Plus en détail

PROGRAMMES D'ENSEIGNEMENT DE L'ÉCOLE PRIMAIRE EN MATHEMATIQUES

PROGRAMMES D'ENSEIGNEMENT DE L'ÉCOLE PRIMAIRE EN MATHEMATIQUES PROGRAMMES D'ENSEIGNEMENT DE L'ÉCOLE PRIMAIRE EN MATHEMATIQUES PROGRAMME DE L'ÉCOLE MATERNELLE Approcher les quantités et les nombres L'école maternelle constitue une période décisive dans l'acquisition

Plus en détail

Programme de 5 ème en mathématiques

Programme de 5 ème en mathématiques Programme de 5 ème en mathématiques 1. PRIORITE DES OPERATIONS ; DISTRIBUTIVITE 3 I. Suite d opérations sans parenthèses 3 II. Suites d opérations avec parenthèses 4 III. Ecritures avec des lettres 5 IV.

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Prénom :. Livret de CE2. Ecole du Verderet Année scolaire 2014 2015. Livret de leçons de mathématiques CE2 M. HANNESSE Page 1

Prénom :. Livret de CE2. Ecole du Verderet Année scolaire 2014 2015. Livret de leçons de mathématiques CE2 M. HANNESSE Page 1 Nom : Prénom :. Livret de le math ons de matiques CE2 Ecole du Verderet Année scolaire 2014 2015 Livret de leçons de mathématiques CE2 M. HANNESSE Page 1 SOMMAIRE 1. Les nombres : N1 : l écriture des nombres

Plus en détail

MATHEMATIQUES. Premier Cycle SIXIEME

MATHEMATIQUES. Premier Cycle SIXIEME MATHEMATIQUES Premier Cycle SIXIEME 15 Semaines P R O G R E S S I O N D E L A C L A S S E D E 6 è m e Activités géométriques DIVERS Activités Numériques 1 Nombres décimaux arithmétiques Addition de deux

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES

Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES NOMB 09 [NC12] Écrire, nommer, comparer et utiliser les nombres entiers,

Plus en détail

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité.

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité. Cycle 3 de l'école primaire Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) Classe de 6ème du collège Le texte en caractère droit indique des

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Livret de formation. appartenant à : Livret de formation - Ecole Ouverte Ange Guépin 4 Chemin du Relais 44000 NANTES

Livret de formation. appartenant à : Livret de formation - Ecole Ouverte Ange Guépin 4 Chemin du Relais 44000 NANTES Livret de formation appartenant à : Pour parler 1.1 JE SUIS CAPABLE DE : 1.1.1 parler efficacement devant la classe. 1.1.2 parler efficacement devant l'école. 1.2.1 écouter. 1.2.2 poser des questions.

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N2 : LES NOMBRES Avec ces chiffres, on peut écrire des

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste

Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste École Primaire Fictive RyXéo 21, avenue Eugène et Marc Dulout 33600 Pessac Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste Français Écriture Copier sans erreur un tete d'au moins quinze

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de PREMIÈRE ANNÉE SECONDAIRE Thème 1 Dans le plan et dans l'espace: droites, demi droites, segments de droites et plans Plans dans l'espace Droites, demi

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Mathématiques. Géométrie

Mathématiques. Géométrie Mathématiques CE2 Nombres Calcul Géométrie Grandeurs Mesures AVANT-PROPOS Ce livret a été réalisé dans le but de rendre plus lisibles les compétences à acquérir en mathématiques au terme du CE2. Il donne

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT.

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE - NOMBRES 1. NOMBRES ENTIERS, DECIMAUX, COMPARAISON Ex : 1345, 789 est un nombre

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Évaluation de fin de 2 ème trimestre 2012/2013 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES

Évaluation de fin de 2 ème trimestre 2012/2013 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES Évaluation de fin de 2 ème trimestre 2012/2013 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES NOMB 09 [NC12] Écrire, nommer, comparer et utiliser les nombres

Plus en détail

Cours de mathématiques de cinquième

Cours de mathématiques de cinquième Cours de mathématiques de cinquième Bertrand Carry SOMMAIRE 1. Factorisation, développement... 1 1.1 Quelques règles d écriture de calculs... 1 1.1.1 Parenthèses :... 1 1.1.2 Multiplication :... 1 1.2

Plus en détail

Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3)

Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3) Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3) 1 er trimestre Priorité pour le premier trimestre : Au cours du premier trimestre, on veillera à ce que les élèves apprennent d abord

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

COURS : LA SYMÉTRIE AXIALE

COURS : LA SYMÉTRIE AXIALE HPTRE 7 OURS : L SYMÉTRE XLE Extrait du programme de la classe de Sixième : ONTENU Symétrie orthogonale par rapport à une droite (symétrie axiale) OMPÉTENES EXGLES -onstruire le symétrique d un point,

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Figures et solides géométriques

Figures et solides géométriques Cellule de Géométrie Figures et solides géométriques Partie pratique (de 5 à 11 ans) JOURNÉES NATIONALES APMEP METZ 2012 Danielle POPELER Michel DEMAL Sommaire Partie pratique 1. Figures géométriques en

Plus en détail

Programme de 6 ème en mathématiques

Programme de 6 ème en mathématiques Programme de 6 ème en mathématiques 1. LES NOMBRES DECIMAUX 3 I. Rappels sur les entiers naturels 3 II. Les nombres décimaux 4 III. Comparaison des nombres décimaux 6 2. A LA REGLE ET AU COMPAS 7 I. Segments,

Plus en détail

Livret scolaire. Cours moyen 2

Livret scolaire. Cours moyen 2 Inspection de l Éducation nationale 21 ème circonscription 24 avenue Jeanne d'arc 92160 Antony Livret scolaire Cours moyen 2 Prénom : Nom : Date de naissance : Année scolaire Classe Enseignant(s) Ce livret

Plus en détail

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Nombres et Calcul et OGD (lundi) Géométrie/Grandeurs et mesures (mardi) Nombres et Calcul et OGD (jeudi) Géométrie/Grandeurs et mesures

Plus en détail

Renforcer ses compétences

Renforcer ses compétences Renforcer ses compétences en mathématiques Tome 1 AVANT PROPOS Vos études ou vos activités professionnelles vous ont peut-être éloignés des mathématiques et ceci, parfois depuis longtemps. Vous souhaitez

Plus en détail

PROGRAMME DE TRAVAIL INTERNE

PROGRAMME DE TRAVAIL INTERNE Version 0.1 1/6 Semestre 1 Calcul professionnel 120 périodes selon OrFo 1.1.1 Arithmétique - algèbre Base de sciences naturelles Généralités unités C2 2 + / et calcul avec parenthèses 2 Multiplications

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Brevet Blanc de Mathématiques n 1

Brevet Blanc de Mathématiques n 1 Collège français Sadi Carnot Diego Suarez 21/11/2015 Brevet Blanc de Mathématiques n 1 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques Mathématiques Classe de seconde Introduction La seconde est une classe de détermination. Le programme de mathématiques y a pour fonction : de conforter l acquisition par chaque élève de la culture mathématique

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

AVANT PROPOS. Travaux numériques Géométrie Organisation et gestion de donnés.

AVANT PROPOS. Travaux numériques Géométrie Organisation et gestion de donnés. VNT PROPOS Vous trouverez ci-joint un cours «type» programme de cinquième basé évidemment sur les instructions officielles. Il est évidemment discutable (enfin il reste j espère dans les limites du raisonnable

Plus en détail

Académies et années. Type de fonction Type de problème Résolution conjointe

Académies et années. Type de fonction Type de problème Résolution conjointe Académies et années Type de fonction Type de problème Résolution conjointe Affine Linéaire Autre Tarifs Géom. Plane Espace équation Inéquat. Système Grenoble 00 x x Nancy 00 x x Orléans 00 x x Caen 00

Plus en détail

DOSSIER PEDAGOGIQUE INITIATION A LA CHAUDRONNERIE ET A LA CHARPENTE

DOSSIER PEDAGOGIQUE INITIATION A LA CHAUDRONNERIE ET A LA CHARPENTE MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INITIATION

Plus en détail

MATHÉMATIQUES PROGRAMMES DE. 1 ère & 2 ème Années secondaires

MATHÉMATIQUES PROGRAMMES DE. 1 ère & 2 ème Années secondaires RÉPUBLIQUE TUNISIENNE MINISTERE DE L EDUCATION ET DE LA FORMATION DIRECTION GENERALE DES PROGRAMMES ET DE LA FORMATION CONTINUE ------------------------------ DIRECTION DES PROGRAMMES ET DES MANUELS SCOLAIRES

Plus en détail

Calcul numérique et activités

Calcul numérique et activités Classe de Seconde Calcul numérique et activités. Mettre de l ordre. Interro (c). Interro 4. Interro (c). Interro 4 (c) 6. Interro (c) 7. Interro 6 8. Interro 7 9. Interro 8 0. Comparer a, a², a et /a.

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

Mathématiques au Quotidien 40S

Mathématiques au Quotidien 40S Mathématiques au Quotidien 40S Financement d automobile 1.1 Résoudre des problèmes comportant l acquisition, l utilisation et l entretien d un véhicule lors d un achat, d un crédit-bail ou d une location-achat

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

Projet de programme pour le cycle 2

Projet de programme pour le cycle 2 Projet de programme pour le cycle 2 3 Cycle 2 Mathématiques Au cycle 2, la résolution de problèmes est au centre de l activité mathématique des élèves, développant leurs capacités à chercher, raisonner

Plus en détail

Cours de mathématiques de sixième

Cours de mathématiques de sixième Cours de mathématiques de sixième Bertrand Carry SOMMAIRE 1. Nombres entiers, nombres décimaux... 1 1.1 Ecriture et lecture de nombres... 1 1.2 Comparaison de deux nombres... 2 1.3 Valeurs approchées...

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

Compétences à acquérir au cycle 1 et au cycle 2 DOMAINE NUMÉRIQUE (CONSTRUCTION DU CONCEPT DE NOMBRE)

Compétences à acquérir au cycle 1 et au cycle 2 DOMAINE NUMÉRIQUE (CONSTRUCTION DU CONCEPT DE NOMBRE) DOMAINE NUMÉRIQUE (CONSTRUCTION DU CONCEPT DE NOMBRE) Connaissance des nombres entiers naturels Compétences relatives aux quantités et aux nombres Être capable de : - comparer des quantités en utilisant

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter.

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Veuillez visionner le document sur la formation en ligne. Corniche : objet technique à dessiner. Plaçons

Plus en détail

Test E22 NOM : Classe :...

Test E22 NOM : Classe :... Test E22 NOM : Classe :... Exercice 1: ABCDEFGH est le cube ci-contre. 1. a) Donner deux droites parallèles. ---------------------------------------------------------- b) Donner deux droites sécantes.

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Révisions Mathématiques CAP-BEP

Révisions Mathématiques CAP-BEP Révisions Mathématiques CAP-BEP Exercice 1 : On considère le triangle ABC rectangle en A. C 1 / Si AB = 12 et AC = 5, calculer BC....... 2 / Si AB = 7 et BC = 9,22, calculer AC. Exercice 2 : Dans un CFA,

Plus en détail

CONCOURS SEPTEMBRE 2011 SUJETS

CONCOURS SEPTEMBRE 2011 SUJETS CONCOURS SEPTEMBRE 2011 SUJETS Florilège COPIRELEM Page 155 CERPE groupement 1 - septembre 2011 (corrigé page 171) GROUPEMENT 1 septembre 2011 EXERCICE 1 : Dans cet exercice, six affirmations sont proposées.

Plus en détail

MATHÉMATIQUES. I - Finalités et objectifs LES MATHÉMATIQUES AU COLLÈGE. A - Les mathématiques comme discipline de formation générale

MATHÉMATIQUES. I - Finalités et objectifs LES MATHÉMATIQUES AU COLLÈGE. A - Les mathématiques comme discipline de formation générale MATHÉMATIQUES LES MATHÉMATIQUES AU COLLÈGE I - Finalités et objectifs Au collège, on constate qu une proportion importante d élèves s intéressent à la pratique des mathématiques et y trouvent du plaisir.

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

ÉVALUATION EN MILIEU DE CE1. Année scolaire 2013-2014 LIVRET DE L'ENSEIGNANT MATHÉMATIQUES

ÉVALUATION EN MILIEU DE CE1. Année scolaire 2013-2014 LIVRET DE L'ENSEIGNANT MATHÉMATIQUES ÉVALUATION EN MILIEU DE CE1 Année scolaire 2013-2014 LIVRET DE L'ENSEIGNANT MATHÉMATIQUES 1 Connaissances et capacités attendues pour l'obtention du socle commun «Palier 1» Connaissances et compétences

Plus en détail

Le nouveau CAP. Mathématiques Physique-Chimie. Projet proposé par le groupe d experts

Le nouveau CAP. Mathématiques Physique-Chimie. Projet proposé par le groupe d experts Le nouveau CAP Mathématiques Physique-Chimie Projet proposé par le groupe d experts Avertissement Le projet ci-après a été rédigé en 1998. Quelques modifications y ont été directement introduites par les

Plus en détail

Thème N 10: ACTIVITES NUMERIQUES / calcul littéral (1) Nombres relatifs (3)

Thème N 10: ACTIVITES NUMERIQUES / calcul littéral (1) Nombres relatifs (3) Thème N 10: ACTIVITES NUMERIQUES / calcul littéral (1) Nombres relatifs (3) ACTIVITE 1: 1 ) Quand nous sommes entrés en classe, le tableau n'avait pas été effacé. Il restait des calculs qu'avaient effectués

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

THEME 1 : STATUT DE L EGALITE

THEME 1 : STATUT DE L EGALITE Ce document a été élaboré par des enseignants des collèges Romée de Villeneuve, Jules Verne de Cagnes sur Mer et du lycée Renoir (par ordre alphabétique : Mme Aicart, M. Crézé, Mme Faraud, M. Pascal, Mme

Plus en détail

Cours de sixième. Sixième

Cours de sixième. Sixième Sixième 1. Les nombres entiers et les décimaux. 2. Additions, soustraction. 3. Multiplication. 4. Division euclidienne. 5. Division décimale. 6. Parallèles et perpendiculaires. Constructions. 7. Mesurer

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail