Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité"

Transcription

1 Smulaon numérque de la convecon naurelle rdmensonnelle par une méhode Meshless dans la formulaon vesse-vorcé Eyad DABBORA * Hamou SADA Laboraore des éudes hermques Esp 40 Av du Receur Pneau Poers * (aueur correspondan : Résumé On présene une éude numérque poran sur le problème de la convecon naurelle 3D dans une cavé dfférenellemen chauffée par une méhode de ype Meshless La formulaon vesse-vorcé des équaons de Naver-Sokes es ulsée Les résulas obenus son comparés aux résulas de la léraure e permeen de valder cee approche Nomenclaure Ra nombre de Raylegh Nu nombre de Nussel Pr nombre de Prandl f empéraure de la paro frode uvw composanes de la vesse admensonnelle c empéraure de la paro chaude ξ η ζ composanes de la vorcé admensonnelle emps admensonnel empéraure admensonnelle Inroducon La résoluon numérque des problèmes de mécanque des fludes e de ransfer de chaleur défns dans des géoméres complexes es généralemen effecuée par les méhodes des élémens fns ou des volumes fns à mallages non srucurés Le domane d éude es alors dscrésé en un nombre fn d élémens géomérques relés aux nœuds de dscrésaon par l nermédare d une able de connecvés La geson de la base de données relave au mallage deven lourde quand la géomére es rdmensonnelle e quand on es en présence de fronères ou d nerfaces mobles Les méhodes des sans mallages (Meshless ou Meshfree qu se son développées depus une dzane d années rédusen cee dffculé pusqu elles n ulsen que les nœuds de dscrésaon Nous avons développé e ms en œuvre une méhode de collocaon basée sur l approxmaon dffuse ou approxmaon glssane à mondres carrés pour la résoluon de problèmes de conducon [] de rayonnemen [] e de convecon [3] Dans ce derner cas un algorhme de projecon a éé ulsé pour raer le couplage presson-vesse La marce de correcon de la presson es cependan rès mal condonnée e condu à des emps de calcul mporans On propose c de mere en œuvre cee méhode dans le cadre d une formulaon en vesse-vorcé Le problème de la convecon naurelle dans une cavé cubque dfférenellemen chauffée es d abord raé e perme de valder la méhode Quelques résulas obenus dans le cas d une cavé de forme plus complexe son enfn présenés

2 Equaons générales e confguraons éudées On consdère le phénomène de convecon naurelle rdmensonnelle dans une cavé cubque (fgure -a e dans une cavé cubque modfée (fgure -b dfférenellemen chauffées La cavé modfée es une cavé cubque don les paros horzonales son remplacées par des dem-cylndres Fgure : les cavés éudées Dans la formulaon en vesse-vorcé les équaons de Naver-sokes admensonnelles s écrven : Λ ( Λ j Ra ( Pr Pr( ( ( (3 Le schéma mplce ulsé condu à la dscrésaon emporelle suvane : j Ra Λ ( Pr Pr( (4 Λ (5 [ ] ( (6 Les veceurs vesse e vorcé on pour composans respecvemen ( w v u e ( ζ η ξ Nous ne reprendrons pas c les déals relafs à la méhode de collocaon ulsée pour résoudre les équaons aux dérvées parelles précédenes e qu peuven êre rouvés par b a

3 alleurs [-3] On rappellera smplemen qu éan donnée une foncon f(x de la varable de coordonnée rdmensonnelle X(xyz la valeur de la foncon en XX 0 X es donnée par le développemen à l ordre m suvan : f ( X x y z! j j f ( X 0 < j j j3< m j! j! j3 j3 j j j3 [ x y z f ] X 0 (7 S les valeurs f(x f ( n de la foncon son supposées connues en un nombre n de pons vosns XX 0 X on peu ronquer le développemen en sére précéden e j j j3 f de la foncon au nœud de référence approxmer ans les dérvées parelles [ x y z ] X 0 X 0 en résolvan un sysème d équaons lnéares Les dérvées parelles apparassan dans les équaons à résoudre son ensue remplacées par ces approxmaons en chacun des pons de la dscrésaon On oben fnalemen des sysèmes d équaons lnéares qu son résolus séquenellemen au moyen d une méhode BICGSAB après nroducon des condons aux lmes Les équaons (4 (5 e (6 son résolues dans ce ordre avec comme crère de convergence une erreur relave sur chacune des varables e en chaque pon nfereure à Résulas 3 Cavé cubque Le ableau regroupe les nombres de Nussel obenus par la méhode proposée avec dfférens mallages ans que quelques résulas de la léraure pour des nombres de Raylegh comprs enre 0 3 e 0 6 On peu consaer la bonne précson des résulas pusque l erreur relave maxmale es nféreure à %Noons que pour un nombre de Raylegh de 0 5 e pour le mallage 5 3 le nombre d éraons nécessare pour aendre le régme saonnare es de 899 Ra 0 3 Mehod Meshless GDQ[6] PSC[8] FDM[0] LBM[9] Mesh sze Nu Ra 0 4 Mehod Meshless GDQ[6] PSC[8] FDM[0] LBM[9] Mesh sze x45x45 Nu Ra 0 5 Mehod Meshless GDQ[6] PSC[8] FDM[0] LBM[9] Mesh sze x65x65 Nu Ra 0 6 Mehod Meshless GDQ[6] PSC[8] FDM[0] Mesh sze Nu ableau : Nombre de Nussel

4 On présene sur la fgure les champs de empéraure (dans les secons z05 e x 05 ans que les champs de la rosème composane de la vorcé dans la secon médane (z05 de la cavé pour Ra0 3 e Ra0 5 Comme aendu les champs obenus dans la secon z05 son smlares à ceux du cas bdmensonnel empéraure Vorcéζ Ra0 3 ζ max 4858 Ra0 5 3 Cavé arronde max ζ 39 Secon z 05 Secon x 05 Secon z 05 Fgure : Champs de empéraure e de vorcé La fgure 3 monre les champs de empéraure les deux composanes u e v de la vesse ans que la composane suvan z de la vorcé dans la secon z05 pour Ra e 0 5 La composane de la vorcé suvan x dans la secon x05 y es égalemen présenée Les résulas pour Ra0 5 on éé obenus avec une dscrésaon en nœuds (en ulsan 5 pons suvan la drecon y e 35 pons suvans la drecon x L écoulemen es smlare à celu qu a leu dans la cavé cubque avec noammen un amncssemen des couches lmes vercales à mesure que le nombre de Raylegh augmene Le fa que les paros horzonales soen arrondes condu à un écoulemen plus rapde par rappor à celu qu a leu dans la cavé cubque Les échanges de chaleur son donc plus mporans comme le monre le ableau Les nombres de Nussel augmenen dans une proporon allan de 085 % à 56%

5 u v Vorcé ζ Vorcé ξ Ra0 5 Ra0 4 Ra0 3 Secon z05 Fgure 3 : champs de empéraure de vesse e de vorcé Secon x05 Raylegh Nu ableau : Nombres de Nussel Sgnalons pour ermner que les emps de calcul son c de l ordre de 4 fos plus fables par rappor au cas où la méhode es couplée à un algorhme de projecon dans la formulaon en varables prmares

6 4 Concluson ne méhode Meshless a éé ulsée pour résoudre un problème de convecon naurelle rdmensonnel dans la formulaon vesse-vorcé La bonne qualé des résulas obenus monre que cee approche es une alernave néressane qu perme d envsager l éude de problèmes 3D nsaonnares Références [] HSada NDubus Sophy On he Soluon Of Heerogeneous Hea Conducon Problems by a Dffuse Approxmaon Meshless Mehod Numercal Hea ransfer Par B: Fundamenals 50: december (006 [] HSada On he use of a meshless mehod for solvng radave ransfer wh he dscree ordnaes formulaons Journal of Quanave Specroscopy and Radave ransfer 0: Sepember (006 [3] HSada S Couurer Performance and accuracy of a meshless mehod for lamnar naural convecon Numercal Hea ransfer Par B: Fundamenals 37: June (000 [4] DCLo DLYoung K Murugesan CCsad MHGou Velocy-vorcy formulaon for 3D naural convecon n an nclned cavy by DQ mehod Inernaonal Journal of Hea and Mass ransfer (005 [5] DLYoung SC Jane CY Ln CL Chu KC Chen Soluons of D and 3D Sokes laws usng mulquadrcs mehod Engneerng analyss wh boundary elemens (003 [6] DCLo DLYoung KMurugesan GDQ mehod for naural convecon n a cubc cavy usng velocy-vorcy formulaon Numercal Hea ransfer Par B48: (005 [7] DL Young YH Lu IEldho A combned BEM-FEM model for he velocy-vorcy formulaon of he Naver-Sokes equaons n hree dmensons Engneerng Analyss wh Boundary ElemensVolume 4 Number 4 pp (0 (Aprl 000 [8] Erc GLabrosseMBeroun A Frs Incurson no he 3D Srucure of Naural concecon of Ar n a Dfferenally Heaed Cubc Cavy from Accurae Numercal Soluons InJHea Mass ransfer vol43pp (000 [9] YPeng CShuYChew A 3D Incompressble hermal Lace Bolzmann Model and s Applcaon o Smulae Naural Convecon n a Cubc Cavy JCompuPhysvol93 pp (003 [0] Fuseg JMHyun KKuwahara BFarouk Numercal sudy of hree-dmensonal naural convecon n a dfferenally heaed cubcal enclosure Inernaonal Journal of Hea and Mass ransfer 34 (6 pp ( 99

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1 SYSTEMES BOUS-MALUS Phlppe BIEAIME Acuare I.S.F.A., GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A., Unversé Claude Bernard Lyon ahale RICHARD GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A.,

Plus en détail

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

La régression logistique PLS : Application à la détection de défaillance d entreprises

La régression logistique PLS : Application à la détection de défaillance d entreprises Busness Scool W O R K I N G P A P E R S E R I E S Workng Paper 04-38 La régresson logsque PLS : Applcaon à la déecon de défallance d enreprses BEN JABEUR Sam p://.pag.fr/fr/accuel/la-recerce/publcaons-wp.ml

Plus en détail

Combiner des apprenants: le boosting

Combiner des apprenants: le boosting Types d expers Combner des apprenans: le boosng A. Cornuéjols IAA (basé sur Rob Schapre s IJCAI 99 alk)! Un seul exper sur l ensemble de X! Un exper par sous-régons de X (e.g. arbres de décsons)! Pluseurs

Plus en détail

THÈSE DOCTEUR DE L UNIVERSITÉ JOSEPH FOURIER

THÈSE DOCTEUR DE L UNIVERSITÉ JOSEPH FOURIER UNIVERSITÉ JOSEPH FOURIER GRENOBLE 1 N THÈSE pour obenr le grade de DOCTEUR DE L UNIVERSITÉ JOSEPH FOURIER en MÉCANIQUE ÉNERGÉTIQUE présenée e souenue publquemen par Maha AHMAD Le 23 Novembre 2004 NOUVEAUX

Plus en détail

ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL

ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL Un algorhme de mnmax dynamque sochasque our la soluon d un roblème d omsaon de orefeulle ar Érc Srnguel Scences de la geson Mémore

Plus en détail

Modélisation semi-analytique et choix optimal des procédés CRTM

Modélisation semi-analytique et choix optimal des procédés CRTM 9 ème Congrès Franças de Mécanque Marselle, 4-8 aoû 9 Modélsaon sem-analyque e chox opmal des procédés CRTM A. MAMONE a, A. SAOAB a, C. H. PARK a,t. OAHBI a a. Laboraore d Ondes e Mleux Complexes, FRE

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

Modèles d analyse des biographies en temps discret Exemple d utilisation

Modèles d analyse des biographies en temps discret Exemple d utilisation Modèles d analyse des bographes en emps dscre Exemple d ulsaon Jean-Mare Le Goff Cenre Lnes Pôle Naonal de recherche Lves Unversé de Lausanne Plan Deux ypes de données dscrèes Modèles à emps dscre Modèle

Plus en détail

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL?

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL? OBJECTFS Chapre - - RÉGME SNSOÏDAL GÉNÉRALTÉS - Monrer l'mporance d régme snsoïdal en élecronqe e dans d'ares domanes. - Défnr les granders relaves à n sgnal snsoïdal. - Savor représener ne grander snsoïdale

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE

EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE Benoî Mulkay e Jacques Maresse 2 Rappor pour le Mnsère l Ensegnemen supéreur e de la Recherche Novembre 20 Unversé de Monpeller Faculé d'econome beno.mulkay@unv-monp.fr

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

LA MESURE DES STOCKS DE CAPITAL, DES SERVICES DU CAPITAL ET DE LA PRODUCTIVITÉ MULTIFACTORIELLE

LA MESURE DES STOCKS DE CAPITAL, DES SERVICES DU CAPITAL ET DE LA PRODUCTIVITÉ MULTIFACTORIELLE Revue économque de l OCDE, n 37, 2003/2 LA MESURE DES STOCKS DE CAPITAL, DES SERVICES DU CAPITAL ET DE LA PRODUCTIVITÉ MULTIFACTORIELLE par Paul Schreyer TABLE DES MATIÈRES Inroducon... 186 Servces du

Plus en détail

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique 4 Snhèse mxe H /H par reor d éa saqe SLH SLH, ENS RZELER Laboraore d nalse e commandes des ssèmes, LS-EN amps nversare, P 37 Le belvédère ns - nse Laboraore d nalse e rchecre des Ssèmes, LS-NRS 7 vene

Plus en détail

Allocation stratégique d actifs et ALM pour les régimes de retraite

Allocation stratégique d actifs et ALM pour les régimes de retraite N d ordre : 00-0 Année 0 THÈSE présenée devan l UNIVERSITÉ CLAUDE BERNARD - LYON ISFA pour l obenon du DIPLÔME DE DOCTORAT Spécalé scences acuarelle e fnancère présenée e souenue publquemen le 00/00/0

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

«Modèle Bayésien de tarification de l assurance des flottes de véhicules»

«Modèle Bayésien de tarification de l assurance des flottes de véhicules» Arcle «Modèle Baésen de arcaon de l assurance des loes de véhcules» Jean-Franços Angers, Dense Desardns e Georges Donne L'Acualé économque, vol. 80, n -3, 004, p. 53-303. Pour cer ce arcle, ulser l'normaon

Plus en détail

Politique éducative et marché du travail en Afrique du Sud. Une analyse en équilibre général calculable dynamique

Politique éducative et marché du travail en Afrique du Sud. Une analyse en équilibre général calculable dynamique Caher de recherche/workng Paper 09-37 Polque éducave e marché du raval en Afrque du Sud. Une analyse en équlbre général calculable dynamque Hélène Masonnave Bernard Decaluwé Aoû/Augus 2009 Masonnave: Pos

Plus en détail

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1.

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1. MESURE DE VISCOSITÉ I - QUELQUES ÉLÉMENTS DE RHÉOLOGIE La mesure de la viscosié d'un fluide fai parie de la rhéologie, qui es la science des écoulemens de la maière. Dans la suie, on noera : -la viscosié

Plus en détail

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques Revue es Scences e e la Technologe - RST- Volume 3 1 / janver 2012 Opmsaon u plan e geson u sock une enreprse e srbuon es prous pharmaceuques D. Bellala, M.S. oune, A. Abessme Laboraore 'Auomaque e e Proucque

Plus en détail

Intégration réelle et hétérogénéités macroéconomiques en union monétaire : une évaluation en équilibre général intertemporel

Intégration réelle et hétérogénéités macroéconomiques en union monétaire : une évaluation en équilibre général intertemporel Inégraon réelle e éérogénéés macroéconomques en unon monéare : une évaluaon en équlbre général neremporel Aurélen Eyquem Jean-Crsope Pouneau 2 CREM - UMR CNRS 62 - Unversé de Rennes Mars 2007 Unversé de

Plus en détail

Cahier technique n 154

Cahier technique n 154 Collecon Technque... Caher echnque n 154 Technques de coupure des dsjonceurs BT R. Morel Les Cahers Technques consuen une collecon d une cenane de res édés à l nenon des ngéneurs e echncens qu recherchen

Plus en détail

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance evue des Scences Humanes Unversé Mohamed Khder Bskra No :9 La méhodologe d éude d évenemen : Une méhode e des ouls à s approprer en fnance Unversé de Skkda ésumé: Les éudes d événemens son largemen applquées,

Plus en détail

Reconnaissance du Geste Humain par Vision Artificielle: Application à la Langue des Signes

Reconnaissance du Geste Humain par Vision Artificielle: Application à la Langue des Signes Reconnassance du Gese Human par Vson Arfcelle: Applcaon à la Langue des Sgnes Présené par: Arnaud Deslandes Arnaud.Deslandes@n-evry.fr Rappor de sage dans le cadre du : Inellgence Arfcelle Reconnassance

Plus en détail

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788 Evaluaon des performances d un sysème de localsaon de véhcules de ranspors gudés fondé sur l assocaon d une echnque rado ULB e d une echnque de reournemen emporel. Bouna FALL To ce hs verson: Bouna FALL.

Plus en détail

Real and nominal convergence amongst MENA countries

Real and nominal convergence amongst MENA countries MRA Munch ersonal ReEc Archve Real and nomnal convergence amongs MENA counres REY, Serge CATT, Unversy of au e ays de l Adour Sepember 2005 Onlne a hp://mpra.ub.un-muenchen.de/30206/ MRA aper No. 30206,

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Modélisation, Simulation et Commande des systèmes électriques

Modélisation, Simulation et Commande des systèmes électriques Modélsaon, Smulaon e Commande des sysèmes élecrques runo FRANCOIS runo.francos@ec-llle.fr Plan Cours: Généralé sur les sysèmes physques Cours: Le Graphe Informaonnel de Causalé Cours: Modélsaon de la machne

Plus en détail

PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION -

PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION - Les Cahers du CREAD n 9 /00 5 PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION - Mosefa BELMOKADDEM * Omar BENATEK ** RESUME Le bu de ce raval es un essa d analyse du

Plus en détail

Modèle dynamique de transport basé sur les activités

Modèle dynamique de transport basé sur les activités Moèle ynamque e ranspor basé sur les acvés Ta-Yu Ma To ce hs verson: Ta-Yu Ma. Moèle ynamque e ranspor basé sur les acvés. Humanes an Socal Scences. Ecole es Pons ParsTech, 27. French. HAL

Plus en détail

Regional Wind Speed Evolution Identification and Longterm Correlation Application

Regional Wind Speed Evolution Identification and Longterm Correlation Application Regonal Wnd Speed Evoluon Idenfcaon and Longerm Correlaon Applcaon Idenfcaon de l évoluon régonale de la vesse du ven e applcaon à la corrélaon long erme B. Buffard, Theola France, Monpeller Exernal Arcle

Plus en détail

Un progiciel pour l analyse de la couche de fumées lors d un incendie de compartiment

Un progiciel pour l analyse de la couche de fumées lors d un incendie de compartiment Un progel pour l analye de la ouhe de fumée lor d un nende de omparmen 3 Soum le : 15 Mar 15 Forme révée aepée le : 14 Ma 15 Emal de l'aueur orrepondan a.benarou@unv-hlef.dz Naure & ehnologe Un progel

Plus en détail

PRODUCTIVITE MULTIFACTORIELLE

PRODUCTIVITE MULTIFACTORIELLE Déparemen fédéral de l néreur DFI Offce fédéral de la Sasque OFS Économe, Éa e socéé Documen de raval Neuchâel, ocobre 2006 PRODUCTIVITE MULTIFACTORIELLE RAPPORT METHODOLOGIQUE Gregory Ras, OFS, secon

Plus en détail

PLAN D EVALUATION MAURDOR SECONDE CAMPAGNE

PLAN D EVALUATION MAURDOR SECONDE CAMPAGNE PLAN D EVALUATION MAURDOR ECONDE CAMPAGNE 1 INTRODUCTION Coordonnée par le Laboraore Naonal de mérologe e d Essas (LNE) e CAIDIAN, fnancée par la DGA, la présene campagne d évaluaon propose un cadre commun

Plus en détail

N o 12-001-XIF au catalogue. Techniques d'enquête

N o 12-001-XIF au catalogue. Techniques d'enquête N o -00-XIF au caalogue echnques d'enquêe 005 Commen obenr d aures rensegnemens oue demande de rensegnemens au suje du présen produ ou au suje de sasques ou de serces connexes do êre adressée à : Dson

Plus en détail

Titre : Développement d outils statistiques pour la mise en place de boucles de régulation en microélectronique

Titre : Développement d outils statistiques pour la mise en place de boucles de régulation en microélectronique THESE En vue de l obenon du DOCTORAT DE L'UNIVERSITE DE TOULOUSE III Délvré par l unversé Toulouse III - Paul Sabaer Dscplne : Mahémaques Applquées Opon : Sasque Présenée e souenue par : Carolne PACCARD

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Sous-Evaluation Des Introductions En Bourse: Application D une Frontiere Stochastique Sur Le Nouveau Marche

Sous-Evaluation Des Introductions En Bourse: Application D une Frontiere Stochastique Sur Le Nouveau Marche Sous-Evaluaon Des Inroducons En Bourse: Applcaon D une Fronere Sochasque Sur Le Nouveau Marche Samy Ben Naceur e Mohamed Goaïed Workng Paper 039 SOUS-EVALUATION DES INTRODUCTIONS EN BOURSE: APPLICATION

Plus en détail

INTRAROUGE THERMIQUE METEOSAT (SENEGAL), 1986

INTRAROUGE THERMIQUE METEOSAT (SENEGAL), 1986 EVALUATIN DE LA PLUVIMETRIE PAR CUMUL DES IMAGES INTRARUGE THERMIQUE METESAT (SENEGAL), 1986 IMBERNN J.' ASSAD E.* GUILLT B.** DAGRNE D.** Inroducon Des recherches on éé menées ces dernères années sur

Plus en détail

ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT Analys ds sgnaux ds crcus élcrqus Mchl Pou Chapr 13 égms ransors ds crcus C L don 14/3/214 Tabl ds maèrs 1 POUQUOI T COMMNT?...1 2 GIMS TANSITOIS DS CICUITS C T L....2 2.1 xponnll décrossan....2

Plus en détail

L'INFLUENCE DU COUT D USAGE DU CAPITAL SUR LA DECISION D INVESTIR ET SUR L INVESTISSEMENT CORPOREL DES ENTREPRISES DE SERVICES FRANCAISES

L'INFLUENCE DU COUT D USAGE DU CAPITAL SUR LA DECISION D INVESTIR ET SUR L INVESTISSEMENT CORPOREL DES ENTREPRISES DE SERVICES FRANCAISES Cenre de Recherche pour l Eude e l Observaon des Condons de Ve L'NFLUENCE DU COUT D USAGE DU CAPTAL SUR LA DECSON D NVESTR ET SUR L NVESTSSEMENT CORPOREL DES ENTREPRSES DE SERVCES FRANCASES LE RECOURS

Plus en détail

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale...

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale... GUIDE PRATIQUE sur le modèle sandard SST pour les rsques de marché Edon du 23 décembre 204 Table des maères Bu... 2 I. Généralés sur la quanfcaon des rsques dans le SST... 2 I. Modèle analyque... 3 I..

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

COMPRENDRE LA METHODE X11

COMPRENDRE LA METHODE X11 COMPRENDRE LA METHODE X Domnque LADIRAY, Benoî QUENNEVILLE Julle 999 Domnque Ladray es Admnsraeur de l Insu Naonal de la Sasque e des Éudes Économques, 8 Boulevard Adolphe Pnard, 754 Pars, France. Ce raval

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

Surveillance et maintenance Prévisionnelle

Surveillance et maintenance Prévisionnelle Page Surveillance e mainenance Prévisionnelle Sommaire Page 2 La Prévisionnelle o Terminologie e Normes o Elémens de conexe ( enjeux, mise en œuvre.) Exemples d applicaions réalisées par le Ceim o L approche

Plus en détail

Émissions d obligations rachetables :

Émissions d obligations rachetables : Émssons d oblgaons racheables : movaons e rendemens oblgaares mplqués Maxme DEBON Franck MORAUX Parck NAVATTE Unversé d Evry Unversé de Rennes Unversé de Rennes & LAREM & CREM & CREM Ocobre 2 Absrac Après

Plus en détail

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie:

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie: Réublque Algérenne Déocraque e Poulare Mnsère de l Ensegneen suéreur e de a Recherche Scenfque Unversé : Hassba BENBOUAI de CHEF Faculé : Scences Déareen : Physque Doane : ST-SM Polycoe: Vbraons e Ondes

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL Courrier du Savoir N 18, Mars 2014, pp.09-14 MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL A. MESSAMEH, N. LOUDJANI, M. T.BOUZIANE Laboraoire

Plus en détail

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18 Deparmen of Fnance Mnsère des Fnances Workng Paper Documen de raval Conrôle des émssons de GES à l ade d un sysème de perms échangeables avec allocaon basée sur la producon Une analyse en équlbre général

Plus en détail

Pour obtenir le grade de. Spécialité : Micro & Nano Electronique. Arrêté ministériel : 7 août 2006. «Guy / WALTISPERGER»

Pour obtenir le grade de. Spécialité : Micro & Nano Electronique. Arrêté ministériel : 7 août 2006. «Guy / WALTISPERGER» THÈSE Pour obenr le grade de DOCTEU DE UNIVESITÉ DE GENOBE Spécalé : Mcro & Nano Elecronque Arrêé mnsérel : 7 aoû 2006 Présenée par «Guy / WATISPEGE» Thèse drgée par «Skandar / BASOU» préparée au sen du

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

THÈSE. Présentée par. Bassem JIDA. Pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE

THÈSE. Présentée par. Bassem JIDA. Pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE N d ordre : ULCO 008.35 Annee 008 THÈSE Présenée par Bassem JIDA Pour obenr le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE Spécalé : Géne Informaque, Auomaque e Traemen du Sgnal e des Images

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2 UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (992) AU QUÉBEC * par Georges Donne,2 Charles Vanasse 2 * Cee recherche a éé rendu possble grâce en pare au Fonds pour la

Plus en détail

LIMITES DU MARCHÉ : MONOPOLE NATUREL

LIMITES DU MARCHÉ : MONOPOLE NATUREL LIMITES DU MARCHÉ : MONOPOLE NATUREL Le monopole naurel CM décroî avec l échelle de producon = Cm rès fable / CF L Éa do réglemener Soluon 1 : arfcaon au coû margnal Effcace au sens de Pareo mas peres

Plus en détail

ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS

ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS CONVENTION Y09-12 ACTION 33 sous acion 1 Levée des freins réglemenaires e normaifs à l'usage du bois dans la consrucion

Plus en détail

Capteurs CCD (Charge Coupled Device)

Capteurs CCD (Charge Coupled Device) Capeurs CCD (Charge Coupled Device) 1 NOTION SUR LES CONDUCTEURS, SEMI-CONDUCTEURS ET ONDES LUMINEUSES... 2 1.1 STRUCTURE DE LA MATIERE... 2 1.2 LES ISOLANTS... 2 1.3 LES CONDUCTEURS... 2 1.4 LES SEMI-CONDUCTEURS...

Plus en détail

LES DESEQUILIBRES DES PAIEMENTS INTERNATIONAUX (1967-2002) : CROISSANCE, POLARISATION ET FINANCIARISATION. Jean-Baptiste Gossé 1 et Julio Raffo 2

LES DESEQUILIBRES DES PAIEMENTS INTERNATIONAUX (1967-2002) : CROISSANCE, POLARISATION ET FINANCIARISATION. Jean-Baptiste Gossé 1 et Julio Raffo 2 LES DESEQUILIBRES DES PAIEMENTS INTERNATIONAUX (967-2002) : CROISSANCE, POLARISATION ET FINANCIARISATION Jean-Bapse Gossé e Julo Raffo 2 RÉSUMÉ Ce arcle rerace l émergence des déséqulbres mondaux de compe

Plus en détail

Modèles de Risques et Solvabilité en assurance Vie. Kaltwasser Perrine Le Moine Pierre. Autorité de Contrôle des Assurances et des Mutuelles (ACAM)

Modèles de Risques et Solvabilité en assurance Vie. Kaltwasser Perrine Le Moine Pierre. Autorité de Contrôle des Assurances et des Mutuelles (ACAM) Modèles de Rsques e Solvablé en assurance Ve Kalwasser errne Le Mone erre Auoré de Conrôle des Assurances e des Muuelles (ACAM 6, rue abou 75436 ARIS CEDEX 9 él. : + 33 55 5 43 5 fax : + 33 55 5 4 5 perrne.kalwasser@acam-france.fr

Plus en détail

Avant-propos. Henri VINCENOT in «Le pape des escargots»

Avant-propos. Henri VINCENOT in «Le pape des escargots» Aan-propos Les prncpes de conerssers d énerge à décopage son ben conns e ler réalsaon es soen enane. Par exemple réssr à obenr ne enson éleée à parr de dex ples de.5 V o almener n apparel élecroménager

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

GESTION DE STOCKS AVEC TRANSSHIPMENT DANS UN RESEAU DE DISTRIBUTION MULTI SITES ET MULTI ECHELONS

GESTION DE STOCKS AVEC TRANSSHIPMENT DANS UN RESEAU DE DISTRIBUTION MULTI SITES ET MULTI ECHELONS 8 e Conférence Inernonle de MOdélson e SIMulon - MOSIM - u m - Hmmme - unse «Evluon e opmson des sysèmes nnovns de producon de ens e de servces» GESION DE SOCKS AVEC RANSSHIPMEN DANS UN RESEAU DE DISRIBUION

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

Valeur économique de dettes subordonnées pour des sociétés non-vie

Valeur économique de dettes subordonnées pour des sociétés non-vie Valeur économque de dees subordonnées our des socéés non-ve - Franços Bonnn (Hram Fnance) - Frédérc Planche (Unversé Lyon, Laboraore SAF) - Monassar Tammar (Prm Ac) - Amédée de Clermon-Tonnerre (Cohen

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET VALORIAION D OPION DIGIALE EN IUAION DE MARCHE INCOMPLE Parck NAVAE Chrsophe VILLA CREREG, Insu de Geson de Rennes REUME L objecf prncpal poursuv dans ce arcle, es d éuder quelques applcaons e exensons

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar Le découplage des courbes de rendemen en euro e en dollar Benoî MOJON Direceur des Éudes monéaires e financières Fulvio PEGORARO Direcion des Éudes monéaires e financières Cee lere présene le résula de

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Etude économétrique de l efficience informationnelle face aux anomalies sur les marchés boursiers

Etude économétrique de l efficience informationnelle face aux anomalies sur les marchés boursiers Eude économérque de l effcence nformaonnelle P P: 0-5 Eude économérque de l effcence nformaonnelle face aux anomales sur les marchés boursers Mohamed CHIKHI - Unversé de Ouargla- Membre assocé LAMETA -

Plus en détail

Temps-fréquence et traitement statistique

Temps-fréquence et traitement statistique in Temps-réquence: conceps e ouils, eds. F. lawasch and F. Auger, Paris, France: ermes/lavoisier, 2005, Chap. 10, pp. 289 330. Copyrigh 2005 ermes/lavoisier Chapire 10 Temps-réquence e raiemen saisique

Plus en détail

Une lecture probabiliste du cycle d affaires américain

Une lecture probabiliste du cycle d affaires américain Une lecure probablse du ccle d affares amércan Benoî BELLONE Févrer 5 (Premère verson avrl 4) Les posons prses dans ce arcle n engagen que son aueur A e ne représenen pas celles de la Drecon Générale du

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Modélisation et simulation multi agents du processus de formation des prix des actifs avec agents hétérogènes

Modélisation et simulation multi agents du processus de formation des prix des actifs avec agents hétérogènes éme conférence Euro-Afrcane en Fnance e Econome : 5-6 Jun 008 oélsaon e smulaon mul agens u rocessus e formaon es rx es acfs avec agens héérogènes Conférencer : BELHOULA alek memalek@yahoo.fr ABAOUB Ezzene

Plus en détail

Notice d information contractuelle Entreprise article 83. Generali.fr

Notice d information contractuelle Entreprise article 83. Generali.fr parculers professonnels ENTREPRISES Noce d nformaon conracuelle Enreprse arcle 83 General.fr Noce d nformaon conracuelle Sommare Préambule... 3 Arcle 1 - Défnons... 3 Arcle 2 - bje... 4 Arcle 3 - Garanes...

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail