Annales Logarithme népérien

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Annales Logarithme népérien"

Transcription

1 Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier naturel n non nul, est strictement positif. b) Démontrer que la suite est décroissante. c) Que peut-on en déduire pour la suite? 3) Pour tout entier naturel non nul, on pose a) Démontrer que la suite est une suite géométrique. On précisera sa raison et son premier terme. b) En déduire que, pour tout entier naturel non nul, 4) Soit la fonction définie sur l intervalle par a) Déterminer la limite de en b) En déduire la limite de la suite Centres étrangers Juin 2012 (6 points) On considère l équation (E) d inconnue réelle : Partie A Conjecture graphique Le graphique ci-contre donne la courbe représentative de la fonction exponentielle et celle de la fonction définie sur R par telles que les affiches une calculatrice dans un repère orthogonal. A l aide du graphique conjecturer le nombre de solutions de l équation (E) et leur encadrement par deux entiers consécutifs. N. Duceux Lycée Paul Doumer Année 2012/13 Page 1

2 Partie B Étude de la validité de la conjecture graphique 1) a) Étudier selon les valeurs de, le signe de b) En déduire que l équation (E) n a pas de solutions dans l intervalle. c) Vérifier que 0 n est pas solution de (E). 2) On considère la fonction, définie pour tout nombre réel de par :. Montrer que sur, l équation (E) équivaut à 3) a) Montrer que, pour tout réel appartenant à, on a : b) Déterminer les variations de la fonction c) Déterminer le nombre de solutions de l équation et donner une valeur arrondie au centième de chaque solution. Conclure quant à la conjecture de la partie A. Métropole La Réunion Juin 2012 (6 points) Commun à tous les candidats Il est possible de traiter la partie C sans avoir traité la partie B. Partie A On désigne par la fonction définie sur l intervalle par 1. Déterminer la limite de la fonction en. 2. Démontrer que pour tout réel de l intervalle Dresser le tableau de variation de la fonction. En déduire le signe de la fonction sur l intervalle. Partie B Soit la suite définie pour tout entier strictement positif par 1. On considère l algorithme suivant : Variables : et sont des entiers naturels. est un réel. Entrée : Demander à l utilisateur la valeur de. Initialisation : Affecter à la valeur 0. N. Duceux Lycée Paul Doumer Année 2012/13 Page 2

3 Traitement : Pour variant de 1 à. Affecter à la valeur Sortie : Afficher. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur. 2. Recopier et compléter l algorithme précédent afin qu il affiche la valeur de lorsque l utilisateur entre la valeur de. 3. Voici les résultats fournis par l algorithme modifié, arrondis à ,697 0,674 0,658 0,647 0,638 0,632 0,626 0,582 0,578 0,578 0,577 À l aide de ce tableau, formuler des conjectures sur le sens de variation de la suite éventuelle convergence. et son Partie C Cette partie peut être traitée indépendamment de la partie B. Elle permet de démontrer les conjectures formulées à propos de la suite telle que pour tout entier strictement positif, 1. Démontrer que pour tout entier strictement positif, où est la fonction définie dans la partie A. En déduire le sens de variation de la suite. 2. a. Soit un entier strictement positif. Justifier l inégalité En déduire que Amérique du Nord Mai 2012 (5 points) Commun à tous les candidats Partie A - Restitution organisée des connaissances e Partie B On considère la fonction définie sur par. On note sa courbe représentative dans un repère orthonormal. N. Duceux Lycée Paul Doumer Année 2012/13 Page 3

4 1) Soit la fonction définie sur par. Montrer que la fonction est positive sur. 2) a) Montrer que pour tout,. b) En déduire le sens de variation de sur. 3) On note la droite d équation. a) Déterminer la limite de quand tend vers. Que peut-on en déduire pour la courbe b) Étudier la position relative de la courbe par rapport à la droite 4) Pour tout entier naturel, on note respectivement et les points d abscisse de et de a) Montrer que pour tout entier naturel, la distance entre les points et est donnée par. b) Écrire un algorithme déterminant le plus petit entier supérieur ou égal à 2 tel que la distance soit inférieure ou égale à. Nouvelle Calédonie Nov 2008 (5 points) Partie A On considère la fonction définie sur l intervalle par. 1) Déterminer les limites de la fonction en 0 et en. 2) Étudier le sens de variation de la fonction puis dresser son tableau de variations. 3) Montrer que l équation admet une solution unique dans l intervalle. Donner un encadrement du nombre à près. Partie B Le plan est muni d un repère orthonormal. On considère sur le graphique ci-dessous, la courbe représentative de la fonction, ainsi que la droite d équation. On note le point d intersection de la courbe et de la droite. On considère l aire, en unités d aire, notée, de la partie du plan située au dessus de l axe des abscisses et au N. Duceux Lycée Paul Doumer Année 2012/13 Page 4

5 dessous de la courbe et de la droite. 1) Déterminer les coordonnées du point. 2) Soit. a) Donner une interprétation géométrique de. b) Vérifier que la fonction définie sur par est une primitive de la fonction logarithme népérien. En déduire la valeur de en fonction de α. c) Montrer que peut aussi s écrire sachant que. 3) Calculer l aire en fonction de. Liban Juin 2008 (6 points) Commun à tous les candidats Partie A Démonstration de cours Prérequis : Définition d une suite tendant vers «Une suite tend vers si, pour tout réel A, tous les termes de la suite sont, à partir d un certain rang, supérieurs à A». Démontrer le théorème suivant : une suite croissante non majorée tend vers. Partie B On considère la fonction définie sur l intervalle par. La courbe représentative de la fonction dans un repère orthogonal est donnée ci-dessous. Cette courbe sera complétée et remise avec la copie à la fin de l épreuve. 1) Étudier le sens de variation de la fonction sur l intervalle. 2) Déterminer une équation de la tangente T à la courbe au point d abscisse 0. 3) Tracer la droite T sur le graphique. Dans la suite de l exercice, on admet que, sur l intervalle, la courbe est située au dessus de la droite T. Partie C On considère la suite définie sur par, et pour tout entier naturel,. 1) Construire sur l axe des abscisses les cinq premiers termes de la suite en laissant apparent les traits de construction (utiliser le graphique donné). 2) A partir de ce graphique, que peut-on conjecturer concernant le sens de variation de la suite et son comportement lorsque tend vers? 3) a) Montrer à l aide d un raisonnement par récurrence que, pour tout entier naturel,. b) Montrer que la suite est croissante. N. Duceux Lycée Paul Doumer Année 2012/13 Page 5

6 c) Montrer que la suite n est pas majorée. d) En déduire la limite de la suite Liban Juin 2007 (6 points) Soient et les fonctions définies sur l intervalle par et On note C et C les courbes représentatives respectives des fonctions f et g dans un repère orthogonal. Les courbes C et C sont données en annexe. 1) a) Étudier le signe de sur. b) En déduire la position relative des deux courbes C et C sur N. Duceux Lycée Paul Doumer Année 2012/13 Page 6

7 2) Pour appartenant à, M est le point de C d abscisse et N est le point de C de même abscisse. a) Soit la fonction définie sur par. Étudier les variations de la fonction sur. b) En déduire que sur l intervalle, la valeur maximale de la distance MN est obtenue pour. c) Résoudre dans, l équation d) En déduire que sur, il existe deux réels et pour lesquels la distance MN est égale à 1. 3) a) Vérifier que la fonction définie sur par est une primitive de la fonction logarithme népérien. En déduire. b) Vérifier que la fonction G définie sur par est une primitive de la fonction sur. c) On considère la partie du plan délimitée par les courbes C et C et les droites d équations et. Déterminer l aire A, en unité d aire, de cette partie du plan. Pondichéry Avril 2007 (5 points) On considère la fonction définie sur par. 1) Montrer que la fonction est dérivable sur. Étudier le signe de sa fonction dérivée, sa limite éventuelle en, et dresser le tableau de ses variations. 2) On définit la suite par son terme général. a) Justifier que, si, alors. b) Montrer, sans chercher à calculer, que pour tout entier naturel, c) En déduire que la suite est convergente et déterminer sa limite. 3) Soit la fonction définie sur par ; a) Justifier que est dérivable et déterminer, pour tout réel positif, le nombre. b) On pose pour tout entier naturel,. Calculer 4) On pose pour tout entier naturel,. Calculer. La suite estelle convergente? N. Duceux Lycée Paul Doumer Année 2012/13 Page 7

8 Amérique du Nord Mai 2006 (5 points) 1) On considère la fonction définie sur par. On donne ci-dessous le tableau de variations de. 0 2,3 2,4 0 Démontrer toutes les propriétés de la fonction regroupées dans ce tableau. 2) Soit la fonction définie sur par. a) Montrer que où est le réel apparaissant dans le tableau de variations ci-dessus. b) Soit un réel. Pour, exprimer en fonction de. 3) On a tracé dans un repère orthonormal ci-dessous les courbes représentatives des fonctions et notées respectivement et. On appelle le point de coordonnées, le point d intersection de et de l axe des abscisses, le point de ayant même abscisse que et le projeté orthogonal de sur l axe des ordonnées. On nomme le domaine du plan délimité par la courbe et les segments et. On nomme le domaine du plan délimité par le rectangle du plan construit à partir de et. Démontrer que les deux domaines et ont même aire, puis donner un encadrement d amplitude 0,2 de cette aire. N. Duceux Lycée Paul Doumer Année 2012/13 Page 8

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : septembre 2005 fredericdemoulin@voilafr Tableau récapitulatif des exercices indique que cette

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

EXERCICE 3 (7 points )

EXERCICE 3 (7 points ) EXERCICE 3 (7 points ) Commun à tous les candidats La page annexe sera à compléter et à remettre avec la copie à la fin de l épreuve. PARTIE A On considère la fonction f définie sur l intervalle ]0; +

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Août 2014 MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur Le sujet

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par EXERCICE (6 points ) Commun à tous les candidats Le graphique de l annexe sera complété et remis avec la copie Soit la fonction f définie sur l intervalle [0; ] par f(x) x + x + ) Etudier les variations

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 2014-2015 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Polynésie 7 Juin Corrigé

Polynésie 7 Juin Corrigé Polynésie 7 Juin 2013 - Corrigé Exercice 1 (6 points) On considère la fonction définie sur R par. On note la courbe représentative de la fonction dans un repère orthogonal. 1) Étude de la fonction a) Déterminer

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats ayant suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE : Calculatrice

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : 8 août 5 frederic.demoulin@voila.fr Tableau récapitulatif des exercices indique que cette

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Annales Fonction Exponentielle. Table des matières. 1 Amérique du Nord Juin Lycée Marcel Pagnol TES2. Annales - exponentielles

Annales Fonction Exponentielle. Table des matières. 1 Amérique du Nord Juin Lycée Marcel Pagnol TES2. Annales - exponentielles Lycée Marcel Pagnol 216-217 TES2 Annales - exponentielles Annales Fonction Exponentielle Table des matières 1 Liban Juin 21 1 2 Asie Juin 21 2 3 Polynésie Septembre 21 2 4 Métropole La réunion Septembre

Plus en détail

Intégration et primitives

Intégration et primitives Eercices mars 6 Intégration et primitives Notion d intégrale Eercice Pour chaque fonction affine définie par morceau f, représentée ci-dessous, calculer, en utilisant les aires, l intégrale I de f sur

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Baccalauréat S Métropole La Réunion 9 septembre 2015

Baccalauréat S Métropole La Réunion 9 septembre 2015 accalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 POINTS Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, quatre

Plus en détail

Bac Blanc de mathématiques du lycée Saint Sernin Page 1

Bac Blanc de mathématiques du lycée Saint Sernin Page 1 BAC BLANC DE MATHEMATIQUES DU LYCEE SAINT SERNIN Terminale S Durée : 4 heures février 01 Sujet : mathématiques L utilisation d une calculatrice est autorisée. Le sujet est composé de 4 exercices indépendants.

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

Fiche d exercices 6 : Fonction logarithme

Fiche d exercices 6 : Fonction logarithme Fiche d exercices 6 : Fonction logarithme Exercice 1 Propriétés des fonctions logarithmes 1. Donner la définition, l ensemble de définition et la dérivée de ln ( x) 2. a. Quelle est la qualification de

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

Exercice n 1. On note An l'évènement " le tirage a lieu dans l'urne U1 à l'étape n " et pn sa probabilité. On a donc p1 = Calculer p2.

Exercice n 1. On note An l'évènement  le tirage a lieu dans l'urne U1 à l'étape n  et pn sa probabilité. On a donc p1 = Calculer p2. Exercice n 1 On considère deux urnes U1 et U2. L'urne U1 contient 17 boules blanches et 3 boules noires indiscernables au toucher. L'urne U2 contient 1 boule blanche et 19 boules noires indiscernables

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Devoir surveillé de terminales S1-Samedi 22 février durée 3h

Devoir surveillé de terminales S1-Samedi 22 février durée 3h Devoir surveillé de terminales S1-Samedi 22 février durée 3h Exercice 1 : Une urne A contient quatre boules rouges et six boules noires. Une urne B contient une boule rouge et neuf boules noires. Les boules

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail

Dérivation - Lecture graphique - Corrigé

Dérivation - Lecture graphique - Corrigé Dérivation - Lecture graphique - Corrigé Exercice Soit une fonction définie sur représentée par la courbe ci-contre a) Déterminer les nombres dérivés est le coefficient directeur de la tangente à la courbe

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES - Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 MATHÉMATIQUES - Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve :

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC MATHEMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 5 pages numérotées de à 5 Les calculatrices sont autorisées conformément

Plus en détail

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31.

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31. 1 Exemples simples Exercice 1.1 Á partir de leurs premiers termes On connaît les premiers termes de quelques suites. Suites Suite a n ) Suite b n ) Suite c n ) Suite d n ) Suite e n ) a 0 = 0 c 0 = 1 e

Plus en détail

Sommaire

Sommaire Sommaire 01... Nouvelle Calédonie mars 01... Nouvelle Calédonie novembre 01... 4 011... 5 Nouvelle Calédonie mars 011... 5 010... 6 La Réunion juin 010... 6 Métropole juin 010... 7 009... 8 Amérique du

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014

Baccalauréat S Antilles-Guyane 11 septembre 2014 Durée : 4 heures Baccalauréat S Antilles-Guyane 11 septembre 2014 EXERCICE 1 6 points Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue divers tests

Plus en détail

sur un intervalle que l on précisera, et préciser

sur un intervalle que l on précisera, et préciser Révision : fonctions logarithmes fonctions exponentiels intégrale Mr : FARHATI HICHEM EX 1 : Partie A : 1) Soit f(x)=1+ (1-x) a) Montrer que f (x)=-x b) Dresser le tableau de variation de f. c) Montrer

Plus en détail

Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 2006

Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 2006 Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 006 L utilisation de la calculatrice est autorisée EXERCICE Le plan complexe P est rapporté à un repère orthonormal direct graphique est

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

,=LESfCOMPLEXESfAUfBACf2013e

,=LESfCOMPLEXESfAUfBACf2013e ,=LESfCOMPLEXESfAUfBACf0e Antilles-Guyane septembre 0 5 points Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) On considère les points A, B et C d affixes respectives A i ; B i ;

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004 Terminale ES Contrôle de mathématiques ( heures) Mardi septembre 004 La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies.

Plus en détail

Baccalauréat L 2001 L intégrale de juin à septembre 2001

Baccalauréat L 2001 L intégrale de juin à septembre 2001 Baccalauréat L 2001 L intégrale de juin à septembre 2001 Antilles-Guyane juin 2001............................... 3 Métropole juin 2001..................................... 5 Métropole septembre 2001..............................

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 013-014 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques obligatoire Coefficient 7 Durée 4 heures Le sujet comporte 7 pages. L utilisation de la calculatrice est autorisée. Aucun document n est permis. Le candidat

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire Epreuve commune mathématiques TS mardi 4 avril 2017 Sujet obligatoire EXERCICE 1 Dans le plan muni d un repère orthonormé ( O, ı, j représentative de la fonction u définie sur l intervalle ]0 ; + [ par

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui ont suivi la spécialité Mathématiques Il comporte

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x Exponentielle Exercice n 1 Simplifier les expressions suivantes : A = e ln 8 B = e 3 ln 5 C = ln ( e 3) + e 1 2 ln 4 D = e 2+ln 3 E = (e x ) 2 (e x ) 3 F = (e x e x ) 2 e x ( e 3x + e x) Exercice n 2 Résoudre

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

Baccalauréat ES France septembre 2003

Baccalauréat ES France septembre 2003 France septembre 23 Exercice Commun à tous les candidats 6 points Partie A Soit la fonction f définie sur ] ; + [ par f (x)= x 2 + 4 8ln x.. Étudier les limites de f en et en+. 2. a. Déterminer la dérivée

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Baccalauréat ES Métropole 23 juin 2010

Baccalauréat ES Métropole 23 juin 2010 Baccalauréat ES Métropole 23 juin 2010 EXERCICE 1 Commun tous les candidats 4 points Cet exercice est un questionnaire à choix multiples (QCM). Les questions sont indépendantes les unes des autres. Pour

Plus en détail