Table des matières. Applications linéaires.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Table des matières. Applications linéaires."

Transcription

1 Table des matières Introduction...2 I- s et exemples Exemples...4 II- Noyaux et images Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples Ker et Im...5 a- s...5 b- Noyau caractérise l'injectivité...6 c- Image caractérise la surjectivité Structure des solutions d'une équation linéaire...7 III- Structures algébriques Structure d'espace vectoriel de L(E,F) Structure d'anneau de L(E) Le groupe linéaire...9 IV- Projecteurs et symétries Projecteurs Symétries /11

2 Introduction Généralisation de la proportionnalité : la linéarité. Idée importante en mathématiques et en physique : conservation. Physique : premier principe de la thermodynamique, conservation de l'énergie, de la quantité de mouvement. Mathématique : on a des structures. Et on cherche les transformations qui conserve ces structures. Exemples : isométrie conserve les distances. Fonctions croissantes qui conserve l'ordre. Fonction continue transforme des intervalles en intervalles. (des compacts en compact, des connexes en connexe). En algèbre, conserve les structures. Morphisme de groupe : f(x x')=f(x)f(x'). Morphisme d'anneau : conservation de l'addition, de la multiplication et de l'élément neutre. Application linéaire : conservation des 2 lois de composition. Application linéaire : approximation au premier ordre de fonction. 2/11

3 L'ensemble E est muni d'une structure algébrique. Les applications linéaires traduisent une mise en mouvement des vecteurs. Ces applications conservent la structure algébrique. I- s et exemples 1- Soient E et F deux K espaces-vectoriels. Une application u de E dans F est K-linéaire si : (x,y) E 2, u(x+y)=u(x)+u(y) (λ, x) K E, u(λ x)=λ u(x) Ce qui est équivalent à : Propriété caractéristique u est linéaire (λ,µ) K 2 et(x, y) E 2, u(λ x+µ y)=λ u(x)+µ u(y) Démonstration : équivalente à la propriété caractéristique des sous-espaces vectoriels. Remarque : extension à une combinaison linéaire d'un nombre fini de vecteurs. u( m i=1 m λ i x i) = λ i u(x i ) i=1 Propriété : Si u est une application linéaire de E dans F, alors u(0 E )=0 F Remarque : c'est un morphisme de groupe. Il transforme le neutre de E en élément neutre de F. Démonstration : u(0 E )=u(00 E )=0 u(0 E )=0 F Même propriété, pour les morphismes de groupe et d'anneau (pour les anneaux on impose f(1)=1). Remarque : en utilisant la contraposée, si u(0 E ) 0, alors u n'est pas linéaire. Notation : l'ensemble des applications linéaires de E dans F est noté L(E,F). Cas particulier : F=K. Dans ce cas, l'application est une forme linéaire. 3/11

4 2- Exemples L'application linéaire nulle. C'est la seule application constante qui est linéaire. Dans K, toutes les applications linéaires sont de la forme u(x)=λ x. (homothéties) Plus généralement, dans tout espace vectoriel les homothéties sont des applications linéaires. Dans C, u( z)=ẕ est R linéaire. v(z)=re(z). Dans les espaces de vecteurs (dimension 2 ou 3), les rotations, les symétries, les projections. L'application de K[X] dans K[X] qui à P associe P' est linéaire. L'application de K[X] dans K[X] qui à P associe XP est linéaire. P associe P 2 n'est pas linéaire. L'application de l'ensemble des fonctions de classe C 2 dans l'ensemble des fonctions continue définie par : Φ( y)=ay ''+by'+c est linéaire. Produit scalaire et produit vectoriel. Soit y un vecteur donné l'application de E dans R qui à x associe x y est linéaire. De même l'application qui va de E dans E qui à x associe x y est linéaire. Intégrale. Forme linéaire : application des fonctions continues sur [a, b] qui à f associe b a f (t)dt Sur M n (K), l'application qui à M associe t M (c'est une symétrie). 4/11

5 II- Noyaux et images. 1- Rappels : images directes et images réciproques. a- s Soient f une application de E dans F, A une partie de E et B une partie de F. : L'image directe de A, notée f (A) est définie par : f ( A)={y F x A, f ( x)= y}. On a aussi : f (A)={ f (x), x A}. f (A) est une partie de F. C'est l'ensemble des images des éléments de E. : L'image réciproque de B notée f 1 (B) est définie par : f 1 (B)={x E f (x) B}. f 1 (B) est une partie de A. C'est l'ensemble des éléments de E qui ont leur image dans F. C'est l'ensemble des antécédents des éléments de B. b- Quelques exemples. Fonctions réelles : fonction carrée, fonction logarithme, fonction circulaire. 2- Ker et Im. a- s Théorème Soit E et F deux K espaces vectoriels et u une application linéaire de E dans F. L'image directe d'un sous-espace vectoriel par une application linéaire est un sous-espace vectoriel : Si E' est un sous-espace vectoriel de E, alors u(e') est un sous-espace vectoriel de F. L'image réciproque d'un sous-espace vectoriel est un sous-espace vectoriel. Si F' est un sous-espace vectoriel de F, alors u 1 (F ') est un sous-espace vectoriel de E. Démonstration : on montre qu'ils sont non vides et stables par combinaison linéaire. Soit E' un sous-espace vectoriel ; montrons que u(e') est un sous-espace vectoriel de F. Il est non vide. Il contient u(0)=0. Soient y et y' deux vecteurs de E', montrons que α y+α' y ' u(e '). 5/11

6 y u( E '), x E ', y=u(x) De même : x' E ', y '=u( x ') α y+α' y '=αu(x)+βu(x ')=u(α x+α x'). On pose x ' '=α x+α' x ' E ' et α y+α y ' u( E ') Image réciproque. Soient (x 1, x 2 ) u 1 (F '). u(α 1 x 1 +α 2 x 2 )=α 1 u( x 1 )+α 2 u( x 2 ). C'est une combinaison linéaire de deux vecteurs de F', donc ce vecteur appartient à F'. Remarque : de même pour les morphismes de groupe et d'anneau. s : Le noyau de u noté Ker(u) est défini par : Ker(u)={x E tel que u(x)=0 F } Ker(u)=u 1 (0 F ) et est un sous-espace vectoriel de E. L'image de u noté Im(u) est définie par : Im(u)={y F, x E, u(x)=y} Im(u)=u( E)={u(x), x E} est un sous-espace vectoriel de F. Remarques : ce sont des sous-espaces vectoriels et ne sont jamais vides. Le noyau contient au moins le vecteur nul. De même pour l'image. Exemples : Application nulle, homothétie. Application qui va de R 3 dans R qui à x associe a x où a est un vecteur fixé. Le noyau est le plan vectoriel orthogonal à a et l'image est R. Application qui va de K n [ X ] dans lui même qui à P associe P'. Noyau polynômes constants. Image K n1 [ X ] à X on associe XP. Image polynôme de valuation 1. Noyau : le polynôme nul. S H est le noyau d'une application linéaire. b- Noyau caractérise l'injectivité. Propriété : u(x)=u(x ') x x'=ker(u) u(x)=u(x ') u(x)u(x ')=0 F u(xx ')=0 F xx' Ker(u) Théorème : une application linéaire est injective si et seulement si : Ker(u)=0 Démonstration : Si u est injective, montrons que Ker u=0 E. Soit x E tel que : u(x)=0 F on a aussi u(0 E )=0 F et u injective implique que x=0 E. On suppose Ker u=0 E. Montrons que u est injective. 6/11

7 u(x)=u(x ') u(x)u(x ')=0 F u(xx ')=0 F xx' Ker(u) xx '=0 E x=x ' Remarque : de même pour les morphismes de groupe, et d'anneau. c- Image caractérise la surjectivité. Théorème : une application linéaire est surjective si et seulement si : Im(u)=F 3- Structure des solutions d'une équation linéaire. une équation linéaire est une équation de la forme : u(x)=b. (E) avec u L(E,F), b un vecteur de F. Équation homogène associée est : u(x)=0 F (H) S H est un sous-espace vectoriel de E. S H =Ker(u). Si b Im(u), le système est compatible. L'ensemble des solutions d'une équation compatible est S={x 0 +S H } où x 0 est une solution particulière. S est un espace affine. Exemple : équation différentielle linéaire. 7/11

8 III- Structures algébriques 1- Structure d'espace vectoriel de L(E,F) L'ensemble des applications linéaires de E dans F est noté L(E,F). Propriété : L(E,F), est un K espace vectoriel. Démonstration : c'est un sous-espace vectoriel, de l'ensemble des applications de E dans F. L'application constante égale à 0 est linéaire. On montre qu'une somme d'application linéaire est linéaire, ainsi que le produit par une constante. 2- Structure d'anneau de L(E) Composée de deux applications linéaires. Théorème : On considère E,F et G trois espaces vectoriels. Soient u L(E,F) et v L(F, G), alors v u L( E, G) Démonstration : v(u(α x+β y))=v(α u(x)+β u(y)) car u est linéaire. Et : v(αu(x)+β u(y))=α v(u(x))+β v(u(y)) Cas particulier important : F=E. Dans ce cas, on note L(E), dont les éléments sont les endomorphismes de E. La loi de composition est une loi de composition interne. Propriété : (L(E),+, ) est un anneau, non commutatif en général. Démonstration : la composée est associative, possède un élément neutre l'identité notée Id E, est distributive par rapport à l'addition. Exemples Dans K[X], la dérivée et la multiplication par X ne commutent pas. Soit u(p)=p' et v(p)=xp u v(x)=u(x 2 )=2X et v u(x)=v(1)=x 8/11

9 3- Le groupe linéaire. Propriété Si u L(E, F) est bijective, alors u 1 est linéaire et bijective. On dit que c'est un isomorphisme. Dans le cas E=F, c'est un automorphisme. Rappel : u 1 u=id E u u 1 =Id F Démonstration : Montrons que u 1 est linéaire. On doit montrer que u 1 (αx+β y)=αu 1 (x)+β u 1 (y). On appelle a e b chacun des vecteurs et on montre que u(a)=u(b). Comme u est bijective, on obtient le résultat. Propriété générale L'ensemble des éléments inversibles d'un anneau (A,+, ) forment un groupe pour la multiplication, appelé le groupe des unités de l'anneau, noté U A. Montrons que le produit de deux éléments inversibles d'un anneau est inversible. On a : (ab)(b 1 a 1 )=(b 1 a 1 )(ab)=1 A (car la multiplication est associative). La multiplication est bien une loi de composition interne sur U A. Elle est associative. Elle possède un élément neutre, 1 A ( 1 A appartient bien à U A ) et tous les éléments admettent un inverse, par définition de U A. Ce groupe est non commutatif en général. U Z ={+1,1} Et U K[ X] est l'ensemble des polynômes constants non nuls. Soit l'anneau A=F(R,R). Les éléments inversibles pour la multiplication sont les fonctions qui ne s'annulent jamais. L'ensemble des éléments inversibles de L(E) est GL(E). C'est le groupe linéaire. C'est un groupe pour la loi de composition, non commutatif en général. Le groupe est non commutatif dès que dim(e) 2. Exemple : en dimension 2, une rotation ne commutent pas avec une symétrie en général. La groupe linéaire contient l'identité Id E. Il contient toutes les homothéties de rapport non nul. Si u(x)=λ x avec λ 0 alors u 1 (x)= 1 λ x 9/11

10 IV- Projecteurs et symétries 1- Projecteurs Ce sont des transformations très utiles, pour effectuer des approximations. On applique les méthodes géométriques à des espaces de fonctions. C'est l'analyse fonctionnelle. Soient E un espace vectoriel et F et G deux sous-espaces supplémentaires dans E. E = F G La projection sur F parallèlement à G, est l'application qui à un élément unique x=x 1 +x 2, (x 1, x 2 ) E 2, associe x 1. P L(E). On doit vérifier qu'elle est linéaire. Soit x=x 1 +x 2 et y=y 1 +y 2. On considère α x+λ y. α x+λ y=α x 1 +β y 1 +α x 2 +β y 2 avec α x 1 +β y 1 F et α x 2 +β y 2 G. Donc p(α x+β y)=α p(x)+β p(y) Remarque : Ker(p)=G et im(p)=f. Et on a : E = Im( p) Ker( p) x qui s'écrit de façon Théorème caractéristique p L(E) est un projecteur si et seulement si p p(x)=p(x). (p est idempotent) Démonstration: On démontre d'abord, le sens le plus facile. Si p est un projecteur, on considère x=x 1 +x 2 et donc : p(x)=x 1 p(p(x))=p(x 1 )=x 1 =p(x). Soit p une application linéaire telle que : p p(x)=p(x). On va démontrer que p est la projection sur im(p) parallèlement à Ker(p). Démontrons que Im(p) et Ker(p) sont en somme directe. On montre que leur intersection est vide. Soit x Im(p) Ker(p), montrons que x=0 E. x Im(p) y, x=p(y) et x Ker(p) p(x)=0 p(p(y))=0 p(y)=0 x=0 On montre que leur somme est E. x=p(x)+x-p(x). p(x) Im(p) et xp(x) Ker(p) car : p(xp(x))=p(x)p(p(x))=p(x)p(x)=0 Et la projection sur Im(p) parallèlement à Ker(p) associe à tout élément x de E, p(x). Toute application linéaire qui vérifie p p=p est une projection. 10/11

11 Exemples : Partie réelle, partie imaginaires, matrices symétriques et anti-symétriques, fonctions paires et impaires. Dans C, considéré comme R espace vectoriel. La projection sur les réels R(z) parallèlement aux imaginaires purs. La projection de la fonction exponentielle sur le sous-espace vectoriel des fonctions paires par rapport à l'espace vectoriel des fonctions impaires est la fonction ch. Si on inverse le rôle de chaque sous-espace vectoriel on obtient sh. 2- Symétries. Soient E un espace vectoriel et F et G deux sous-espaces supplémentaires dans E. La symétrie par rapport à F parallèlement à G est l'application définie par : s(x)=x 1 x 2 s vérifie s s=id et donc s est bijective. C'est un automorphisme. s GL(E) Théorème caractéristique : s L(E) est une symétrie si et seulement si s s=id. Démonstration. Il reste à démontrer la réciproque. Soit s L(E) telle que s s=id. Soit p= s+id 2 est un projecteur. p p= s+id E s+id E = s2 +2s+Id E = s+id E =p La formule du binôme s'applique (en particulier l'identité remarquable car s et Id commutent) Im(p) et Ker(p) sont en somme directe. x=x 1 +x 2 avec x 1 = s(x)+x et x 2 2 = xs(x) 2 et on a s(x)=x 1 x 2. s est bien la symétrie par rapport à F parallèlement à G. 11/11

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs 22 Cours - Espaces vectoriels.nb /8 Espaces vectoriels K -espace vectoriel, loi de composition interne (commutative, associative), élément neutre, symétrique, loi externe, vecteur nul, E, sous espace vectoriel,

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i )))

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i ))) A) APPLICATIONS LINÉAIRES REM : dans ce cours,e,f etgdésignent desk-espaces vectoriels. I) GÉNÉRALITÉS. 1) Définition. DEF : Soit f une application de E dans F ; on dit que f est K-linéaire (ou que c est

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Résumé de Math Sup et compléments : algèbre linéaire

Résumé de Math Sup et compléments : algèbre linéaire Résumé de Ma Sup et compléments : algèbre linéaire I - Espaces vectoriels - Sous espaces vectoriels 1) Structure de K-espace vectoriel Soient K un sous-corps de C et E un ensemble non vide muni d une l.d.c.i.

Plus en détail

ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES

ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES 30-9- 2010 J.F.C. p. 1 ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES Exercice 1 Intersection d hyperplans. E est un espace vectoriel de dimension n sur K (n [2, + [). Q1. Montrer que si F et G sont deux

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Espaces vectoriels Bernard Ycart Vous devez vous habituer à penser en termes de «vecteurs» dans un sens très général : polynômes, matrices, suites, fonctions,

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }.

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }. Dans tout ce qui suit on désigne par k un corps commutatif de caractéristique différente de 2 (par exemple R ou C) etpare un k-espace vectoriel de dimension finie n>0. On appelle L(E) l anneau des endomorphismes

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Feuille d exercices n 14 : corrigé

Feuille d exercices n 14 : corrigé Feuille d exercices n 4 : corrigé PTSI B Lycée Eiffel avril 3 Exercice (*) Commençons déjà par constater que la fonction nulle vérifie toutes les conditions de l exercice, il nous restera donc à regarder

Plus en détail

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr Géométrie Cours de Licence Bernard Le Stum 1 Université de Rennes 1 Version du 19 janvier 2004 1 bernard.le-stum@univ-rennes1.fr 2 Table des matières Table des matières 4 Introduction 5 1 Rappels d algébre

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1 Questions de cours 3 Exercices 1. Énoncer et montrer le théorème de la base incomplète. 2. Soit E de dimension finie n et F un sousespace de E. Montrer que F est

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

Structures algébriques : groupes, anneaux et corps

Structures algébriques : groupes, anneaux et corps Maths PCSI Cours Structures algébriques : groupes, anneaux et corps Table des matières 1 Groupes 2 1.1 Lois de composition interne..................................... 2 1.2 Groupes................................................

Plus en détail

Applications linéaires, matrices, déterminants

Applications linéaires, matrices, déterminants Applications linéaires, matrices, déterminants Exercice 1. Soit u: R 3 R défini pour tout x = (x 1, x, x 3 R 3 par u(x = (x 1 + x + x 3, x 1 + x x 3 1. Montrer que u est linéaire.. Déterminer ker(u. Allez

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

Applications linéaires

Applications linéaires [http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1 Applications linéaires Etude de linéarité a) Montrer que ϕ et ψ sont des endomorphismes de E. b) Exprimer ϕ ψ et ψ ϕ. c) Déterminer images et

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Structures Algébriques Groupes : exercices

Structures Algébriques Groupes : exercices Institut Galilée Université Paris XIII Structures Algébriques Groupes : exercices L3 semestre 5 2012-2013 Exercice 1 Soit (G, ) un ensemble muni d une loi de composition associative. Montrer que G est

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

1 Espaces vectoriels, compléments

1 Espaces vectoriels, compléments CHAPITRE 1 Espaces vectoriels, compléments Sommaire 1 Somme directe... 3 1.1 Somme... 3 1.2 Somme directe... 3 1.3 Supplémentaire... 4 1.4 Cas de la dimension finie... 4 2 Décomposition de E en somme directe...

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Applications linéaires

Applications linéaires le 8 Février UTBM MT Arthur LANNUZEL http ://mathutbmal.free.fr Applications linéaires Exemples et définitions. Soit E et F, espaces vectoriels sur K = R ou C. On s intéresse aux applications qui conservent

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Les Mathématiques pour l Agrégation. C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud

Les Mathématiques pour l Agrégation. C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud Les Mathématiques pour l Agrégation C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud 24 avril 2002 Table des matières 1 Algèbre linéaire 2 1.1 Généralités...............................

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Préparation à l Agrégation de Mathématiques

Préparation à l Agrégation de Mathématiques UNIVERSITÉ DE POITIERS Mathématiques Agrégation 2008/2009 Paul Broussous Préparation à l Agrégation de Mathématiques Algèbre linéaire Réduction des endomorphismes 1 Avant Propos Nous supposerons connues

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Algèbre Linéaire. Victor Lambert. 24 septembre 2014

Algèbre Linéaire. Victor Lambert. 24 septembre 2014 Algèbre Linéaire Victor Lambert 24 septembre 2014 Table des matières 1 Généralités 2 1.1 Espaces vectoriels............................ 2 1.2 Applications linéaires.......................... 4 1.3 Familles

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Groupes et Actions de groupes. 1 Groupes, morphismes et actions de groupes.

Groupes et Actions de groupes. 1 Groupes, morphismes et actions de groupes. Groupes et Actions de groupes On présente ici des notions de base de théorie des groupes pour l agrégation interne. 1 Groupes, morphismes et actions de groupes. Un groupe (G, ), ou plus simplement G, est

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Espace vectoriel de dimensions finies MPSI

Espace vectoriel de dimensions finies MPSI Espace vectoriel de dimensions finies MPSI 22 juin 2008 Table des matières 1 Partie libre - Partie liée - Partie génératrice 2 1.1 Partie finie liée.......................... 2 1.1.1 Vecteurs colinéaires....................

Plus en détail

Programme mat231, 2009 2010

Programme mat231, 2009 2010 Programme mat231, 2009 2010 (2 septembre 2009) Pierre Bérard Université Joseph Fourier Pierre.Berard@ujf-grenoble.fr Le programme de l ue mat231 a été recentré. Il portera cette année uniquement sur l

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

ALGEBRE: GROUPES ET ANNEAUX 1

ALGEBRE: GROUPES ET ANNEAUX 1 Université Blaise Pascal U.F.R. Sciences et Technologies Département de Mathématiques et Informatique Licence de Mathématiques Troisième année, U.E. 35MATF2 ALGEBRE: GROUPES ET ANNEAUX 1 Polycopié du cours

Plus en détail

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS UNIVERSITÉ CLAUDE BERNARD LYON Licence Sciences, Technologies, Santé Enseignement de mathématiques des parcours Informatique ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE - Notes de cours et de travaux

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail