Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Dimension: px
Commencer à balayer dès la page:

Download "Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015"

Transcription

1 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie. L objet du problème est d établir des propriétés des familles de sous-espaces vectoriels de même dimension. Si A et B sont deux sous-espaces vectoriels d un K-espace vectoriel E, on dira que A est un hyperplan de B si et seulement si A B et dim A = dim B 1. Seule cette définition est utilisée dans le problème, aucune interprétation en terme de forme linéaire n est nécessaire. La partie III est indépendante des deux premières. Partie I. Dans cette partie, E désigne un espace vectoriel fixé. 1. (question de cours) Soit A et B deux sous-espaces vectoriels de E. a. Montrer que l application : ϕ : est linéaire. Préciser son image. { A B E (a, b) a + b b. Montrer, en précisant l isomorphisme, que ker ϕ est isomorphe à A B. c. En déduire dim(a + B) = dim A + dim B dim(a B) 2. Soit A un sous-espace vectoriel de E et x un vecteur de E qui n appartient pas à A. Montrer que dim(vect(a {x})) = dim A Soit A et B deux hyperplans distincts de E. Montrer que A B est un hyperplan de B. 4. Soit A un sous-espace vectoriel de E qui n est pas E. Montrer qu il existe un hyperplan contenant A. Partie II. Supplémentaires d un sous-espace donné. Soit A et B deux sous-espaces supplémentaires d un espace vectoriel E. On se propose de montrer que l ensemble des supplémentaires de B est en bijection avec l ensemble L(A, B) des applications linéaires de A dans B. 1. Soit f L(A, B). Montrer que l application { A E ϕ f : a a + f(a) est linéaire et injective. Que peut-on en déduire pour dim(im ϕ f )? Dans toute la suite, on notera : f L(A, B) : A f = Im ϕ f 2. Montrer que pour tout f L(A, B), A f est un supplémentaire de B. 3. Montrer que si f et g sont deux applications linéaires de A vers B : A f = A g f = g 4. Soit A 1 un supplémentaire quelconque de B. On note : p A1,B la projection sur A 1 parallélement à B p B,A1 la projection sur B parallélement à A 1 Soit f la restriction à A de p B,A1. Montrer que A f = A 1 5. Conclure en précisant le rôle des questions précédentes. 6. Montrer que l ensemble des hyperplans d un K-espace vectoriel E est infini. 7. (hors barème - hors programme) Dans le cas où le corps K est fini de cardinal q et E de dimension n, montrer que E est fini. Combien a-t-il d éléments? Pourquoi le résultat qui est l objectif de la partie III est-il faux dans ce cas? Combien un sous-espace vectoriel B de dimension s admet-il de supplémentaires? Partie III. Supplémentaire commun Dans cette partie, on considère des familles (A 1, A 2,, A p ) de sous-espaces d un espace vectoriel E telles que les A i soient deux à deux distincts et de même dimension m (0 < m < dim E). On veut montrer qu il existe un sous-espace vectoriel B qui est un supplémentaire de chacun des sous-espaces A i. 1 Rémy Nicolai Aalglin20

2 A 4 = Vect(a 4) A 3 = Vect(a 3) A 2 = Vect(a 2) B 1 = Vect(b 1) A 1 = Vect(a 1) B = Vect(b) 4. On veut maintenant montrer le résultat annoncé ; c est à dire l existence d un supplémentaire commun B aux sous-espaces d une famille (A 1, A 2,, A p ) vérifiant les conditions indiquées en début de partie. a. Cas m = dim E 1. Soit x un vecteur qui n est pas dans A 1 A 2 A p, montrer que Vect(x) est un supplémentaire commun. b. Montrer le résultat dans le cas général. Fig. 1: Partie III. dim E = Cas dim E = 2. Dans ce cas, chaque A i est une droite vectorielle (c est aussi un hyperplan). Il existe des vecteurs non nuls a 1,, a p tels que A 1 = Vect(a 1 ),, A p = Vect(a p ) a. Justifier l existence d un vecteur b 1 tel que (a 1, b 1 ) soit une base de E. b. Pour i entre 2 et p, on note α i et β i les coordonnées de a i dans la base (a 1, b 1 ). Montrer que β i 0 pour i entre 2 et p. c. Justifier l existence d un scalaire λ tel que b = λa 1 + b 1 A 1 A 2 A p 2. Dans cette question, on pourra utiliser le résultat de la question II.6 (dans un espace vectoriel il existe une infinité d hyperplans). Soit (A 1, A 2,, A p ) une famille d hyperplans vérifiant les conditions indiquées en début de partie. Montrer que A 1 A 2 A p E 3. Soit (A 1, A 2,, A p ) une famille vérifiant les conditions indiquées en début de partie. Montrer que A 1 A 2 A p E 2 Rémy Nicolai Aalglin20

3 Corrigé Partie I. 1. a. Avec les opérations définies dans le produit cartésien de deux espaces vectorieils, la linéarité est évidente : ϕ((a, b) + (a, b )) = ϕ((a + a, b + b )) = (a + a ) + (b + b ) et par un développement analogue : = (a + b) + (a + b ) = ϕ((a, b)) + ϕ((a, b )) ϕ(λ(a, b)) = λϕ((a, b)) L image de ϕ est A + B par définition de la somme de deux sous-espaces. b. Montrons que ker ϕ = {(a, a), a A B}. Cela montrera que ker ϕ est l image de A B par l application a (a, a) qui est clairement linéaire et injective (donc un isomorphisme entre A B et ker ϕ). Il est évident que, (a, a) ker ϕ pour a A B. Cela entraîne une inclusion. Réciproquement : (a, b) ker ϕ a = b A B A B prouve l autre inclusion. c. Par isomorphisme, la dimension du noyau est celle de l intersection. Le théorème du rang entraîne alors la formule demndée. 2. Soit (a 1,, a p ) une base de A (tout sous-espace d un espace de dimension finie est de dimension finie). On va montrer que (a 1,, a p, x) est une base de V = Vect(A {x}). Cela assurera que dim (Vect(A {x})) = p + 1 = dim A + 1 Remarquons d abord que tous les vecteurs de cette famille sont dans A {x} donc dans V. Montrons ensuite que (a 1,, a p, x) engendre V. En effet Vect(a 1,, a p, x) est un sous-espace vectoriel qui contient A = Vect(a 1,, a p ) et x donc, par définition d un espace vectoriel engendré : V Vect(a 1,, a p, x) Cette inclusion signifie exactement que (a 1,, a p, x) engendre V. Montrons enfin que (a 1,, a p, x) est libre. Comme on sait que (a 1,, a p ) est libre, si (a 1,, a p, x) était liée, x serait combinaison linéaire de (a 1,, a p ) donc x serait dans A. Cette famille est donc libre et génératrice, c est une base de V. 3. Soit A et B deux hyperplans distincts de E. Comme ils sont distincts, ils ne sont pas mutuellement inclus l un dans l autre. Il existe donc un vecteur x qui est dans l un et pas dans l autre. Disons que x B et x A (le raisonnement se ferait de la même manière dans l autre cas). D après la question précédente : car A est un hyperplan.on en déduit dim (Vect(A {x})) = dim A + 1 = dim E Vect(A {x}) = E Comme A + B est un sous-espace vectoriel qui contient A et x : On en déduit E = A + B Vect(A {x}) A + B dim E = dim(a + B) = dim A + dim B dim(a B) dim E = 2(dim E 1) dim(a B) dim(a B) = dim E 2 = dim B 1 Ceci montre bien que A B est un hyperplan de B. 4. Soit A un sous espace vectoriel de E qui n est pas E. Ce sous-espace A admet une base (a 1,, a p ) (avec p < dim E = n). Cette base est une famille libre de E. D après le théorème de la base incomplète, il existe des vecteurs b p+1, b n tels que (a 1,, a p, b p+1, b n ) Soit une base de E. Il est alors évident que est un hyperplan qui contient A. Vect(a 1,, a p, b p+1, b n 1 ) 3 Rémy Nicolai Aalglin20

4 Partie II. 1. La linéarité est évidente. De plus, x ker ϕ f x + f(x) = 0 E x = f(x) A B = {0 E } assure l injectivité. D après le théorème du rang, on peut en déduire que dim(im ϕ f ) = dim A f = dim A 2. On sait déjà que A f est de la bonne dimension. Il suffit donc de montrer que le noyau est réduit à 0 E. x A f B a A, b B tel que x = a + f(a) = b a = b f(a) A B a = 0 E x = 0 E 3. Soit f et g deux applications linéaires de A dans B telles que A f = A g. Alors, pour tout a A : alors a + f(a) A f = A g a A tel que a + f(a) = a + g(a ) a a = g(a ) f(a) A B a = a f(a) = g(a) en réinjectant dans a + f(a) = a + g(a ). On en déduit f = g 4. Soit f = p B,A1 avec les notations de l énoncé. Pour tout x A f, il existe a A tel que x = a p B,A1 (a) = p A1,B(a) A 1 Ainsi : A f A 1 Mais comme les deux sous-espaces sont de même dimension : 5. Les questions précédentes montrent que A f = A 1 f A f définit une bijection entre L(A, B) et l ensemble des supplémentaires de B. La question 2 assure que A f est bien un supplémentaire. La question 3 assure l injectivité et la question 4 assure la surjectivité. 6. L ensemble des supplémentaires à une droite vectorielle fixée B est en bijection avec L(H, B) où H est un supplémentaire de B (on sait qu il en existe). Comme L(H, B) est un espace vectoriel de dimension dim B dim H = dim E 1 = n 1, il est en bijection avec K n 1 donc infini lorsque K est infini. L ensemble de tous les hyperplans est donc également infini. 7. si K est fini de cardinal q. L espace E de dimension finie n est en bijection avec K n donc fini et E = q n Le résultat de la partie III est faux car l ensemble des sous-espaces vectoriels est fini lui aussi. L ensemble de tous les hyperplans est égal à E. Comme l ensemble des supplémentaires de B est en bijection avec L(A, B) qui est de dimension dim A dim B, le nombre de ces supplémentaires est : Partie III. dim A dim B q 1. a. La famille (a 1 ) est libre car le vecteur est non nul, on peut former une base de deux vecteurs par le théorème de la base incomplète. b. Si β i est nul, a i A 1 donc A i = A 1 or on a supposé les sous-espaces deux à deux distincts. c. Il suffit de choisir un λ différent de tous les αi β i. C est possible car le corps est infini. 2. On va raisonner par récurrence sur la dimension de l espace. La propriété est vraie lorsque dim E = 2 à cause de la question précédente. Montrons maintenant que la propriété à l ordre n 1 entraine la propriété à l ordre n. Considérons une famille (A 1,, A p ) d hyperplans deux à deux distincts dans un espace E de dimension n. Comme l ensemble des hyperplans est infini, il existe un hyperplan H qui est distinct de tous les A i. D après la question I.3., chaque A i H est un hyperplan de H. Ils ne sont pas forcément deux à deux distincts mais on peut en extraire une famille (B 1,, B q ) (avec q p) formées d hyperplans de H deux à deux distincts. alors : A 1 A p = E (A 1 H) (A 1 H) = H B 1 B q = H en contradiction avec la propriété appliquée à H pour la dimension n Lorsque la famille n est pas formée d hyperplans, on peut inclure chaque A i dans un hyperplan d après I.4. et utiliser la question précédente. 4 Rémy Nicolai Aalglin20

5 4. a. Si x n est pas dans l union des A i, il n est dans aucun et Vect(x) A i = {0 E } dim (Vect(x) + A i ) = 1 + dim A i = dim E Ainsi Vect(x) est un supplémentaire commun aux A i. Vect(x) + A i = E b. On démontre le résultat par une récurrence descendante. On sait que lorsque les A i sont de dimension dim E 1, ils admettent un supplémentaires communs. Montrons que le résultat pour des sous-espaces de dimension p + 1 entraine le résultat pour des sous-espaces de dimension p. Considérons donc des A i de dimension p. D après 3., il existe un vecteur x n appartenant à aucun des A i. Formons la famille des Vect(A i {x}). D après l hypothèse de récurrence, il existe un supplémentaire commun B à ces sous-espaces. On vérifie alors facilement que Vect(B {x}) est un supplémentaire commun aux A i. 5 Rémy Nicolai Aalglin20

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

Résumé de Math Sup et compléments : algèbre linéaire

Résumé de Math Sup et compléments : algèbre linéaire Résumé de Ma Sup et compléments : algèbre linéaire I - Espaces vectoriels - Sous espaces vectoriels 1) Structure de K-espace vectoriel Soient K un sous-corps de C et E un ensemble non vide muni d une l.d.c.i.

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1 Questions de cours 3 Exercices 1. Énoncer et montrer le théorème de la base incomplète. 2. Soit E de dimension finie n et F un sousespace de E. Montrer que F est

Plus en détail

Applications linéaires

Applications linéaires le 8 Février UTBM MT Arthur LANNUZEL http ://mathutbmal.free.fr Applications linéaires Exemples et définitions. Soit E et F, espaces vectoriels sur K = R ou C. On s intéresse aux applications qui conservent

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

Espace vectoriel de dimensions finies MPSI

Espace vectoriel de dimensions finies MPSI Espace vectoriel de dimensions finies MPSI 22 juin 2008 Table des matières 1 Partie libre - Partie liée - Partie génératrice 2 1.1 Partie finie liée.......................... 2 1.1.1 Vecteurs colinéaires....................

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure?

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure? Chapitre Applications linéaires Testez vos connaissances Pourquoi s intéresse-t-on au applications linéaires en économie? Qu est-ce qu un noyau, un rang et une image d une application linéaire? Donner

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs 22 Cours - Espaces vectoriels.nb /8 Espaces vectoriels K -espace vectoriel, loi de composition interne (commutative, associative), élément neutre, symétrique, loi externe, vecteur nul, E, sous espace vectoriel,

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que [http://mp.cpgedupuydelome.fr] édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant

Plus en détail

ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES

ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES 30-9- 2010 J.F.C. p. 1 ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES Exercice 1 Intersection d hyperplans. E est un espace vectoriel de dimension n sur K (n [2, + [). Q1. Montrer que si F et G sont deux

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012.

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012. Université Paris 6 Année universitaire 011-01 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 1 mai 01 Exercice 1 Questions de cours Soit G un groupe fini et soit p un nombre

Plus en détail

Algèbre Linéaire. Victor Lambert. 24 septembre 2014

Algèbre Linéaire. Victor Lambert. 24 septembre 2014 Algèbre Linéaire Victor Lambert 24 septembre 2014 Table des matières 1 Généralités 2 1.1 Espaces vectoriels............................ 2 1.2 Applications linéaires.......................... 4 1.3 Familles

Plus en détail

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme...

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme... Maths PCSI Cours Espaces affines Table des matières 1 Espaces et sous-espaces affines 2 1.1 Espaces affines et translations.................................... 2 1.2 Exemples d espaces affines......................................

Plus en détail

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Espaces vectoriels Bernard Ycart Vous devez vous habituer à penser en termes de «vecteurs» dans un sens très général : polynômes, matrices, suites, fonctions,

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i )))

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i ))) A) APPLICATIONS LINÉAIRES REM : dans ce cours,e,f etgdésignent desk-espaces vectoriels. I) GÉNÉRALITÉS. 1) Définition. DEF : Soit f une application de E dans F ; on dit que f est K-linéaire (ou que c est

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }.

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }. Dans tout ce qui suit on désigne par k un corps commutatif de caractéristique différente de 2 (par exemple R ou C) etpare un k-espace vectoriel de dimension finie n>0. On appelle L(E) l anneau des endomorphismes

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Soit f un endomorphisme de E, commutant avec tous les endomorphismes de E. Montrer que f est de la forme λid, avec λ IK. Exercice

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1 Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015 Test 1 Exercice 1. (1) Donner la liste des sous-groupes de Z/24Z. Justifier. (2) Est-ce que Z/24Z a un sous-groupe

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

LISTE DE QUESTIONS DE COURS

LISTE DE QUESTIONS DE COURS LISTE DE QUESTIONS DE COURS sur le polycopié d Algèbre de 2008/2009 Chapitre 1 1. Définition 1.1 : Espace vectoriel. 2. Proposition 1.3 : Espace vectoriel produit. 3. Définition 1.2 : Sous-espaces vectoriels.

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

Examen Partiel. Un soin particulier dans la rédaction est demandé. Les astérisques indiquent l importance des questions et non pas leur difficulté.

Examen Partiel. Un soin particulier dans la rédaction est demandé. Les astérisques indiquent l importance des questions et non pas leur difficulté. UFR de Mathématiques, Université de Paris 7 DEA 1996/97 premier semestre Introduction à la cohomologie de de Rham des variétés algébriques A. Arabia & Z. Mebkhout Vendredi 6 décembre 1996 Examen Partiel

Plus en détail

Les espaces vectoriels Partie 1

Les espaces vectoriels Partie 1 Les espaces vectoriels Partie 1 MPSI Prytanée National Militaire Pascal Delahaye 1 er février 2016 1 Définition d un Espace Vectoriel Soit ( K,+, ) un corps commutatif (le programme impose K = R ou C).

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 Réduction Sous-espaces stables Exercice 1 [ 00755 ] [Correction] Soient u et v deux endomorphismes d un K-espace vectoriel E. On suppose

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées.

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées. Université Claude Bernard Lyon I Agrégation de Mathématiques : Algèbre & géométrie Année 2006 2007 Applications affines A ne pas rater Définition et caractérisations des applications affines, en particulier

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail