2. MATRICES ET APPLICATIONS LINÉAIRES

Dimension: px
Commencer à balayer dès la page:

Download "2. MATRICES ET APPLICATIONS LINÉAIRES"

Transcription

1 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation. Si A est une matrice, la notation suivante est très utile pour désigner ses entrées : A=[a ij ], où a ij est le nombre se trouvant à la rangée i et à la colonne j. Exemple. Matrice 3 2 : 3 4& % ( Si A = % 1 2 (, c est une matrice 3 2 ; les dimensions n et m sont respectivement %1 3' ( égales à 3 et 2. Si la matrice a une seule colonne (m =1) et n lignes, elle se réduit à un vecteur de R n. Si les deux dimensions sont égales (m=n), la matrice est dite carrée. La matrice transposée A T de la matrice A=[a ij ] est la matrice obtenue en échangeant les lignes et les colonnes : A T =[a ji ]. En prenant la matrice A précédente : A T & 3 1 ' 1 =. % 4 ' 2 3 Une matrice carrée est symétrique si elle est égale à sa transposée. Par exemple, la & matrice A = 3 ' 1 ' 2 est symétrique car a ij =a ji pour tous i,j entre 1 et 3. % 2 ' Opérations sur les matrices 1. Addition, soustraction et multiplication par un réel On peut réaliser des opérations élémentaires sur les matrices comme l addition, la soustraction ou la multiplication par un nombre réel.

2 Si A = & ' 2 %' 1 3 et B = & 2 7 % 2 5 ' 4 ' 3 alors : C = A + B = & 5 8 % 1 9 ' 6. 0 Il faut que A=[a ij ] et B=[b ij ] aient les mêmes dimensions (dans ce cas, n=3 et m =2). La formule générale pour C=A+B est : C=[ a ij +b ij ]. Si k est un scalaire, on a : ka=[k a ij ]. Par exemple, si A = & ' 2 %' 1 3 alors 3A = & 9 3 %' 3 12 ' 6. 9 L élément neutre de l addition est la matrice nulle dont tous les éléments sont des zéros. 2. Produit matriciel On définit le produit matriciel de deux matrices de la manière suivante : & 1 2 Si A = %' 1 3 & 2 1 et B = alors : % 1 ' (1) ' C = AB = & ) % (1)( & 4 ' 1 =. % 1 ' 4 En général, étant données les matrices A=[a ij ] et B=[b ij ], posant AB=[m ij ] on a : m m ij = aik bkj. k=1 Pour que le produit matriciel soit possible, il faut que les dimensions des matrices soient compatibles, c est-à-dire il faut que le nombre de colonnes de A soit égal au nombre de 1

3 lignes de B. En terme de dimension, si la matrice A est une matrice n m et la matrice B est une matrice m p, la matrice C = AB est une matrice n p. Le produit matriciel a les propriétés suivantes : - associativité : (AB)C = A(BC); - distributivité: A(B+C) = AB + AC; - transposée : (AB) T = B T A T ; - non commutativité : AB est différent de BA pour A et B quelconques. Comme les vecteurs sont des matrices à une colonne, on peut définir le produit matriciel de 2 vecteurs v T w dont le résultat est un nombre réel (on peut vérifier qu au niveau des dimensions, il n y a pas de problème car v T a pour dimensions (1,n) et w a pour dimensions (n,1) ). Ce produit matriciel est appelé produit scalaire de deux vecteurs. Le produit scalaire v T v est égal au carré de la norme (longueur) du vecteur v. 3. Matrice identité et matrice orthogonale En se limitant à des matrices carrées, on peut définir un élément neutre du produit matriciel. Cet élément neutre est appelé matrice identité ; il est habituellement noté I et est tel que AI = IA = A. La matrice identité est une matrice diagonale qui a des 1 sur la diagonale et des zéros partout ailleurs. Pour les matrices carrées d ordre 3, la matrice identité a pour forme : I = & 1 0 % De manière générique, posant I=[a ij ] : - a ij = 1, pour i = j, - a ij = 0, pour i j. Définition (matrice orthogonale). Une matrice Q est orthogonale si Q T Q=I. 4. Matrice inverse On peut aussi définir l inverse A -1 d une matrice carrée A (si cet inverse existe); cet inverse a la propriété suivante : A -1 A = A A -1 = I. L inverse d une matrice a les propriétés suivantes : - (A -1 ) -1 = A; - (A -1 ) T = (A T ) -1 ; - (AB) -1 = B -1 A -1 ; 2

4 - matrice orthogonale : Q -1 = Q T. Une matrice carrée n a pas toujours un inverse : Définition (matrice régulière; singulière). Une matrice admettant un inverse est dite régulière ou inversible; une matrice carrée qui n a pas d inverse est dite singulière ou non inversible. Une matrice carrée est régulière lorsque les colonnes (ou les lignes) sont des vecteurs linéairement indépendants. Une matrice carrée est singulière si au moins une colonne (ou ligne) est une combinaison linéaire des autres colonnes (ou lignes). Pour trouver l inverse d une matrice, le procédé peut être assez exigeant, surtout si on a affaire à une matrice de très grandes dimensions. Pour une matrice 2 2, il y a une formule très simple. Soit A = a b % '. Si ad-bc 0, alors la matrice est inversible et : c d& 1 d b& A 1 = % (. ad bc c a ' Et si ad-bc=0, alors la matrice est singulière. Il existe un opérateur de matrice, appelé déterminant et noté det(a) pour une matrice A, qui est différent de zéro pour une matrice régulière et qui est égal à zéro pour une matrice singulière. Le déterminant a les propriétés suivantes : - det (A.B) = det (A). det (B) - det (A -1 ) = 1/det(A) - det (I) = 1 (I matrice identité) - det (Q) = ± 1 pour Q matrice orthogonale. Pour une matrice 2 2, la formule pour le déterminant est très simple: det a c b % ' = ad ( bc. d& 2.3 Matrices et applications linéaires Si A est une matrice m n, on peut définir l'application suivante : f : R n R m f(v) = Av. 3

5 On peut noter que : f(x+y) = A(x+y) = Ax + Ay = f(x) + f(y); f(ax) = A(a x) = aax= af(x). Ainsi, f est une application linéaire. Définition (application linéaire). Étant donnés deux espaces vectoriels elle vérifie les 2 relations suivantes : E et F, une application f : E F est linéaire si 1-2- f (x + y) = f (x) + f (α x) = α f (x), f (y) où x, y E et α R. Ces deux relations peuvent être regroupées sous la forme d une relation unique: f (αx + β y) = α f (x) + β f (y), où x, y et α, β R. Remarque. La condition que f (α x) = α f (x) implique que dénote le vecteur zéro respectif de chaque espace), puisque α0=0. f (0) = 0 (où 0 On peut montrer que toute application linéaire f de l espace vectoriel E dans l espace vectoriel F (dimensions finies) peut se mettre sous la forme f(x) = Bx, où B est une matrice. Supposons par exemple que E = F de dimension 2 et qu une base de E est (e 1, e 2 ). Il s ensuit que : f(x) = f (x 1 e 1 +x 2 e 2 ) = x 1 f (e 1 ) + x 2 f (e 2 ), car f est une application linéaire. & x1 En posant B = [f (e 1 ) f (e 2 )], on obtient f(x) = B % x2 = Bx. Exemple 1. Une application non-linéaire: la fonction sin(x) : En prenant E = F = R, l application f(x) = sin(x) n est pas une application linéaire. En effet : f( αx ) = sin (α x ), α f(x) = α sin (x ). En général, ces deux valeurs sont différentes : par exemple en prenant x=π/2 et α=2 : sin(2 π/2) =0 2sin(π/2) =2. 4

6 Exemple 2. Application linéaire sur le plan réel : En prenant E = F = R 2, l application suivante est une application linéaire : ( x1% + f * '- = 2x1 % '. ) x 2&, 3x 2& En effet : & 2( x1 + 2' y1 f( αx + β y) = % 3( x2 + 3' y2 & 2' x1 & 2' y1 = + % 3' x 2 % 3' y2 & 2x1 & 2y1 = α + β % 3x 2 % 3y2 =α f(x) + β f(y). Ceci montre que f( αx + β y) = α f(x) + β f(y). Remarque. Sous forme matricielle, l'application linéaire de l'exemple précédent s'écrit: ( x1% + f * '- = 2 0 % ' x1 % '. ) x 2&, 0 3& x 2& 2.4 Image et noyau d une application linéaire Définition (image d'une application linéaire). L image de f, notée Im f, est l ensemble des éléments y F qui ont un antécédent x dans E : Im f = {y y = f(x), x E }. Im f est un espace vectoriel qui est un sous-espace vectoriel de F. Notons que si nous avons une base de E: ( e 1,K,e n ), alors ( f (e 1 ),K, f (e n )) est un ensemble générateur pour l'image. En effet, puisque tout élément x de E s'écrit comme une combinaison linéaire de cette base: x= x 1 e 1 +K+ x n e n on a donc: f(x)= x 1 f (e 1 ) +K+ x n f (e n ). 5

7 Définition (noyau d'une application linéaire). Le noyau de f, noté Ker f, est l ensemble des éléments x E dont l image est le vecteur zéro de F : Ker f = { x f(x) = 0}. Ker f est un espace vectoriel qui est un sous-espace vectoriel de E. Si on désire résoudre des équations linéaires basées sur des applications linéaires, on est conduit à chercher un vecteur x tel que f(x) = b. Pour que cette équation ait une solution, il faut que b soit un élément de Im f (b Im f) d après la définition de Im f. Une telle équation peut avoir aucune solution, une solution ou une infinité de solutions. Le noyau Ker f est l ensemble des solutions homogènes de l équation f(x) = 0; cet ensemble peut contenir un seul élément (l élément neutre) ou un ensemble d éléments comprenant l élément neutre. Exemple 1. L'application f(x)=ax sur la droite réelle: L image de f est l ensemble R. C est un espace vectoriel de dimension 1. Le noyau de f est l ensemble des x tel que f(x) = 0. La seule valeur possible est x égale à zéro. C est un espace vectoriel de dimension zéro. Exemple 2. Une application dans le plan R 2 : En prenant E = F = R 2 x 1 % & x, l application f( ') = 1 + x 2 x est une application linéaire. 2 & % 0 Sous forme matricielle: ( x f 1 % + * '- = 1 1 % ' x % 1 '. ) x 2 &, 0 0& x 2 & L image de f: L image de f est l ensemble des vecteurs de R 2 dont la deuxième composante est nulle; on peut noter que tous les éléments de l image de f ont la forme suivante : & x 1 + x 2 & x = 3 & 1 % 0 = x 3 % 0. % 0 On sait que l image de f est un espace vectoriel et donc qu il a une base. La famille & 1 génératrice de l image de f comprend un seul vecteur, disons par exemple ; ce vecteur % 0 forme une base puisqu'il est libre. 6

8 & 2 Une autre base de l image de f serait ( ); cette base ne contient qu un seul élément. % 0 Comme la base ne contient qu un seul élément, l image de f est un espace vectoriel de dimension 1. Le noyau de f: & x1 Le noyau de f est l ensemble des vecteurs de R 2 & x1 & 0 tels que f( % x ) = 2 % x, c est-àdire tels que x 1 + x 2 = 0. Dans le plan, cet ensemble est une droite de pente 1 et passant 2 % 0 & 3 & 0 par l origine. Le vecteur w 1 = est un élément du noyau car f(w 1 ) = %' 3 ; de manière % 0 & x1 générale tout vecteur de la forme w 2 = est un élément du noyau; le vecteur w 2 peut %' x 1 & 1 & 1 s écrire w 2 = x 1. Le noyau de l application f est engendré par le vecteur ; comme le noyau est un espace vectoriel, on peut rechercher une base du noyau ; la & 1 famille génératrice comprend un seul vecteur, par exemple ; il s ensuit que la base & 1 est formée d un seul vecteur, par exemple. Une autre base du noyau de f serait &' 2.5 ( ). Comme chaque base ne contient qu un seul élément, le noyau de f est un % 2.5 espace vectoriel de dimension % On remarque dans l'exemple précédent que les colonnes de la matrice ' forment un 0 0& ensemble générateur pour l'image de cette fonction f. Ceci est vrai en général, puisque les colonnes sont les images d'une base: Soit f une application linéaire : f(x)=ax. Alors les colonnes de A forment un ensemble générateur pour Im f. 2.5 Dimension de l image et du noyau; nombre de solutions. Définition : Le rang d une application linéaire est la dimension de Im f. Comme Im f est un sous-espace vectoriel de F, on a dim (Im f) dim ( F ). Dans la suite du cours, on se limitera à des espaces vectoriels de dimension finie. 7

9 Si E et F sont des espaces vectoriels de dimension finie et si f : E F est une application linéaire : dim ( E ) = dim (Im f) + dim (Ker f). En particulier, supposons que E = F = R n. Le théorème précédent indique que si le noyau de f ne contient que l élément nul (dim Ker f = 0), l image de f est égale à R n (dim (Im f) = n). Dans ce cas, tous les vecteurs de R n appartiennent à Im f et toutes les équations f(x) = b ont une solution et une seule. On dira aussi que f est une application régulière qui définit une application bijective sur R n. On peut alors écrire que x = f 1 (b) où f 1 est appelé l application inverse de f. Dans le cas contraire où le noyau de f contient des éléments autres que l élément nul (dim Ker f > 0), l image de f est un sous-ensemble de R n (dim (Im f) < n). Dans ce cas, il y a des vecteurs de R n qui ne sont pas des éléments de Im f et l équation f(x) = b n a pas de solution si b est un élément (de R n ) qui n appartient pas à Im f. Dans ce cas, f est une application singulière et n a pas d application inverse. Exemple. Application de R 2 dans lui-même: En prenant E = F = R 2 & x1 & x, l application f ( ) = 1 + x 2 % x est une application linéaire; 2 % 0 on a vérifié précédemment que Im f est l axe des X et Ker f est une droite de pente 1 passant par l origine. On a montré que dim (Im f) = 1 et dim (Ker f) = 1 et comme dim ( R 2 ) est égal à 2, on vérifie bien : dim ( R 2 ) = dim (Im f) + dim (Ker f) 2 = On remarque aussi que l application f est une application singulière qui n a pas d inverse. & 4 & 3 & 5 & 3 & 3 On a f ( ) = et on a f ( % 0 ) = %' 2 ; on voit donc que l équation f(x) = % 0 a % 0 & 4 & 5 plusieurs solutions puisque et sont deux solutions possibles. De même, %' 2 comme le noyau de f a pour dimension 1, cela signifie que l équation f(x) = 0 a plus d une solution car tous les éléments du noyau sont solutions de cette équation f(x) = 0. Il s ensuit que cette équation a une infinité de solutions. 8

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Cours de Mathématiques II Chapitre 1. Algèbre linéaire

Cours de Mathématiques II Chapitre 1. Algèbre linéaire Université de Paris X Nanterre UFR Segmi Année 7-8 Licence Economie-Gestion première année Cours de Mathématiques II Chapitre Algèbre linéaire Table des matières Espaces vectoriels Espaces et sous-espaces

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

A. Déterminant d une matrice carrée

A. Déterminant d une matrice carrée IUT ORSAY Mesures Physiques Déterminants Initiation à la diagonalisation de matrice Cours du ème Semestre A Déterminant d une matrice carrée A-I Définitions élémentaires Si A est la matrice ( a ) on appelle

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3.

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3. Algèbre 2 - L1 MIASHS/Lettres-Maths AMIRI Aboubacar UFR MIME, Université Lille 3. 10 avril 2015. Université Lille 3 1 Définitions et notations Quelques matrices particulières Matrice d une famille sur

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs Ch01 : Matrice Les matrices ont été introduites récemment au programme des lycées. Il s agit d outils puissants au service de la résolution de problèmes spécifiques à nos classes, en particulier les problèmes

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition.

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition. Algèbre linéaire. Jean-Paul Davalan 2001 1 Espaces vectoriels R n. 1.1 Les ensembles R n. Définition 1.1 R 2 est l ensemble des couples (x, y) de deux nombres réels x et y. D une manière générale, un entier

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que [http://mp.cpgedupuydelome.fr] édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

A. 1. Définitions 96/154. Cas particuliers

A. 1. Définitions 96/154. Cas particuliers I II III IV V VI VII VIII Cours de Mathématiques IUT Orsay DUT INFORMATIQUE A - Semestre 0-0 Introduction Wims Calcul ensembliste Relations binaires, applications Logique Raisonnements par récurrence,

Plus en détail

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J =

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J = Algèbre linéaire avancée I Jeudi 8 Octobre 205 Prof. A. Abdulle EPFL Série 4 (Corrigé) Exercice Soit J M 2n 2n (R) la matrice définie par J 0 In, I n 0 où I n est la matrice identité de M n n (R) et 0

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Espaces vectoriels Bernard Ycart Vous devez vous habituer à penser en termes de «vecteurs» dans un sens très général : polynômes, matrices, suites, fonctions,

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Cours de mathématiques M22 Algèbre linéaire

Cours de mathématiques M22 Algèbre linéaire Cours de mathématiques M22 Algèbre linéaire λ u u + v u v u Exo7 Sommaire Systèmes linéaires 3 Introduction aux systèmes d équations linéaires 3 2 Théorie des systèmes linéaires 7 3 Résolution par la méthode

Plus en détail

LES ROTATIONS DE R 3 : VERSION MATRICIELLE

LES ROTATIONS DE R 3 : VERSION MATRICIELLE LES ROTATIONS DE R : VERSION MATRICIELLE. L espace R n Les structures dont R n est muni appartiennent à quatre niveaux : Structure vectorielle: Vecteur. Combinaison linéaire. Familles libres et liées.

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées.

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées. 0 0 3 3 EXERCICE Soit les matrices A = et B = 2 3 0 0. Calculer le déterminant de A. En déduire le rang de cette matrice. 0 0 0 Dét(A) = dét = dét 0 0 car (propriété P ) le déterminant d une matrice ne

Plus en détail

Chapitre 3. Espaces vectoriels

Chapitre 3. Espaces vectoriels Département de mathématiques et informatique L1S1, module A ou B Chapitre 3 Espaces vectoriels Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe)

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe) UNIVERSITE PAUL SABATIER 2008/2009 YjY L1 - PCP - DETERMINANTS (COURS-EXERCICES) YjY 1 Déterminant, définition, propriètés Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1 Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015 Test 1 Exercice 1. (1) Donner la liste des sous-groupes de Z/24Z. Justifier. (2) Est-ce que Z/24Z a un sous-groupe

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Isométries d'un espace euclidien.

Isométries d'un espace euclidien. Isométries d'un espace euclidien. Dans ce chapitre, le corps des scalaires est R et l'espace (E ; ) est un espace euclidien de dimension finie n. 1. Isométries vectorielles d'un espace euclidien...p.1

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

LISTE DE QUESTIONS DE COURS

LISTE DE QUESTIONS DE COURS LISTE DE QUESTIONS DE COURS sur le polycopié d Algèbre de 2008/2009 Chapitre 1 1. Définition 1.1 : Espace vectoriel. 2. Proposition 1.3 : Espace vectoriel produit. 3. Définition 1.2 : Sous-espaces vectoriels.

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

Bref, c'est difficile, mais tout le monde doit y arriver.

Bref, c'est difficile, mais tout le monde doit y arriver. Bonjour à tous, les colles de mardi m'ont permis de vérifier que les notions de base du chapitre espaces vectoriels sont loin d'être acquises. Comme je vous le disais, il est essentiel d'apprendre régulièrement

Plus en détail

Université Joseph Fourier, Grenoble. Calcul matriciel. Bernard Ycart

Université Joseph Fourier, Grenoble. Calcul matriciel. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Calcul matriciel Bernard Ycart Ce chapitre est essentiellement technique et ne requiert pas d autre connaissance théorique que celle des espaces vectoriels

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 30 janvier 2011 Matrices (p. 107) Définition

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail