HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT"

Transcription

1 HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

2 Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces vectoriels 1 2. Combinaisons linéaires 7 3. Sous-espaces vectoriels 9 4. Sous-espaces affines 17 Annexe. Propriétés de l'opérateur Z 21 Exercices Relations linéaires 1. Proportionnalité et colinéarité Dépendance et indépendance linéaire Base d'un espace vectoriel 34 Annexe, la règle du déterminant Exercices Opérations élémentaires 1. Description Propriétés 44 Exercices Applications linéaires 1. Définition et propriétés immédiates Composition des applications linéaires Image et noyau Isomorphismes 60 Exercices Le concept de dimension 1. Isomorphisme attaché à une base Espaces vectoriels de dimension finie Rang d'une famille de vecteurs Matrices triangulaires de M n (K) et drapeaux 81 Annexe. Rang d'une matrice 84 Exercices Calcul matriciel 1. Définitions et vocabulaire Produit matriciel Matrices carrées. Calculs dans SM n (K)\05 4. Matrices inversibles Système linéaire 111 Annexe 1. Produit par blocs 115 Annexe 2 (*). Matrices blocs triangulaires inversibles 117 Exercices 119

3 XII 7. K-algèbres 1. La structure de K-algèbre Exemples Calculs dans une K-algèbre (*) Polynôme minimal ~ Éléments inversibles Retour sur l'algèbre M n (K) L'algèbre des endomorphismes d'un espace vectoriel 141 Annexe 1. Algèbre des polynômes à une indéterminée 144 Annexe 2. Calcul de Ç" 154 Exercices L'algorithme du pivot 1. Matrices élémentaires Invariants matriciels Le principe du pivot de Gauss Conséquences (*) Décomposition de Gauss-Jordan Une interprétation des opérations élémentaires. 187 Annexe 1. Algorithmes 190 Annexe 2. Matrices de permutations 192 Exercices Résolution des systèmes linéaires 1. Rang d'un système linéaire Résolution d'une équation linéaire Résolution d'un système linéaire par l'algorithme du pivot 214 Annexe 1. Exemples traditionnels de système linéaires 220 Annexe 2. Équation d'un hyperplan 226 Annexe 3. Illustrations géométriques 232 Exercices Application linéaire en dimension finie 1. Matrice d'une application linéaire Premiers exemples Image et Noyau Composition et produit matriciel L'isomorphisme entre End E et M n (K) où n = dim E Le cas des formes linéaires Image d'un sous-espace vectoriel Application linéaire et inversibilité d'une matrice 260 Annexe 1. Détermination pratique du rang, de l'image et du noyau d'une application linéaire en dimension finie 264 Annexe 2. Matrices triangulaires 267 Exercices 269

4 XIII 11. Changements de base 1. Matrice de passage Applications linéaires et changement de base Le problème de la réduction des endomorphismes 283 Exercices " Une synthèse 1. Matrices inversibles. Interprétations Une vision d'ensemble 293 Exercices Sous-espaces supplémentaires 1. Somme de deux sous-espaces vectoriels La situation en dimension finie Projecteurs et symétries Du côté des applications linéaires 308 Annexe 1. Somme directe d'un hyperplan et d'une droite 310 Annexe 2. Caractérisations des projecteurs 312 Annexe 3. Somme de plusieurs sous-espaces vectoriels ' 313 Exercices (*) Théorie du rang 1. Rang d'une famille de vecteurs Rang d'une matrice Rang d'une application linéaire 323 Exercices (*) Dualité en dimension finie 1. Formes linéaires et hyperplans Bases duales Équations linéaires définissant un sous-espace vectoriel 338 Exercices Multilinéarité 1. Applications bilinéaires Formes bilinéaires Application multilinéaires Déterminants 1. Formes bilinéaires alternées d'un espace vectoriel de dimension Formes 3-linéaires alternées d'un espace vectoriel de dimension (*) Formes «-linéaires alternées sur un espace vectoriel de dimension ri Relation de Chasles Déterminant d'un endomorphisme Calcul des déterminants De l'utilisation des déterminants Orientation d'un espace vectoriel réel 376 Annexe. Géométrie élémentaire, systèmes linéaires et déterminants 378 Exercices 380

5 XIV 18. Introduction à la réduction des endomorphismes 1. Spectre d'un endomorphisme Polynôme caractéristique Diagonalisation en dimension finie Trigonalisation en dimension finie 401 Annexe 1 (*) Les projections sur les sous-espaces propres d'un endomorphisme diagonalisable 404 Annexe 2. Sous-espaces vectoriels stables 406 Exercices Réduction des endomorphismes et polynôme minimal 1. Polynôme minimal d'un endomorphisme Décomposition des noyaux Application à la théorie de la réduction Sous-espaces stables et endomorphismes semi-simples 423 Exercices Endomorphismes nilpotents 1. Définitions et premières propriétés Réduction : résultats élémentaires (*) Réduction de Jordan 439 Exercices Espaces vectoriels euclidiens 1. Produit scalaire Premiers exemples Orthogonalité Bases orthonormées (ou orthonormales) Orthogonal d'un sous-espace vectoriel Orientation d'un espace vectoriel euclidien Dualité dans un espace euclidien ; (*) Adjoint d'un endomorphisme 461 Annexe. Algorithme de Gram-Schmidt 464 Exercices Projections et symétries orthogonales 1. Données générales Calculs dans une base orthonormée Caractérisations Projection et symétrie orthogonales sur un sous-espace affine 481 Annexe. Illustrations géométriques 485 Exercices Transformations et matrices orthogonales 1. Le groupe orthogonal d'un espace vectoriel euclidien Classification des transformations orthogonales en'dimension 2 et Exercices 507

6 24. Transformations orthogonales en dimension 2. Angle orienté 1. Matrices orthogonales de O 2 (K) Dimension 2 : le concept d'angle orienté 514 Annexe. Un formulaire classique 518 Exercices Produit vectoriel et rotation de l'espace 1. Produit vectoriel Propriétés immédiates L'endomorphisme a> A Description des rotations d'un espace euclidien orienté de dimension Exercices Formes bilinéaires 1. Formes bilinéaires symétriques ou antisymétriques Formes quadratiques Formes bilinéaires symétriques et dualité Formes bilinéaires symétriques : orthogonal Formes bilinéaires symétriques : bases orthogonales Formes bilinéaires dans le cadre euclidien 549 Annexe 1. Caractérisation des formes bilinéaires (anti-)symétriques 554 Annexe 2. Algorithme d'orthogonalisation 555 Exercices 558 Études Etude n l Familles libres 566 Étude n 2 Bases de K n [x] 568 Étude n 3 Suites récurrentes linéaires 577 Étude n 4 Équations différentielles linéaires à coefficients constants 585 Étude n 5 Une matrice incontournable 594 Étude n 6 Matrices magiques 600 Étude n 7 Homothéties vectorielles 606 Étude n 8 Réduction en dimension Étude n 9 Réduction en dimension Étude n 10 Exemples de calcul des puissances d'une matrice carrée 617 Étude n ll Endomorphismes de rang Étude n 12 Théorèmes de Cayley-Hamilton- Frobenius 622 Étude n 13 Sous-espaces caractéristiques 627 Étude n 14 Commutant 631 Etude n 15 Factorisation LU 633 Étude n" 16 Méthode de Householder et factorisation QR 642 Étude n 17 Endomorphismes symétriques : d'un espace vectoriel euclidien 647 Étude n 18 Endomorphismes antisymétriques d'un espace vectoriel euclidien 652 Étude n 19 Champ des vitesses d'un solide en mouvement 658 Étude n 20 Réduction d'un automorphisme orthogonal 660 Étude n 21 Endomorphismes normaux d'un espace vectoriel euclidien 667 Étude n 22 Matrices symétriques définies positives. Algorithme de Choleski 673 Étude n 23 Quaternions de Hamilton 677

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Programme mat231, 2009 2010

Programme mat231, 2009 2010 Programme mat231, 2009 2010 (2 septembre 2009) Pierre Bérard Université Joseph Fourier Pierre.Berard@ujf-grenoble.fr Le programme de l ue mat231 a été recentré. Il portera cette année uniquement sur l

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie http://perso.wanadoo.fr/gilles.costantini/agreg.htm Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005 Légende : En italique : leçons dont le libellé a changé ou évolué par rapport

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Isométries d'un espace euclidien.

Isométries d'un espace euclidien. Isométries d'un espace euclidien. Dans ce chapitre, le corps des scalaires est R et l'espace (E ; ) est un espace euclidien de dimension finie n. 1. Isométries vectorielles d'un espace euclidien...p.1

Plus en détail

I OBJECTIFS DE FORMATION

I OBJECTIFS DE FORMATION CLASSE DE DEUXÈME ANNÉE MP OBJECTFS DE FORMATON ET PROGRAMME DE MATHÉMATQUES OBJECTFS DE FORMATON 1) Objectifs généraux de la formation Dans la filière Mathématiques et Physique, les mathématiques constituent

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3.

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3. Algèbre 2 - L1 MIASHS/Lettres-Maths AMIRI Aboubacar UFR MIME, Université Lille 3. 10 avril 2015. Université Lille 3 1 Définitions et notations Quelques matrices particulières Matrice d une famille sur

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

LISTE DE QUESTIONS DE COURS

LISTE DE QUESTIONS DE COURS LISTE DE QUESTIONS DE COURS sur le polycopié d Algèbre de 2008/2009 Chapitre 1 1. Définition 1.1 : Espace vectoriel. 2. Proposition 1.3 : Espace vectoriel produit. 3. Définition 1.2 : Sous-espaces vectoriels.

Plus en détail

Algèbre 2, Cours de deuxième année de l Université de Bordeaux. Jean-Jacques Ruch 1

Algèbre 2, Cours de deuxième année de l Université de Bordeaux. Jean-Jacques Ruch 1 Algèbre 2, Cours de deuxième année de l Université de Bordeaux 1 1 Institut de Mathématiques Bordeaux, UMR 5251 du CNRS, Université de Bordeaux, 351 cours de la Libération, F33405 Talence Cedex, France

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Remerciements. Partie 1 Algèbre linéaire 1

Remerciements. Partie 1 Algèbre linéaire 1 Table des matières Préface Remerciements xix xxi Partie 1 Algèbre linéaire 1 1 Compléments d algèbre linéaire 3 I Rappels du cours de première année.......................... 3 I.1 Famille dans un espace

Plus en détail

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Agrégation de mathématiques - Leçons d algèbre et géométrie

Agrégation de mathématiques - Leçons d algèbre et géométrie Agrégation de mathématiques - Leçons d algèbre et géométrie Adrien Le Boudec Ce document regroupe par thèmes les leçons d algèbre et géométrie au programme de la session 2011 de l agrégation externe de

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Algèbre linéaire et géométrie pour le CAPES 1. Olivier DEBARRE. 1 Version très préliminaire

Algèbre linéaire et géométrie pour le CAPES 1. Olivier DEBARRE. 1 Version très préliminaire Algèbre linéaire et géométrie pour le CAPES 1 Olivier DEBARRE 1 Version très préliminaire Table des matières Chapitre 1. Espaces vectoriels et applications linéaires 5 1. Définitions 5 2. Applications

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Des outils en géométrie affine euclidienne

Des outils en géométrie affine euclidienne Des outils en géométrie affine euclidienne en cours de rédaction Réalisé dans le cadre du Campus numérique EscaleS: www.u-escales.org avec le soutien de l UFR Sciences de l UNSA B. Rousselet en cours de

Plus en détail

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia)

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) Département d informatique et de génie logiciel Université Laval MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) A. Avant propos... 2 B. Cours de multimédia (4 cours obligatoires)... 3 a. IFT-10558

Plus en détail

en utilisant un point-virgule.

en utilisant un point-virgule. 6 Chapitre Chapitre 6. Géométrie analytique Ce chapitre présente les possibilités de votre calculatrice dans le domaine de la géométrie analytique, tout particulièrement pour les problèmes liés aux espaces

Plus en détail

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr Géométrie Cours de Licence Bernard Le Stum 1 Université de Rennes 1 Version du 19 janvier 2004 1 bernard.le-stum@univ-rennes1.fr 2 Table des matières Table des matières 4 Introduction 5 1 Rappels d algébre

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

1 Espaces vectoriels, compléments

1 Espaces vectoriels, compléments CHAPITRE 1 Espaces vectoriels, compléments Sommaire 1 Somme directe... 3 1.1 Somme... 3 1.2 Somme directe... 3 1.3 Supplémentaire... 4 1.4 Cas de la dimension finie... 4 2 Décomposition de E en somme directe...

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie, physique, chimie (TPC) Discipline : Mathématiques Seconde année Classe préparatoire TPC deuxième année

Plus en détail

Feuilles de TD du cours d Algèbre S4

Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie Annette Paugam Diagonalisation des auto-adjoints Applications aux formes quadratiques : Directions principales Applications en Géométrie, en Statistique et en Mécanique Les paragraphes, 2, 3 donnent un

Plus en détail

objectifs de formation et programme de mathématiques I objectifs de formation

objectifs de formation et programme de mathématiques I objectifs de formation page 1 classe de deuxième année mp objectifs de formation et programme de mathématiques 1) Objectifs généraux de la formation objectifs de formation Dans la filière Mathématiques et Physique, les mathématiques

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique et sciences de l ingénieur (PSI) Discipline : Mathématiques Seconde année Classe préparatoire PSI Programme

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

Préparation à l Agrégation de Mathématiques

Préparation à l Agrégation de Mathématiques UNIVERSITÉ DE POITIERS Mathématiques Agrégation 2008/2009 Paul Broussous Préparation à l Agrégation de Mathématiques Algèbre linéaire Réduction des endomorphismes 1 Avant Propos Nous supposerons connues

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique et chimie (PC) Discipline : Mathématiques Seconde année Classe préparatoire PC Programme de mathématiques

Plus en détail

NOTE DE PRÉSENTATION. Les présents arrêtés, au nombre de huit, vous sont soumis pour visa avant présentation devant les instances consultatives.

NOTE DE PRÉSENTATION. Les présents arrêtés, au nombre de huit, vous sont soumis pour visa avant présentation devant les instances consultatives. Direction générale pour l'enseignement supérieur et l insertion professionnelle Service de la stratégie de l enseignement supérieur et de l insertion professionnelle Département de l architecture et de

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées.

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées. Université Claude Bernard Lyon I Agrégation de Mathématiques : Algèbre & géométrie Année 2006 2007 Applications affines A ne pas rater Définition et caractérisations des applications affines, en particulier

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs 22 Cours - Espaces vectoriels.nb /8 Espaces vectoriels K -espace vectoriel, loi de composition interne (commutative, associative), élément neutre, symétrique, loi externe, vecteur nul, E, sous espace vectoriel,

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Maths par Xavier Chauvet MÉMENTO N 10 Les Mémentos de l INSEEC Depuis

Plus en détail

Licence 1ère année Mention Mathématiques

Licence 1ère année Mention Mathématiques Licence 1ère année Mention Mathématiques Semestre 1 Anglais (2 ECTS) Préparation du C2i (3 ECTS) Méthodologie du Travail Universitaire Scientifique (2 ECTS) Expression Orale et Écrite (3 ECTS) Outils Mathématiques

Plus en détail

Séminaire ALGO. Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1

Séminaire ALGO. Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1 Séminaire ALGO Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1 Nicolas Le Roux projet ALGO. séminaire ALGO 1 avertissement A certains moments de l exposé

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Le niveau de connaissances initial en mathématiques à Polytech Montpellier

Le niveau de connaissances initial en mathématiques à Polytech Montpellier Le niveau de connaissances initial en mathématiques à Polytech Montpellier Les enseignants ayant pris part à ce groupe de travail sont : Guy Cathebras (ERII) André Chrysochoos (M) Abdelsalam El Ghzaoui

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS UNIVERSITÉ CLAUDE BERNARD LYON Licence Sciences, Technologies, Santé Enseignement de mathématiques des parcours Informatique ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE - Notes de cours et de travaux

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Les auteurs. Avant-propos. Remerciements. Partie 1 Algèbre 1

Les auteurs. Avant-propos. Remerciements. Partie 1 Algèbre 1 Table des matières Les auteurs Avant-propos Remerciements v xvii xviii Partie 1 Algèbre 1 1 Espaces vectoriels, applications linéaires 3 I Bases........................................... 3 I.1 Combinaisons

Plus en détail

Autour de la diagonalisation

Autour de la diagonalisation Autour de la diagonalisation Cédric Gérot, Pierre Granjon, Nicolas Le Bihan Laboratoire des Images et des Signaux Grenoble January 22, 2003 Contents 1 Eléments d algèbre 2 11 Espace vectoriel 2 111 Définition

Plus en détail

OPERATIONS GEOMETRIQUES 2D

OPERATIONS GEOMETRIQUES 2D OPERATIONS GEOMETRIQUES 2D 1 Les opérations géométriques ont pour but de modifier la position des informations contenues dans l'image sans modifier le niveau de gris. Ces opérations peuvent s'appliquer

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Les astuces de Maths par Isabelle Blejean MÉMENTO N 9 Les Mémentos de l INSEEC

Plus en détail

TABLE DES MATIÈRES. Préface...

TABLE DES MATIÈRES. Préface... TABLE DES MATIÈRES Préface......................................................... iii G. Henniart Représentations linéaires de groupes finis..... 1 1. Caractères des groupes abéliens finis.......................

Plus en détail

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i )))

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i ))) A) APPLICATIONS LINÉAIRES REM : dans ce cours,e,f etgdésignent desk-espaces vectoriels. I) GÉNÉRALITÉS. 1) Définition. DEF : Soit f une application de E dans F ; on dit que f est K-linéaire (ou que c est

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Les éditions Lavoisier vous présentent le programme officiel des classes préparatoires aux Grandes écoles.

Les éditions Lavoisier vous présentent le programme officiel des classes préparatoires aux Grandes écoles. Les éditions Lavoisier vous présentent le programme officiel des classes préparatoires aux Grandes écoles. Tout savoir sur les prépas : Les actus Les fillières Les conseils de profs Nos ouvrages et bien

Plus en détail

Agrégation de Mathématiques Exercices d algèbre linéaire

Agrégation de Mathématiques Exercices d algèbre linéaire Agrégation de Mathématiques Exercices d algèbre linéaire P. HUBERT La plupart des exercices ci-dessous se trouvent dans les livres suivants : - E. Leichtnam, X. Schaeur, Exercices corrigés de mathématiques

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133 FICHE UNITE D ENSEIGNEMENT Responsable de l UE Section CNU de l UE Crédits Européens Mode d enseignement Analyse appliquée Boris Andreianov 26 6 PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE Nombre d heures

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail