Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL"

Transcription

1 Mathématiques 2 1 Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL Objectifs Les notions de différentielle, gradient... d une fonction en dimension finie et infinie. Exercices d illustration et calcul des différentielles. Quelques applications. Notations On note V un espace vectoriel normé, x un point de V, F une fonction de V dans R. < x, y >= i x iy i est le produit scalaire canonique de R n. Question 1 Fonction quadratique Soit V = R n, A une matrice symétrique définie positive de dimension n, b R n. Soit F (x) = 1 2 Ax, x b, x, montrer que et, pour le produit scalaire canonique DF (x).h = Ax b, h F (x) = Ax b Le plus simple est de calculer directement l expression h V DF (x).h = d dt F (x + th) t= On développe en t et on garde le coefficient d ordre 1 en t, soit 1 2 ( Ax, h + Ah, x ) b, h et, compte tenu de la symétrie de A, Ax, h b, h, d où DF (x).h = Ax b, h Les points pour lesquels DF (x) = sont donc solution de Ax = b. Si la matrice A est symétrique ECP 27-28

2 Mathématiques 2 2 définie positive 1 l extrémum est unique et c est un minimum. Intérêt pour la résolution des systèmes linéaires? La résolution d un système linéaire à matrice symétrique définie positive Ax = b est donc équivalente à la recherche de la solution du problème d optimisation 1 min x R n Ax, x b, x 2 Nous étudierons dans la séance 3 des méthodes d optimisation bien adaptées à ce problème. Question 2 Une fonction non quadratique en dimension finie Soit V = R n, A une matrice symétrique définie positive de dimension n, b R n. Soit F (x) = 1 2 < Ax, x > +1 4 x 4 4 < b, x > Calculer DF (x) et F (x). Le plus simple est de calculer directement, terme à terme, l expression h V DF (x).h = d dt F (x + th) t= Pour d 1 dt 2 < A(x + th), x + th > t=, on développe en t et on garde le coefficient d ordre 1 en t, soit 1 2 (< Ax, h > + < Ah, x >) et, compte tenu de la symétrie de A, < Ax, h > d pour dλ i 1 4 x i + th 4 i t=, en dérivant la fonction composée 1 4 (x i + th i ) 4, on obtient x 3 i h i. Finalement h V DF (x).h =< Ax, h > + < x 3, h > < b, h > où x 3 est le vecteur de composantes (x 3 ) i = x 3 i. On en déduit F (x) = Ax + x 3 b Quels sont les points pour lesquels DF (x) =? Les extrémums sont donc solutions du système non linéaire Ax + x 3 = b Calculer HF (x). On a < HF (x)h, h >= d2 dλ 2 F (x + λh) =< Ah, h > + i 3x 2 i h 2 i 1 i.e. x Ax, x ECP 27-28

3 Mathématiques 2 3 Soit D la matrice diagonale avec d i,i = 3x 2 i, il vient < HF (x)h, h >=< (A + D)h, h > Quelle est la nature des extrémums? La matrice A + D est symétrique définie positive comme chacune des deux matrices A et D. Les extrémums sont donc des minimums. Nous montrerons dans la séance suivante, en utilisant la convexité de la fonction, qu il y a un seul extrémum et que c est un minimum. Question 3 Une fonction quadratique en dimension infinie Soit V = C 1 ([, 1], u V et f C([, 1]) J (v) = Calculer la différentielle au sens de Gateaux de J (v). 1 2 v (x) v(x)2 f(x)v(x) dx d J (v + th) t = dt on peut développer l expression de la fonction par rapport à t ou calculer en dérivant sous le signe somme ; il ne reste plus qu à dériver des fonctions d une variable réelle, il vient v h + vh fhdx On munit V du produit scalaire et de la norme de L 2 ([, 1]), J (v) est-elle différentiable au sens de Fréchet? Non, la forme linéaire v h dx sur V muni de la norme de L 2 ([, 1]) n est pas continue (on peut faire exploser h tout en faisant tendre h 2 vers ). Soit V le sous-espace de C 2 ([, 1]) V formé des fonctions nulles en et 1. On considère J (v) comme une fonction sur V. Montrer que, pour le produit scalaire de L 2 ([, 1]), On intègre par partie v h dx v h dx = J (v) = v + v f or le crochet et nul car h() = h(1) = d où v h dx + v (1)h(1) v ()h() ( v + v f)h dx = v + v f, h le produit scalaire étant celui de L 2 ([, 1]), d où le résultat (même si ce n est pas l usage d utiliser la notation gradient dans ce contexte). Noter que v + v f n est pas dans V. ECP 27-28

4 Mathématiques 2 4 Peut-on définir de même J (v) sur V pour le produit scalaire de L 2 ([, 1])? On fait la même transformation, il vient ( v +v f)hdx+v (1)h(1) v ()h() = v +v f, h +v (1)h(1) v ()h() la différentielle ne s exprime pas ici comme le produit scalaire de deux fonctions de L 2 ([, 1]). Nous n irons pas plus loin dans l analyse de cette difficulté (V n est pas complet pour la norme de L 2 ([, 1]), la différentielle n est pas continue), on en retiendra que la notion de gradient en dimension infinie n est à manipuler que de façon heuristique, ce n est que dans la cadre des espaces de Hilbert qu elle prend un sens. Quels sont les extrémums de J (v) sur V? (Nous verrons ultérieurement, en utilisant la convexité de la fonction J (v) qu il n y a qu un extrémum et que c est un minimum). En un extrémum h V, Nous admettrons que si g C([, 1]) ( v + v f)h dx = h V, gh dx = g = (Si on ne veut pas l admettre : si g(x ), alors g(x) ne change pas de signe sur un petit intervalle [x ɛ, x +ɛ], on obtient une contradiction en prenant h(x) définie par h(x) = (x (x ɛ)) 3 ((x + ɛ) x) 3 sur cet intervalle et ailleurs, ce qui est bien dans V.) d où Question 4 v + v = f Généralisation : le calcul des variations Voir le cours. Soit V l espace des fonctions de C 1 ([, 1]) telle que v() = v(1) = et g(t, x, y) C 1 (R 3 ). On définit sur V la fonction Calculer DJ (u). J (u) = g(x, u(x), u (x)) dx (1) DJ (u).v = d dt J (u + tv) t = = d dt ( On dérive sous le signe somme g(x, u + tv, u + tv ) dx) t= DJ (u).v = g(x, u, u ) v + g(x, u, u ) v dx ECP 27-28

5 Mathématiques 2 5 En ajoutant des hypothèses de régularité, calculer J (u) pour le produit scalaire de L 2 ([, 1]). Si u, g C 2 ([, 1]), il vient en intégrant par partie le terme v et en tenant compte de ce que le crochet est nul DJ (u).v = ( g(x, u, u ) dx g(x, u, u ) )v(x) dx =< g(x, u, u ) dx D où le résultat avec les précautions d usage sur la notion de gradient. En déduire qu un extrémum de la fonction J (v) vérifie l équation d Euler On écrit que la différentielle est nulle. D où v V, + g(x, u, u ), v > dx ( g ) + g = (2) < g(x, u, u ) dx + g(x, u, u ), v >= ce qui implique, comme nous l avons montré à la question précédente g(x, u, u ) dx + g(x, u, u ) = Applications : on a et d où J (v) = et donc, si u est un minimum de J (v) sur V v v4 fv dx 4 g = u (3) g = u3 f (4) dx ( g ) + g = u + u 3 f (5) u + u 3 = f (6) u() = u(1) = (7) Nous verrons dans la séance suivante pourquoi ce minimum est unique. ECP 27-28

Calcul Différentiel. Automne f(x) = ax + b.

Calcul Différentiel. Automne f(x) = ax + b. Calcul Différentiel Automne 2016 1 Dérivabilité des fonctions réelles Une application affine de R dans R est une application de la forme f(x) = ax + b. Son graphe est une droite : Idée : On veut approcher

Plus en détail

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel et optimisation I Sujets d examen 2006-2007 François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel Contrôle continu

Plus en détail

Séance 2 : Exercices corrigés FONCTIONS CONVEXES

Séance 2 : Exercices corrigés FONCTIONS CONVEXES Mathématiques 2 1 Séance 2 : Exercices corrigés FONCTIONS CONVEXES Question 1 Un circuit électrique : exemple de système non linéaire Montrer que les lois de Kirchhoff (la somme des intensités arrivant

Plus en détail

Chapitre II Variations en dimension finie

Chapitre II Variations en dimension finie 8 Chapitre II Variations en dimension finie Dans ce chapitre, on rappelle les principaux résultats concernant le calcul des variations en dimension finie, c est à dire la recherche de points maximaux,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 10 [ ] [correction] Soit a > 0. On pose, pour x > 0 et y > 0,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 10 [ ] [correction] Soit a > 0. On pose, pour x > 0 et y > 0, [http://mp.cpgedupuydelome.fr] édité le 10 juillet 014 Enoncés 1 Extremum Exercice 1 [ 00058 ] [correction] Déterminer les extrema locaux et globaux de Exercice [ 00059 ] [correction] Trouver les extrema

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 2006/2007 Outils Mathématiques 4 Continuité et différentiabilité résumé 1 Continuité Soient V 1 = (x 1, y 1 ) R 2 et V 2 = (x 2, y 2 ) R 2. On va toujours utiliser la norme

Plus en détail

Rappel de calcul différentiel

Rappel de calcul différentiel Calcul différentiel et géométrie Année 008-009 ENS Cachan Vincent Beck Différentiabilité. Rappel de calcul différentiel Exercice 1 Exemples et contre-exemples. a) Étudier suivant les valeurs de α > 0,

Plus en détail

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50 Fonctions réelles de deux variables () Fonctions réelles de deux variables 1 / 50 1 Fonctions de deux variables réelles à valeurs dans R 2 Calcul différentiel 3 Extrema d une fonction de deux variables

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION

FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION Chapitre 17 : FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Recherche d extremums locaux sur un ouvert 2 1.1 Condition nécessaire du premier ordre.............................

Plus en détail

CINQUANTE-SIX EXERCICES DE CALCUL DIFFÉRENTIEL POUR LA TROISIÈME ANNÉE DE LICENCE. Michèle Audin

CINQUANTE-SIX EXERCICES DE CALCUL DIFFÉRENTIEL POUR LA TROISIÈME ANNÉE DE LICENCE. Michèle Audin CINQUANTE-SIX EXERCICES DE CALCUL DIFFÉRENTIEL POUR LA TROISIÈME ANNÉE DE LICENCE 2012 2013 Michèle Audin 1. Espaces vectoriels normés Exercice 1.1 (Manhattan). Une ville est quadrillée par une famille

Plus en détail

Distance à un sous-espace vectoriel

Distance à un sous-espace vectoriel [http://mp.cpgedupuydelome.fr] édité le 1 juillet 214 Enoncés 1 Distance à un sous-espace vectoriel Exercice 1 [ 526 ] [correction] [Déterminant de Gram] Soit E un espace préhilbertien réel. Pour (u 1,...,

Plus en détail

Outil d analyse fonctionnelle

Outil d analyse fonctionnelle Outil d analyse fonctionnelle David Renard 24 octobre 2016 ÉCOLE POLYTECHNIQUE David Renard Outil d analyse fonctionnelle 24 octobre 2016 1 / 25 Cours 3 : Espaces de Sobolev (suite) et problèmes elliptiques

Plus en détail

Fonctions de plusieurs variables : calcul différentiel On parle parfois de dérivée partielle première.

Fonctions de plusieurs variables : calcul différentiel On parle parfois de dérivée partielle première. Fonctions de plusieurs variables : calcul différentiel 13-1 Sommaire 1 Fonctions R p R, Dérivées Premières 1 11 Application de classe C 1 sur U 1 12 Différentielle 2 13 Développement limité à l ordre 1

Plus en détail

Résumé 19 : calcul différentiel

Résumé 19 : calcul différentiel http://mpbertholletwordpresscom Résumé 19 : calcul différentiel E sera un R espace vectoriel normé de dimension n, F un R espace vectoriel normé et Ω un ouvert de E Nous noterons aussi B = e 1,, e n )

Plus en détail

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1 Université de Paris Sud 11 L MPI Mathématiques ème semestre 14/15 Math06 Equations aux Dérivées Partielles Feuille d Exercices 1 NB. Ces exercices, et les corrigés qui suivent, sont issus du site http://www.bibmath.net

Plus en détail

Outils mathématiques. Applications linéaires - Matrices

Outils mathématiques. Applications linéaires - Matrices Licence Sciences de la Terre et Environnement Outils mathématiques Applications linéaires - Matrices Exercice. On considère dans la base canonique de R les deux applications linéaires suivantes : σ u +

Plus en détail

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation.

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation. Equations différentielles linéaires du premier ordre à coefficients constants (ou système d équation différentielles linéaires scalaire à coefficients constants du premier ordre) dx t dt B( t) + AX t x

Plus en détail

Multiplicateurs de Lagrange

Multiplicateurs de Lagrange Analyse numérique et optimisation TD5 27/05/204 A. Ern et A. de Bouard Groupes 5 & 2 Multiplicateurs de Lagrange Exercice : optimisation quadratique sous contraintes affines On pose V = R n et on considère

Plus en détail

Trivial Poursuite Mathématique

Trivial Poursuite Mathématique 1/39 Trivial Poursuite Mathématique 07 Avril 2015 2/39 1 Calcul Différentiel 2 Extrema 3 Suites et Séries de Fonctions 4 Séries Entières 5 Questions de cours 6 Le Pictionamaths 3/39 Calcul Différentiel,

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 1 Université de Rennes1 Année 2005/2006 Outils Mathématiques 4 Extrema résumé 1 Fonctions implicites Soit F (x, y, z) une fonction de trois variables définie dans un domaine D de R 3. Considérons l équation

Plus en détail

Résumé 22 : Calcul Différentiel

Résumé 22 : Calcul Différentiel Résumé 22 : Calcul Différentiel E sera un R espace vectoriel normé de dimension n, F un R espace vectoriel normé et Ω un ouvert de E Nous noterons aussi B = e 1,, e n ) une base de E Dans la majorité des

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

Calcul différentiel. MP Lycée Clemenceau

Calcul différentiel. MP Lycée Clemenceau Calcul différentiel MP Lycée Clemenceau Table des matières I Etude locale 2 1) Dérivée suivant un vecteur.......................................... 2 2) Différentielle en un point...........................................

Plus en détail

Cours optimisation. Benjamin Monmege. 29 février 2012

Cours optimisation. Benjamin Monmege. 29 février 2012 Cours optimisation Benjamin Monmege 29 février 202 On appelle problème d optimisation la donnée d une instance de la forme minimiser/maximiser f(x) { g i (x) 0 i {,..., m} sous les conditions h j (x) =

Plus en détail

+**** MATHEMATIQUES. Tournez la page S.V.P. Les calculatrices sont interdites.

+**** MATHEMATIQUES. Tournez la page S.V.P. Les calculatrices sont interdites. SESSION 2003 TPC005 EPREUVE SPEClFlQUE - FlLlERE TPC MATHEMATIQUES Durbe : 4 heures Les calculatrices sont interdites. +**** N.B. : Le candidat attachera la plus grande importance à la clarté, à 1- précision

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3 Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3. Espaces préhilbertiens On rappelle qu une forme bilinéaire sur un

Plus en détail

CALCUL 1. (x), g (x i ) = f x i

CALCUL 1. (x), g (x i ) = f x i CALCUL 1 LEÇON 3 : DÉRIVÉES PARTIELLES Dans cette leçon, nous généralisons la notion de dérivée aux fonctions de plusieurs variables. Nous obtenons ainsi un outil très puissant pour l analyse locale de

Plus en détail

La méthode des éléments finis

La méthode des éléments finis Chapitre 6 La méthode des éléments finis 6.1 Introduction La méthode des éléments finis est actuellement la méthode la plus utilisée pour la résolution de problèmes aux limites. Elle découle directement

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs Application à l étude d extrema On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables Comme pour une fonction d une

Plus en détail

Outils Mathématiques - Chapitre I : Dérivation complexe et fonctions holomorphes

Outils Mathématiques - Chapitre I : Dérivation complexe et fonctions holomorphes Outils Mathématiques - Chapitre I : Dérivation complexe et fonctions holomorphes Laurent Poinsot LIPN UMR CNRS 7030 Université Paris XIII & École de l Air 1 / 39 Table des matières 1 Objectifs et plan

Plus en détail

Applications différentiables

Applications différentiables Chapitre 8 Applications différentiables Soit f : I E, où I est une intervalle de R, et E est un espace vectoriel normé réel. On rappelle la définition du vecteur dérivé en a : f (a) = lim (f(a + h) f(a)).

Plus en détail

g(p + Q) = g(p ) + L P (Q) + R(Q)

g(p + Q) = g(p ) + L P (Q) + R(Q) Université Paris Descartes U.F.R. Maths/Info. L3 - MA 212-213 Calcul différentiel Devoirs maison Exercice 1. Soit E = R n [X] muni de la norme P = sup x [,1] P (x). Etudier la différentiabilité de Correction.

Plus en détail

CC2 - Optimisation Durée : 2h30.

CC2 - Optimisation Durée : 2h30. INSA Toulouse - Département GMM Lundi 6 janvier 2014 4ème année CC2 - Optimisation Durée : 2h30. Seuls le polycopié de cours et les notes personnelles de cours sont autorisés. Exercice 1. QUESTIONS DE

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée:

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée: 2 Produit scalaire Espaces Euclidiens 21 Soit E un R-espace vectoriel Un produit scalaire dans E est une forme bilinéaire symétrique définie positive, noté La norme associée est définie par x 2 =

Plus en détail

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0.

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0. Chapitre 3 Produit scalaire, espaces vectoriels euclidiens 3.1 Produit scalaire, norme euclidienne Définition 3.1 Soit E un espace vectoriel réel. Un produit scalaire sur E est une forme bilinéaire symétrique

Plus en détail

5.1 Extremums et points stationnaires

5.1 Extremums et points stationnaires Chapitre 5 Extremums locaux Comme dans le cas des fonctions à une variable, la détermination d extremums locaux d une fonction f : R n R est important en vue des nombreuses applications. 5. Extremums et

Plus en détail

Eléments propres d un endomorphisme

Eléments propres d un endomorphisme [http://mp.cpgedupuydelome.fr] édité le 5 mai 16 Enoncés 1 Eléments propres d un endomorphisme Eercice 1 [ 768 ] [Correction] Soient E = C (R, R) et D l endomorphisme de E qui à f associe sa dérivée f.

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Dérivées des fonctions de plusieurs variables (suite) 1 La différentielle d une fonction à valeurs réelles

Dérivées des fonctions de plusieurs variables (suite) 1 La différentielle d une fonction à valeurs réelles Dérivées des fonctions de plusieurs variables suite) 1 La différentielle d une fonction à valeurs réelles Cas des fonctions d une variable fx 0 + h) fx 0 ) i) f est dérivable en X 0 si lim existe h 0 h

Plus en détail

Différentielle seconde, extremums.

Différentielle seconde, extremums. Différentielle seconde, extremums Exercice 1 Soit A une matrice de taille n n Pour tout x R n, on pose qx) = x, Ax Montrer que q est C et calculer son gradient et sa matrice hessienne Indication On remarquera

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Saïd EL MORCHID Département de Mathématiques et de Statistique Chapitre 6: Les transformations linéaires (partie 2) Références Définitions-Exemples Définitions

Plus en détail

Analyse : Calcul différentiel dans un Banach

Analyse : Calcul différentiel dans un Banach Analyse : Calcul différentiel dans un Banach Table des matières I Définition de la différentiabilité II Différentiabilité en dimension finie 4 1 Dérivées suivant un vecteur, dérivées partielles dans une

Plus en détail

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx,

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx, Université Paris Panthéon-Sorbonne L MASS 0/03 Algèbre Corrigé Feuille 4 Exercice. a On remarque que dim F car F R 3 en effet,,, F. D autre part, soient e = 3,,, e =, 0,. On vérifie que {e, e } est une

Plus en détail

Différentiabilité des fonctions de plusieurs variables:

Différentiabilité des fonctions de plusieurs variables: Différentiabilité des fonctions de plusieurs variables: N. Tsouli University Mohamed I Faculty of Sciences Department of Mathematics Oujda, Morocco. Plan 1 I-Dérivées partielles : 2 II-7- Dérivées d ordre

Plus en détail

Première S chapitre 3 partie 3 opérations sur les fonctions dérivées

Première S chapitre 3 partie 3 opérations sur les fonctions dérivées 1. Dérivée d'une somme u et v sont deux fonctions dérivables en x. Si ces deux conditions sont remplies alors : La fonction u + v est dérivable en x. Le nombre dérivé au point x de la somme u + v est la

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Saïd EL MORCHID Département de Mathématiques et de Statistique Chapitre 4: Les espaces vectoriels Références Espaces vectoriels s Exemples Théorème Sous-espaces

Plus en détail

si xy 0 x 2 sin 1 1 x si y = 0 y 2 sin 1 y x 2 sin 1 x + y2 sin 1 y xy 2 , la dérivée de f en a dans la direction u existe, i.e.

si xy 0 x 2 sin 1 1 x si y = 0 y 2 sin 1 y x 2 sin 1 x + y2 sin 1 y xy 2 , la dérivée de f en a dans la direction u existe, i.e. Enoncés : M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis Corrections : F. Sarkis Exo7 Applications différentiables Exercice Soit f une application f de E dans F espaces vectoriels normés de dimension finie.

Plus en détail

1 Rappels de calcul différentiel

1 Rappels de calcul différentiel 1 Rappels de calcul différentiel 1.1 Topologie des espaces vectoriels de dimension finie Assurez-vous de bien comprendre le texte suivant et rappelez les définitions importantes. Un espace vectoriel de

Plus en détail

Feuille 2 : Orthogonalité, bases Hilbertienne

Feuille 2 : Orthogonalité, bases Hilbertienne MASTER DE MATHÉMATIQUES Universite de Nice Sophia Antipolis ANALYSE HILBERTIENNE 2015-2016 Feuille 2 : Orthogonalité, bases Hilbertienne Exercice 1. Soit E = L 2 (]0, 1[) muni de son produit scalaire usuel.,..

Plus en détail

Travaux dirigés d OPTIMISATION. x cosy y sinx x y. (x,y) f(x,y) =

Travaux dirigés d OPTIMISATION. x cosy y sinx x y. (x,y) f(x,y) = 1 Dérivation 1.1 Exercice 2ème Année TR Travaux dirigés d OPTIMISATION Donner la dérivée première de la fonction 1.2 Exercice f : R 2 R 3 (x,y) f(x,y) = x cosy y sinx x y 1. Soit X un espace vectoriel

Plus en détail

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k Ex 1 Facile Soit un espace préhilbertien réel E et deux vecteurs x,y E. a) Développer l expression y 2.x (x y).y b) Retrouver l inégalité de Cauchy-Schwarz ainsi que le cas d égalité. Ex 2 Cours, à faire

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Formulaire de Maths Xavier Chauvet

Formulaire de Maths Xavier Chauvet Formulaire de Maths Xavier Chauvet Ancien élève de l Ecole Normale Supérieure - ENS Ulm Professeur agrégé de Mathématiques en classes préparatoires au Lycée Lakanal à Sceaux 1 Sommaire 1. Algèbre...4 2.

Plus en détail

TD 3: Différentielle des fonctions de plusieurs variables Correction

TD 3: Différentielle des fonctions de plusieurs variables Correction TD 3: Différentielle des fonctions de plusieurs variables Correction 1 Calculs de dérivées partielles Exercice 1 Calculez les dérivées partielles des fonctions suivantes : 1 Pour tous réels x et y, (x,

Plus en détail

Contrôle continu - 5 décembre 2011

Contrôle continu - 5 décembre 2011 Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Contrôle continu - décembre 011 Le sujet comporte 1 page. L épreuve dure 1 heure 30. Les documents, calculatrices et téléphones portables sont

Plus en détail

I- Définition d un Vecteur:

I- Définition d un Vecteur: 1 I- Définition d un Vecteur: Un vecteur est une grandeur définie par trois paramètres: - Une direction : qui désigne le support du vecteur - Un sens : qui désigne l orientation du vecteur - un module

Plus en détail

Examen de Calcul Différentiel Première session Mardi 16 mai 2017 Durée 3h00 Le sujet comporte 2 pages

Examen de Calcul Différentiel Première session Mardi 16 mai 2017 Durée 3h00 Le sujet comporte 2 pages Université de Franche-Comté Licence de Mathématiques S6, 2016-17 Examen de Calcul Différentiel Première session Mardi 16 mai 2017 Durée 3h00 Le sujet comporte 2 pages Aucun document n'est autorisé. Les

Plus en détail

TRAVAIL DE MATHEMATIQUES ECE 2. Faire pour le jour de la rentrée sur copie les exercices donnés en annexe

TRAVAIL DE MATHEMATIQUES ECE 2. Faire pour le jour de la rentrée sur copie les exercices donnés en annexe TRAVAIL DE MATHEMATIQUES ECE 2 Revoir les définitions, propriétés, théorèmes. de cours Retravailler les DS, TD, fiche d exercices à l aide des corrigés Faire pour le jour de la rentrée sur copie les exercices

Plus en détail

Calcul Différentiel et Intégral. Examen final - Mardi 13 janvier 2015

Calcul Différentiel et Intégral. Examen final - Mardi 13 janvier 2015 Université Toulouse 3 Année 214-215 Département de Mathématiques L2 Parcours Spécial Calcul Différentiel et Intégral Examen final - Mardi 13 janvier 215 Durée : 2h Aucun document (ni calculatrice, ni téléphone,

Plus en détail

ESPACES DE SOBOLEV, FORMULATION VARIATIONNELLE DES EDP.

ESPACES DE SOBOLEV, FORMULATION VARIATIONNELLE DES EDP. ESPACES DE SOBOLEV, FORMULATION VARIATIONNELLE DES EDP. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Solutions faibles. 1 / 42 PLAN DU COURS 1 ESPACES DE HILBERT 2 ESPACES DE SOBOLEV

Plus en détail

Mat307 Feuille d exercices 2 : équations différentielles UGA

Mat307 Feuille d exercices 2 : équations différentielles UGA Mat37 Feuille d exercices 2 : équations différentielles UGA Exercice 1. 1. Résoudre l équation différentielle suivante x x + cos(t ; x( 1. 2. Tracer la solution et étudier son comportement en et en +.

Plus en détail

UFR DE MATH EMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler

UFR DE MATH EMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler UFR DE MATHÉMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler 26-21 - georgeskoepfler@miparisdescartesfr Table des matières 1 Introduction 1 2 Espace vectoriels normés

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

Exercice 2. Calculer les dérivées partielles et la différentielle pour les fonctions suivantes : f 1 (x, y) = 4 x 5 y + 6 f 1 x = f 1

Exercice 2. Calculer les dérivées partielles et la différentielle pour les fonctions suivantes : f 1 (x, y) = 4 x 5 y + 6 f 1 x = f 1 L Chimie, 04-05 Léo Glangetas Université de Rouen NOM Prénom Groupe Note sur 0: Test en mathématiques note non retenue) Mercredi 8 octobre 04 documents, calculatrice interdits) Exercice. Calculer les dérivées

Plus en détail

Feuille de TD 1 MT 252 Année Espace euclidien

Feuille de TD 1 MT 252 Année Espace euclidien Feuille de TD 1 MT 252 Année 24-25 Espace euclidien Exercice 1 Parallélogramme. Soit (E,, ) un espace euclidien. On note la norme associée. a) Montrer que x, y E, x y 2 + x + y 2 = 2 ( x 2 + y 2 ). (1)

Plus en détail

Corrigé des exercices sur les Opérateurs

Corrigé des exercices sur les Opérateurs Corrigé des exercices sur les Opérateurs 31 mars 28 1 Exercice 5 1.1 Énoncé Sur l espace de Hilbert H = L 2 ([, π], on considère l opérateur intégral T qui à tout x H associe la fonction T x définie par

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Analyse, séance 6 : exercices corrigés LES ÉQUATIONS d ÉVOLUTION

Analyse, séance 6 : exercices corrigés LES ÉQUATIONS d ÉVOLUTION Mathématiques 2 1, séance 6 : exercices corrigés LES ÉQUATIONS d ÉVOLUTION Objectifs La plupart des questions de cette séance sont traitées en détail dans le polycopié. Nous renvoyons donc aux pages correspondantes

Plus en détail

Compléments mathématiques et notations

Compléments mathématiques et notations Compléments mathématiques et notations 1 Variations, dérivées et approximations Valeurs approchées : notation On utilise plusieurs notations pour exprimer que deux variables ou valeurs sont proches sans

Plus en détail

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch,

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch, Un peu d histoire La notion de dérivée a vu le jour au XVII e siècle dans les écrits de Leibniz et de Newton qui la nomme fluxion et qui la définit comme «le quotient ultime de deux accroissements évanescents».

Plus en détail

TD Liste d exercices no. 1 Espaces euclidiens

TD Liste d exercices no. 1 Espaces euclidiens Université Paris Diderot - Paris 7 L Physique MP4 014-015 TD Liste d exercices no. 1 Espaces euclidiens 1. Notion de produit scalaire Exercice 1. (1) Montrer que l application Φ : R R R définie par Φ((x

Plus en détail

Dérivées des fonctions de plusieurs variables (suite) 1 La différentielle d une fonction à valeurs réelles

Dérivées des fonctions de plusieurs variables (suite) 1 La différentielle d une fonction à valeurs réelles Dérivées des fonctions de plusieurs variables suite) 1 La différentielle d une fonction à valeurs réelles Cas des fonctions d une variable fx 0 + h) fx 0 ) i) f est dérivable en X 0 si lim existe h 0 h

Plus en détail

Partie I : Somme de variables aléatoires indépendantes suivant la loi exponentielle de paramètre 1

Partie I : Somme de variables aléatoires indépendantes suivant la loi exponentielle de paramètre 1 25-7- 2 J.F.C. p. EM LYON 2 S J.F. COSSUTTA Lycée Marcelin BERTHELOT SAINT-MAUR jean-francois.cossutta@wanadoo.fr Partie I : Somme de variables aléatoires indépendantes suivant la loi exponentielle de

Plus en détail

1 Montrer qu un espace est (ou n est pas) un espace vectoriel

1 Montrer qu un espace est (ou n est pas) un espace vectoriel Séance Algèbre Linéaire : corrections. Remarque générale : les exercices qui suivent ne pourront sans doute pas tous être traités dans les 3 heures ; mais un certain nombre pourra être cherché à la maison.

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 1 : Espaces vectoriels ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 1 Espaces vectoriels 1.1 Espaces vectoriels, généralités..........................

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

E3A 2007 MP - Maths B

E3A 2007 MP - Maths B E3A 2007 MP - Maths B Exercice 1 1. Suivant l énoncé, soit y une fonction dérivable sur J, et soit z : x x α y(x). Puisque J ne contient pas 0, z est elle aussi dérivable sur J, et on a : si J R + : x

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE DEUXIÈME ÉPREUVE ÉCRITE D ADMISSIBILITÉ.

CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE DEUXIÈME ÉPREUVE ÉCRITE D ADMISSIBILITÉ. CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE CAPESA CONCOURS D ACCÈS à la 2 e catégorie des emplois de professeurs des établissements d enseignement agricole privés

Plus en détail

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points Exercice 0 (sur 6 points) 1. Calculer les valeurs et vecteurs propres des matrices 1 2 0 0 0 0 A = 2 1 0 et B = 1 0 0. 0 0 3 6000 80008 4 2.

Plus en détail

Chapitre M3 Algèbre 10 FONCTION DERIVEE

Chapitre M3 Algèbre 10 FONCTION DERIVEE TBP Chapitre M3 (A10) Page 1/7 Chapitre M3 Algèbre 10 FONCTION DERIVEE ET ETUDE DES VARIATIONS D UNE FONCTION Capacités Utiliser les formules et règles de variation pour déterminer la dérivée d une fonction.

Plus en détail

Suites. 1 Notion de matrice-vocabulaire Exemple d utilisation Définitions et vocabulaire... 2

Suites. 1 Notion de matrice-vocabulaire Exemple d utilisation Définitions et vocabulaire... 2 Table des matières 1 Notion de matrice-vocabulaire 1 1.1 Exemple d utilisation......................................... 1 1.2 Définitions et vocabulaire...................................... 2 2 Multiplication

Plus en détail

ANALYSE DES EDPS - ENSEM, FORMATION INGENIERIE DES SYSTEMES NUMERIQUES, 2EME ANNEE - CHAPITRE 4: FORMULATION VARIATIONNELLE ET ESPACES DE SOBOLEV

ANALYSE DES EDPS - ENSEM, FORMATION INGENIERIE DES SYSTEMES NUMERIQUES, 2EME ANNEE - CHAPITRE 4: FORMULATION VARIATIONNELLE ET ESPACES DE SOBOLEV ANALYSE DES EDPS - ENSEM, FORMATION INGENIERIE DES SYSTEMES NUMERIQUES, EME ANNEE - CHAPITRE 4: FORMULATION VARIATIONNELLE ET ESPACES DE SOBOLEV Table des matières I. Remarques préliminaires sur le problème

Plus en détail

Analyse et calcul différentiel Examen

Analyse et calcul différentiel Examen Analyse et calcul différentiel Examen Corrigé Université De Metz 2006-2007 1 Premier exercice C est une application directe du cours. Il suffit de connaître le cours et de faire les calculs soigneusement.

Plus en détail

Exercices : Préparation à l oral

Exercices : Préparation à l oral Mathématiques Année 26-27 Lycée Pothier - PSI F. Blache Exercices : Préparation à l oral Exercice. Calcul mental : 8 699 et 99. 2. Déterminer le plus grand facteur premier du nombre 89999. Exercice 2 Soit

Plus en détail

Formalisation mathématique

Formalisation mathématique 0000000000000000 1111111111111111 0000000000000000000 1111111111111111111 0000000000000000000000 1111111111111111111111 000000000000000000000000 111111111111111111111111 000000000000000000000000 111111111111111111111111

Plus en détail

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE SOMMAIRE 1.ACTIVITES... 2 ACTIVITE 1... 2 ACTIVITE 2... 2 2. NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES.... 3 3. INTERPRETATION GEOMETRIQUE.... 4 4. AFFIXE D UN VECTEUR, D UN BARYCENTRE...

Plus en détail

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES Suites de nombres complexes Notons l(c) l espace vectoriel sur C des suites de nombres complexes. Si (s n ) n 0 est un élément de

Plus en détail

FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES

FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES 29-3- 2011 J.F.C. Fnpv p. 1 TD 25 2010-2011 FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES Lundi 28 mars 2010 Exercice 1 ECRICOME 99 n est un élément de N. (x, y) R 2, f n (x, y) = (x n y) e x y. On se propose

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 5 : Espaces euclidiens ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 5 Espaces Euclidiens et applications 5.1 Produit scalaire, norme, espace euclidien....................

Plus en détail

Distributions. et applications. Belhassen Dehman. Attention!

Distributions. et applications. Belhassen Dehman. Attention! Ministère de l Enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université Virtuelle de Tunis Distributions Convolution des distributions et applications Attention! Ce produit

Plus en détail

PRODUIT SCALAIRE ET ORTHOGONALITÉ

PRODUIT SCALAIRE ET ORTHOGONALITÉ Chapitre 9 : ECS2 Lycée La Bruyère, Versailles Année 2015/2016 PRODUIT SCALAIRE ET ORTHOGONALITÉ 1 Formes bilinéaires 2 1.1 Définition............................................. 2 1.2 Représentation

Plus en détail

EXERCICES 1S DERIVATION

EXERCICES 1S DERIVATION EXERCICES S DERIVATION Nombre dérivé ; utilisation des formules On trouvera les solutions après la liste des exercices Ne les consultez pas trop vite! EX : Calculer la fonction dérivée de la fonction f

Plus en détail

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques Feuille d exercices n 4 : Calculus Dans ce qui suit, l espace euclidien de dimension 3 est rapporté à un repère orthonormé direct (O;

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Sommaire Sommaire I Applications continûment différentiables............... 2 I.1 Applications coordonnées......................... 2 I.2 Applications partielles........................... 2 I.3 Continuité..................................

Plus en détail

Chapitre 5 : Dérivation. Activité préparatoire : p97 du livre. f(x 2 ) 1 f(x 1 )

Chapitre 5 : Dérivation. Activité préparatoire : p97 du livre. f(x 2 ) 1 f(x 1 ) Capitre 5 : Dérivation Taux d accroissement Question : Activité préparatoire : p97 du livre. Définition : Soit une fonction f définie sur un intervalle I de R, et x et x 2 deux réels de I. Le taux d accroissement

Plus en détail

Calcul différentiel et fonctions holomorphes MAT 431 Cours 1 : le calcul différ. dans les espaces de Banach. David Renard.

Calcul différentiel et fonctions holomorphes MAT 431 Cours 1 : le calcul différ. dans les espaces de Banach. David Renard. Calcul différentiel et fonctions holomorphes MAT 431 Cours 1 : le calcul différentiel dans les espaces de Banach 29 août 2016 1 Les documents (poly actualisé, feuille d exercices, etc) sont disponibles

Plus en détail

Dérivation. I. Nombre dérivé d une fonction en un point

Dérivation. I. Nombre dérivé d une fonction en un point I. Nombre dérivé d une fonction en un point Dérivation Dans tout ce paragrape, on considère une fonction f définie sur un intervalle I et a un nombre réel de cet intervalle. ) Définition Le nombre dérivée

Plus en détail