CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ"

Transcription

1 SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion d es posiive sur, + e donc la foncion d es croissane sur, + On en dédui que pour >, d d = puis que 1 cos e enfin que 1 cos 1 D aure par, pour >, on a 1 cos >, 1 cos e finalemen I1/ La foncion δ es dérivable sur, + e pour, +, δ = sin Il es connu que pour, sin On en dédui que la foncion δ es posiive sur, + puis que la foncion δ es croissane sur, + Par suie, pour >, δ δ = e donc 1 cos cos D aure par, pour >, on a e finalemen >, 1 cos 1 I/ Éisence de la foncion ϕ sur, + La foncion 1 cos es coninue sur, +, prolongeable par coninuié en par 1 e dominée en + par la foncion 1 1 cos qui es inégrable sur un voisinage de + On en dédui que la foncion es inégrable sur, + Soi alors, + La foncion 1 cos e es coninue sur, + De plus, pour >, 1 cos e 1 cos Comme la foncion 1 cos es inégrable sur, +, il en es de même de la foncion 1 cos e Finalemen Pour ou réel posiif, ϕ eise I3/ Limie de la foncion ϕ en + I31/ Soien 1 e deu réels els que 1 Pour ou réel >, e 1 e e donc 1 cos e 1 e Par posiivié de l inégrale, on en dédui que ϕ 1 ϕ On a monré que la foncion ϕ es décroissane sur, + D aure par, la foncion ϕ es posiive sur, + Ainsi, la foncion ϕ es décroissane e minorée par sur, + On en dédui que la foncion ϕ a une limie réelle quand end vers + e que cee limie es posiive I3/ Soi > D après la quesion I1/, pour ou >, on a 1 cos l inégrale ϕ e d = 1 Comme 1 end vers quand end vers +, le héorème des gendarmes monre que lim ϕ = + e e e donc, par croissance de hp ://wwwmahs-francefr 1 c Jean-Louis Rouge, 9 Tous drois réservés

2 I4/ Caracère C k de la foncion ϕ I41/ Soi Φ :, +, + R, 1 cos e Pour chaque, +, la foncion Φ, es coninue par morceau sur, + Pour chaque, +, la foncion Φ, es coninue sur, + Pour chaque,, +, +, Φ, = 1 cos e 1 cos = ϕ où la foncion ϕ es coninue e inégrable sur, + d après la quesion I/ D après le héorème de coninuié des inégrales à paramères, ϕ es coninue sur, + I4/ Soi a > Pour chaque, +, la foncion Φ, es coninue par morceau e inégrable sur, + La foncion Φ adme une dérivée parielle par rappor à sa première variable sur a, +, + e, cos, = 1 e De plus, a, +, +, Φ - pour chaque a, +, la foncion Φ, es coninue par morceau sur, + - pour chaque, +, la foncion Φ, es coninue sur a, + - pour chaque, a, +, +, d après la quesion I11/, Φ, = 1 cos e e a = ϕ 1 où la foncion ϕ 1 es coninue par morceau e inégrable sur, + D après le héorème de dérivaion des inégrales à paramères héorème de Leibniz, ϕ es de classe C 1 sur a, + e la dérivée de ϕ s obien par dérivaion sous le signe somme Ceci éan vrai pour ou réel sricemen posiif a, ϕ es de classe C 1 sur, + e >, ϕ = 1 cos e d I43/ Soi > ϕ = 1 cos + e d e d = 1 1 e comme lim =, on a monré que + lim ϕ = + I44/ Soi a > En plus des résulas de la quesion I4/, la foncion Φ adme une dérivée parielle seconde par rappor à sa première variable sur a, +, + e, a, +, +, Φ, = 1cos e De plus, - pour chaque a, +, la foncion Φ, es coninue par morceau sur, + - pour chaque, +, la foncion Φ, es coninue par morceau sur a, + - pour chaque, a, +, +, Φ, = 1 cos e e a = ϕ D après le héorème de dérivaion des inégrales à paramères, ϕ es de classe C sur a, + pour ou a > e donc sur, + e sa dérivée seconde s obien par dérivaion sous le signe somme ϕ es de classe C sur, + e >, ϕ = 1 cose d I45/ Soi > La foncion e es inégrable sur, + car coninue sur, + e négligeable en + devan 1 Mais alors, la foncion cose es inégrable sur, + en an que différence de deu foncions inégrables sur, + On a déjà e d = 1 D aure par, hp ://wwwmahs-francefr c Jean-Louis Rouge, 9 Tous drois réservés

3 Finalemen, cose d = Re 1 = Re i + i = Re + 1 e +i d = Re car e +i + i = + 1 e +i = + i e + 1 >, ϕ = = Re lim + I46/ Donc, il eise C R el que >, ϕ = ln 1 ln C = 1 ln quesion I43/, lim + ϕ = ce qui fourni C = + 1 e +i + i 1 + i + C De plus, d après la >, ϕ = ln 1 ln + 1 En pariculier, lim ϕ = Ainsi, ϕ es coninue sur, +, de classe C 1 sur, + e lim ϕ = On sai alors que ϕ n es pas dérivable en I5/ Epression eplicie de la foncion ϕ I51/ ln = ln = 1 Donc lim ln + = + 1 I5/ ln +1 d = ln d = ln I53/ D après les quesions I46/ e I5/, il eise C R el que >, ϕ = ln 1 ln Arcan + C = ln d = ln +1 +Arcan+C + 1 Arcan + C D après la quesion I/, lim ϕ = e donc, d après la quesion I51/, = + + C Par suie, C = >, ϕ = ln 1 ln + 1 Arcan + = ln 1 1 ln Arcan >, ϕ = 1 cos e d = ln 1 1 ln Arcan puis pour I54/ Puisque la foncion ϕ es coninue en, quand end vers on obien ϕ = ϕ = 1 cos d = Parie II : Eude de l eisence de J m II1/ Éude de sin m d Soi m N La foncion sin m es coninue sur, hp ://wwwmahs-francefr 3 c Jean-Louis Rouge, 9 Tous drois réservés

4 De plus foncion sin m m 1 e on en dédui que la foncion sinm sin m es inégrable sur se prolonge par coninuié en puis que la, Ainsi, pour ou enier naurel non nul m, J m eise II/ Éude de J 1 Soien a e A deu réels els que < a < A Les deu foncions 1 cos e 1 son de classe C1 sur le segmen a, A On peu donc effecuer une inégraion par paries e on obien Or 1 cosa a a a 1 cos d = 1 cos A sin + d = 1 cosa 1 cosa sin + d a a a A a a / a = a 1 cosa e donc lim a a Quand a end vers e A end vers +, on obien convergene e que = D aure par, 1 cosa A e donc A lim sin + 1 cos d = 1 cosa A + A = d On a monré que J 1 es une inégrale J 1 = sin d = 1 cos d = ϕ = II3/ Éude de l eisence de I k + 1 Si k =, I k = d = + Soi k un enier relaif non nul Soi A > Une inégraion par paries fourni e ik e ik d = ik A + 1 ik e ika e ik d = 1 e ika ik A eik/ / + e ik Mainenan, e ika A = 1 e donc A lim 1 A + ik A eik/ = eik/ /,, + es dominée par 1 en + e donc es inégrable sur, + Finalemen, d eik Ensuie, la foncion ik/ En pariculier, lim A + e ik lim d eise dans C ou encore I k es une inégrale convergene A + I k es une inégrale convergene si e seulemen si k Z es coninue sur e ik d eise dans C II4/ Éude de la naure de J m II41/ Soien m N e, + sin m d = 1 i m = 1 m i m = 1 i m k= m k= e i e i m d m e ik e im k k m I k m k d II4/ Soi p N k, p + 1, k p + 1 e donc chaque inégrale I k p+1 es une inégrale convergene sin p+1 sin p+1 d après la quesion II3/ Il en es de même de l inégrale d D aure par, d es une sin p+1 inégrale convergene d après la quesion II1/ Finalemen J p+1 = d es une inégrale convergene p N, l inégrale J p+1 eise hp ://wwwmahs-francefr 4 c Jean-Louis Rouge, 9 Tous drois réservés

5 p m II43/ Soi p N Dans la somme I k p, un e un seul erme diverge quand end vers +, le erme k k= obenu pour k = p La somme es donc divergene quand end vers + On en dédui que l inégrale J p diverge De sin p plus, comme la foncion es posiive, J p = + p N, J p = + III1/ Un développemen de Fourier Parie III : Calcul de J p+1 III11/ Soi R \ Z La foncion h es -périodique, coninue par morceau sur R On peu donc calculer ses coefficiens de Fourier Pour,, h = cos = cos = h De plus, h = h par -périodicié Toujours par -périodicié, la foncion h es paire On en dédui que n N, b n h = e que a n h = h cosn d = = 1 sin + n sin + + n = sin + n + n + sin n n cos cosn d = 1 n n = 1n sin n car / Z n N, a n h = 1n sin n e n N, b n h cos + n + cos n d III1/ Monrons que la foncion h es coninue sur R h es déjà coninue sur chaque + k, + k, k Z De plus, h + = h = h = h e donc h es coninue en puis sur R par -périodicié Ainsi, la foncion h es -périodique, coninue sur R, de classe C 1 par morceau D après le héorème de Dirichle, la série de Fourier de h converge vers h sur R En pariculier, pour =, 1 = h = a h + En pariculier, la série considérée converge a n h cosn + b n h sinn = sin + + R \ Z, sin n sin n = 1 1 n sin n III/ Eude d un procédé de calcul III1/ La foncion f es coninue sur le segmen 1, 1 e donc es bornée sur 1, 1 Soi M un majoran de l a foncion f sur 1, 1 Soi n N γ n que +n f sin +n 1 d M 1 = + n 1 lim γ n = n + M n 1 Comme lim n + M =, on a monré n 1 III/ Soi n N En posan = n, on obien γ n = f sin + n + n d = 1 n f sin + n d car f es impaire hp ://wwwmahs-francefr 5 c Jean-Louis Rouge, 9 Tous drois réservés

6 En posan y =, on a aussi Par suie, γ n = 1 n f sin y y + n dy = 1n f siny y n dy car f es impaire γ n = 1 γ n + γ n = 1 = 1 n f sin n 1 n f sin + n d + 1 n f sin n d car la foncion 1n f sin n d = es paire 1 n f sin n d n N, γ n = u n III3/ Si, n sin, la série de erme général 1 n converge d après la quesion III1/ Il en es de même de la série de erme général u n D aure par, la série de erme général u n = converge Finalemen, pour ou réel,, la série de erme général u n converge,, n < e en pariculier, n Donc chaque foncion III4/ Pour n N e u n es coninue sur, en an que quoien de foncions coninues sur sur, Monrons que la série de foncions de erme général u n converge normalemen sur majoran de la foncion f sur 1, 1 Soi n N Pour ou,, u n = fsin n M n 4, don le dénominaeur ne s annule pas, M désigne oujours un Comme la série numérique de erme général M converge, on a monré que la série de foncions de erme général u n converge normalemen e donc uniformémen sur, n 4 Mais alors, S es coninue sur, en an que limie uniforme sur, d une suie de foncions coninues sur, S es coninue sur, III5/ Puisque la foncion S es coninue sur le segmen,, l inégrale S d eise Puisque la série de foncions de erme général u n converge uniformémen sur le segmen,, un héorème d inégraion erme à erme perme d affirmer que la série de erme général γ n = u n d converge e que S d = III6/ Soien A + puis n A le plus grand des eniers k els que + k A c es-à-dire n A = E γ n A N Or fsin d = n A k=1 +k fsin +k 1 fsin d + d = +n A n A k=1 fsin γ k + d +n +n A fsin d +n A fsin d A + n A M + n A M = M + n A n A + 1 M A = M A 1 hp ://wwwmahs-francefr 6 c Jean-Louis Rouge, 9 Tous drois réservés

7 Puisque lim A + M =, on en dédui que A 1 lim fsin d = Comme A + +n A A vers + dans l égalié, on obien la convergence de l inégrale converge d après la quesion III5/ e f sin lim n A = +, en faisan endre A + d car la série de erme général γ k f sin d = γ n = S d III7/ Puisque f es dérivable en e impaire, on a fu = f + f u + ou = f u + ou e donc fsin = u f sin +osin = f +o On en dédui que les deu foncions g : fsin fsin e h : se prolongen sin par coninuié en en posan respecivemen g = f e h = f Les foncions g e h éan d aure par coninues sur,, ces foncions son inégrables sur, fsin fsin En pariculier, les inégrales d e d son des sin inégrales convergenes III8/ D après les quesions III6/ e III7/, l inégrale fsin d fsin sin d = = Pour, 1, posons Σ = fsin 1 sin Quand end vers, 1 1 sin = sin 3 /6 sin S es coninue sur, 1 fsin fsin + S d après la quesion II4/, lim donc par coninuié en en posan Σ = fsin En résumé, d La foncion Σ es coninue sur fsin sin, d = 1 sin 1 1 sin fsin = Par suie, lim 6 Σ d où d es convergene De plus, fsin d + + S d d d après la quesion III6/ 1 1 = D aure par, puisque la foncion sin S = S puis lim Σ = S = La foncion Σ se prolonge,, Σ = 1 fsin 1 + S si, sin si = Plus précisémen, d après la quesion III1/,,, sin + fsin des deu membres par, sin, fsin, + fsin sin + 1 n sin n = 1 e donc après muliplicaion puis, fsin, Σ = fsin fsin n = sin fsin n = Ceci rese vrai pour = par coninuié de Σ en Finalemen, fsin d = fsin sin d III3/ Applicaion au calcul de J p+1 III31/ On applique les résulas précédens à la foncion f = Id / 1,1 f es bien définie e coninue sur 1, 1 à valeurs fsin + sin fsin réelles, impaire e dérivable en Avec ce choi de f, d = d = J 1 e d = d = sin D après la quesion III8/, on a J 1 = hp ://wwwmahs-francefr 7 c Jean-Louis Rouge, 9 Tous drois réservés

8 III3/ On applique cee fois-ci les résulas précédens à la foncion f définie par 1, 1, f = 3 f es bien définie e coninue sur 1, 1 à valeurs réelles, impaire e dérivable en fsin d = sin 3 d = J 3 e d aure par, On en dédui que fsin sin d = sin d = 1 1 cos d = 4 J 1 = 4 III33/ Soi p N On applique mainenan les résulas précédens à la foncion f définie par 1, 1, f = p+1 f es bien définie e coninue sur 1, 1 à valeurs réelles, impaire e dérivable en Toujours d après la quesion II8/, on a J p+1 = fsin d = fsin sin d = sin p d inégrales de Wallis Pour p N, posons I p = sin p d On a I = puis pour p N, une inégraion par paries fourni e donc I p+1 = = p + 1 sin sin p+1 d = cossin p+1 + p sin sin p d = p + 1I p I p+1, p N, I p+1 = p + 1 p + I p cos sin p d On en dédui que pour p N, I p = p 1 p ce qui rese vrai pour p = p 3 p 1 I p p 1 1 = p p = p! p p!, N, J p+1 = p! p p! hp ://wwwmahs-francefr 8 c Jean-Louis Rouge, 9 Tous drois réservés

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

CCP PSI 1 un corrigé.

CCP PSI 1 un corrigé. CCP PSI n corrigé. I. Qelqes eemples de calcls de longers I.. Si f : [, ], le graphe de f es le segmen d origine (, ) e d eremié (, ) e sa longer es. C es cohéren avec I.. On a ici + sh () d = d = ch()

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

PARTIE I - Exemple 1

PARTIE I - Exemple 1 PRELIMINAIRES ² On noera qu'il es di dans la roisiµeme parie que N (f ) N (f ), ce qui donne un conr^ole (rµes pariel) des calculs des deux premiµeres paries. ² Dans ou le problµeme je noe Á les foncions

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Intégrales paramétrées

Intégrales paramétrées Lycée Faidherbe, Lille PC* 8 9 Feuille d eercices du chapire Inégrales paramérées Cenrale PC 7 ) ln + n Limie de n + ) d. X 6 Soi f coninue e bornée de [; [ vers. Prouver l eisence nf ) de I n = d e calculer

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

INTÉGRALES DÉPENDANT DE

INTÉGRALES DÉPENDANT DE 7 décembre 8 7 décembre 8 INTÉGRALES DÉPENDANT DE PARAMÈTRES Table des maières JPB 7 décembre 8 I Rappels e noaions Noaions 3 Rappels 3. Sur les foncions d une variable................. 3 II Inerversion

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1 SESSION CONCOURS COMMUN POLYTECHNIQUE (ENSI FILIERE MP MTHEMTIQUES. Pour n, on pose n = Pr suie, n+ n n EXERCICE n. L suie ( n n e pour n, n =. D près l règle de d lember, R =. n R =. n+ n = n (n +.. Soi

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x).

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x). Eercices : Brbr Tumpch Relecure : Frnçois Lescure Eo7 Inégrles générlisées e héorie de l mesure Rppel Définiion. Soi f : (,b R une foncion Riemnn-inégrble sur ou segmen [α,β] (,b (on dme les cs où = e/ou

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Le théorème des nombres premiers

Le théorème des nombres premiers Le héorème des nombres premiers A Inroducion On sai depuis Euclide que l'ensemble des nombres premiers es inni. En effe, si p es premier, le plus pei diviseur premier de + p! dépasse p. La répariion des

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

I Préliminaires, définition de la transformation L

I Préliminaires, définition de la transformation L SESSION Concours commun Cenrle MATHÉMATIQUES. FILIERE PSI I Préliminires, définiion de l rnsformion L I.A - Soi R. On si que si l foncion fe λ es inégrble sur R + lors l inégrle converge. Donc E E. fe

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I : le polylogarithme

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I : le polylogarithme SESSION CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PC MATHEMATIQUES Partie I : le polylogarithme I-.. Soit α R. Pour n N, posons a n = n α. Alors, pour tout n N, a n α puis D après la règle de d Alembert,

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1 -- 3 J.F.C. IG p. INTEGRATION SUR UN INTERVALLE QUELCONQUE P menionne des résuls priculièremen uiles e souven oubliés dns l priques des inégrles sur un inervlle quelconque... menionne des erreurs à ne

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Etude de fonctions définies par une intégrale

Etude de fonctions définies par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Eude de foncions définies par une inégrale Eercice [ 53 ] [correcion] Soi f : d + 3 + 3 a) Monrer que f es définie sur R +. b) A l aide du changemen

Plus en détail

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/??

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/?? PCSI-PCSI DNSn 4 Corrigé 4-5 Eercice ENTRAINEMENT PERSONNEL R R Déerminer les soluions y: de chacune des équaions différenielles suivanes : y(). y +y +y=++e Soluion. (E c ): r +r+=, soluions complees,

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

d'espace et eet régularisant.

d'espace et eet régularisant. Lois de conservaion scalaires : éude de soluions pariculières en dimension 1 d'espace e ee régularisan. ************** Mémoire de mahémaiques de Pierre Caselli, sous la direcion de Séphane Junca **************

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier Chapire : Transormaion de ourier UNIVERSITE DE TULN IUT DE TULN DEPARTEMENT GEII Cours de Mahémaiques Chapire : Transormaion de ourier Enseignane : Sylvia Le Beux sylvia.lebeux@univ-ln.r Bureau A04-04

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

Université en Ligne Mathématiques Annette Decomps Université Pierre et Marie Curie. Intégrales impropres

Université en Ligne Mathématiques Annette Decomps Université Pierre et Marie Curie. Intégrales impropres Universié en Ligne Mhémiques Annee Decomps Universié Pierre e Mrie Curie Inégrles impropres. Définiions e héorèmes généru.. Générliés.2. Eemples.3. Définiions.4. Crière de Cuchy pour les inégrles impropres.5.

Plus en détail

TD 13 : Intégrales dépendant d un paramètre

TD 13 : Intégrales dépendant d un paramètre TD 3 : Inégrals dépndan d un paramèr Éuds d foncions Exrcic Enraînmn Oral Pis mins, PC, 5. On défini f x = a Dérminr l domain d définiion d f. b Éudir la régularié d f. c Qull s la limi d f x lorsqu x

Plus en détail

Intégrales généralisées ou impropres

Intégrales généralisées ou impropres ECS, Eercices chapire 7 Ocobre Inégrales généralisées ou impropres Convergence e calculs Voici oue une série d eercices avec des inégrales généralisées.. Il fau repérer les poins qui posen problème avec

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2011/2012

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2011/2012 Mser Méiers de l Enseignemen, Mhémiques - ULCO, L Mi-Voi, / ANALYSE Fiche de Mhémiques 8 - Inégrles générlisées. Dns ce chpie, on rie deu problèmes disincs, mis qui se posen souven simulnémen : celui des

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I SESSION 009 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PC MTHEMTIQUES I.1. Soit z C. I.1.1. x R, exp zx infini. Partie I 1 n z n x n et exp x 1 n n! n n! xn. Ces deux séries ont un rayon de convergence

Plus en détail

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI ÉLÉMENTS DE CORRECTION CCP TSI MATHS Concours Communs Polytechniques Épreuve de Mathématiques n TSI. a) On a f ) + Eercice donc f ) + +. b) L application f est dérivable et même de classe C ) sur R comme

Plus en détail

Chapitre 2 Les outils mathématiques pour le traitement du signal

Chapitre 2 Les outils mathématiques pour le traitement du signal Chapire Les ouils mahémaiques pour le raiemen du signal 1. specre des signau sinusoïdau: Les signau sinusoïdau (ou harmoniques) son des signau périodiques rès imporans. Ce son les signau de la orme : ()

Plus en détail

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Concours d'admission sur classes préparaoires MATHEMATIQUES Opion économique 5 mai 5 de 8h à h La présenaion, la lisibilié, l'orhographe, la qualié de la rédacion,

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

2 Intégrales impropres

2 Intégrales impropres COURS L, -. SUITES, SÉRIES, INTÉGRALES IMPROPRES Inégrles impropres. Générliés Soi R[, b] l ensemble des foncions inégrbles (u sens de Riemnn) sur l inervl compc (=segmen) [, b]. Pr définiion, ces foncions

Plus en détail

CONCOURDS D ADMISSION 2000 MATHÉMATIQUES. DEUXIÈME ÉPREUVE FILIÈRE PC (Durée de l épreuve : 3 heures)

CONCOURDS D ADMISSION 2000 MATHÉMATIQUES. DEUXIÈME ÉPREUVE FILIÈRE PC (Durée de l épreuve : 3 heures) 00 MATH. II - PC ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables Foncions inégrables Exercice 1 - Foncion riangle - Troisième année - Sans déailler les calculs, e en faisan noammen une inégraion par paries, on a : De même, on rouve 1 1 (1 + x)e 2iπξx dx = i 2πξ + 1

Plus en détail

Un exemple de non-dérivabilité en géométrie du triangle

Un exemple de non-dérivabilité en géométrie du triangle Un exemple de non-dérivabilié en géomérie du riangle Jacques Dixmier, Jean-Pierre Kahane e Jean-Louis Nicolas 5 juin 007 Absrac. Le T be a riangle in a Euclidean plane. If ft denoes he riangle whose verices

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

1. Préliminaires. dt = cos(t) ] x x. cos(t)/t 2 dt R. Par conséquent +

1. Préliminaires. dt = cos(t) ] x x. cos(t)/t 2 dt R. Par conséquent + AGRÉGATION INTERNE DE MATHÉMATIQUES L INTÉGRALE DE DIRICHLET sin( d. PATRICE LASSÈRE Résumé. Afin de bien réviser l inégraion e plus précisémen les inégrales à paraméres, amusons nous avec plusieurs méhodes

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

Le problème de Cauchy. Résultats fondamentaux.

Le problème de Cauchy. Résultats fondamentaux. Le problème de Cauchy. Résulas fondamenaux. 1. Noion de soluion maximale. Problème de Cauchy. 1.1 Forme normale d une équaion différenielle y = f(x,y). On éudie ici les équaions différenielles (ou sysèmes

Plus en détail

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia

Plus en détail

Le classement des nombres réels

Le classement des nombres réels UNITÉ 1 : DES NOMBRES RÉELS Le classemen des nombres réels naurels N 0,1,2,3,4,5,6,7... eniersrelaifs Z naurelsnégaifs 1, 2, 3... 3 raionnelsq décimaux 3.25, 0.06,,4.25, 2.7, 10.35... 2 réels R 1 complexesc

Plus en détail

Solutions entropiques des lois de conservation scalaires unidimensionnelles

Solutions entropiques des lois de conservation scalaires unidimensionnelles Soluions enropiques des lois de conservaion scalaires unidimensionnelles Version corrigée du 3 décembre 2008 Nicolas BONNOTTE Amaury FRESLON Suje proposé par Olivier GLASS Mémoire de maîrise 2008 Première

Plus en détail

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé Concours Mines-Pons PC/PSI - Suje - Corrigé Cee correcion a éé rédigée par Frédéric Bayar e es disponible à l adresse suivane : hp://mahweb.free.fr Si vous avez des remarques à faire, ou pour signaler

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Travaux dirigés - L3 DIM Traitement Numérique du Signal

Travaux dirigés - L3 DIM Traitement Numérique du Signal Faculé des sciences e d ingénierie. Universié Paul Sabaier Travaux dirigés - L3 DIM Traiemen Numérique du Signal Exercice n o : Soi le signal x)=3 cos00 Π ). Calculez la valeur des échanillons de x) si

Plus en détail

Intégrales impropres. 1. Définitions et premières propriétés Points incertains

Intégrales impropres. 1. Définitions et premières propriétés Points incertains Inégrles impropres Vidéo prie. Définiions e premières propriéés Vidéo prie. Foncions posiives Vidéo prie 3. Foncions oscillnes Vidéo prie 4. Inégrles impropres sur un inervlle borné Vidéo prie 5. Inégrion

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES PC Dae de créaion 006 Cours, Exercices, Aueur (s) de la ressource pédagogique : FACK Hélène [FACK Hélène], [04], INSA de Lyon, ous drois réservés. Sommaire EQUATIONS DIFFERENTIELLES

Plus en détail

Exercices : Série 1 Corrigés

Exercices : Série 1 Corrigés Exercices : Série 1 Corrigés 1 Durée nécessaire pour doubler le PIB par habian Déniions : y 0 : PIB par ravailleur au débu y T : PIB par ravailleur après T années g : aux de croissance [%] r : aux de croissance

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours.

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours. Exercices ou premières questions d exercices posés à l oral des concours Exercice ENSEA-ENSAM [ Montrer que α, π ], cos 4 α) + sin 4 α) = 2 2 sin2 2α) puis que si a, b) R+) 2 alors a 2 cos 2 α) + b 2 sin

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque [hp://mp.cpgedupuydelome.fr] édié le ocobre 5 Enoncés Inégrion sur un inervlle quelconque Inégrbilié Eercice [ 657 ] [Correcion] Éudier l eisence des inégrles suivnes : Eercice 5 [ 66 ] [Correcion] Monrer

Plus en détail

Corrigé de Banque PT 2015 Épreuve C

Corrigé de Banque PT 2015 Épreuve C Lycée Laeiia Boapare Spé PT Corrigé de Baque PT 5 Épreuve C Parie I Les focios f e g so maifeseme paires, il suffi doc de les éudier sur R + pour coaîre leurs propriéés sur R a) O a, pour ou réel x, f

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Notes de cours sur l évaluation d impact No. 4 : Variables instrumentales dans le contexte de l approche de Heckman

Notes de cours sur l évaluation d impact No. 4 : Variables instrumentales dans le contexte de l approche de Heckman Noes de cours sur l évaluaion d impac No. 4 : Variables insrumenales dans le conexe de l approce de Heckman Jean-Louis Arcand CERDI-CNRS, Universié d Auvergne e European Union Developmen Nework (EUDN)

Plus en détail

Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS. Fonctions de plusieurs variables

Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS. Fonctions de plusieurs variables Universié Paris 7 Denis Didero Année 2005/2006 Licence 2 MIAS MI4 1 Noions de dérivée 1.1 Prologue Foncions de plusieurs variables Avan d expliquer les noions de dérivées pour les foncions de plusieurs

Plus en détail

Les solutions de viscosité des Équations de Hamilton-Jacobi

Les solutions de viscosité des Équations de Hamilton-Jacobi Quenin Pei Les soluions de viscosié des Équaions de Hamilon-Jacobi Mémoire d'iniiaion à la recherche Sous la direcion de Madame Daniela Tonon 05/07/2015 Cycle pluridisciplinaire d'éudes supérieures Troisième

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail