EPREUVE DE MATHEMATIQUES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "EPREUVE DE MATHEMATIQUES"

Transcription

1 Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul et du formulare offcel de mathématques est autorsé. La clarté du rasoemet et la qualté de la rédacto tervedrot pour ue part mportate das l apprécato des copes. Dès que le sujet vous est rems, assurez-vous qu l sot complet. Le sujet comporte 5 pages umérotées de 1/5 à 5/5 dot ue aexe à redre avec la cope (umérotée 5/5) Le formulare offcel de mathématques est jot au sujet. Il compred pages umérotées 1 et. BTS CG - Lycée Jacques Feyder /5

2 Exercce 1 (11 pots) O cosdère u produt dot le prx utare, exprmé e euros, est oté x. La demade f ( x) est la quatté de ce produt, exprmée e cetaes d utés, que les cosommateurs sot prêts à acheter au prx utare de x euros. L offre g( x ) est la quatté de ce produt, exprmée e cetaes d utés, que les producteurs sot prêts à vedre au prx utare de x euros. O appelle prx d équlbre de ce produt le prx pour lequel l offre et la demade sot égales. L objet de cet exercce est de détermer u prx d équlbre. Les deux partes de cet exercce peuvet être tratées de faço dépedate. Parte I : Etude statstque Pour cette parte, o utlsera les foctos de la calculatrce. Le détal des calculs est pas demadé. Ue étude statstque a perms de relever les résultats suvats, où x représete le prx de vete utare e euros et y la quatté demadée, e cetaes d utés, de ce produt. Prx utare e euros : x 1,1 1,5 1,4,45 3 Quatté e cetaes : y 9,75 8,50 4,50 3,00,60,50 Le pla est rapporté à u repère orthogoal ( O ;, j) d utés graphques : 5 cm pour 1 euros e abscsses et 1 cm pour 1 cetae d utés e ordoées. Le uage de pots x; y est représeté sur la feulle aexe. Vu la dsposto des pots, o e cherche pas à remplacer ce uage par ue drote, c est-à-dre réalser u ajustemet affe. O effectue le chagemet de varable Y = l y, où l désge la focto logarthme épére. M de coordoées ( ) 1) Compléter le tableau de valeurs doé sur la feulle aexe, sous le uage de pots ; les valeurs de Y serot arrodes à 10 près. ) Doer le coeffcet de corrélato léare r de la sére statstque ( x ; Y ) décmale approchée à 10 près par défaut. Le résultat trouvé permet d evsager u ajustemet affe.. O e doera la valeur 3) Doer, par la méthode des modres carrés, ue équato de la drote de régresso de Y e x sous la forme Y = ax + b ; o doera la valeur approchée de a à 10 près par défaut ; b sera arrod à l eter le plus proche. 4) E dédure ue estmato de la quatté y, e cetaes d utés, e focto du prx utare x, sous la forme y= ke λx où k et λ sot des costates ; k sera arrod à l eter le plus proche. 5) E dédure la quatté que l o peut estmer pour u prx utare de,90 euros. O doera la valeur arrode à ue uté près. BTS CG - Lycée Jacques Feyder /5

3 Parte II : Recherche du prx d équlbre Das cette parte, o cosdère que la demade, exprmée e cetaes d utés, pour u prx utare de x euros est 1;3 par : f ( x ), où f est la focto défe que l tervalle [ ] 0,7 x f ( x) = 0e. De même, l offre, exprmée e cetaes d utés, pour u prx utare de x euros est g( x ), où g est la focto défe sur l tervalle [ 1;3 ] par : ( ) 0,15x,35 g x = +. 1) O désge par f ( x) la focto dérvée de f. a) Calculer f ( x). E dédure le ses de varato de la focto f sur l tervalle [ ] b) Sur le graphque doé e aexe, tracer les représetatos graphques C et des foctos f et g. c) Détermer graphquemet, e fasat apparaître les tracés utles, ue valeur approchée, arrode à 1 10 près, de l abscsse au pot d tersecto de C et. 1;3. ) Sot la focto h défe sur l tervalle [ 1;3 ] par h( x) f ( x) g( x) =. a) Etuder le ses de varato de la focto h sur l tervalle [ 1;3 ]. b) E dédure, e justfat, que l équato h( x ) = 0 admet das l tervalle [ 1;3 ] ue soluto uque, otée α, dot o doera la valeur décmale approchée à 10 près par défaut. Vérfer que cette valeur est compatble avec la valeur lue sur le graphque au 1) c). c) Doer, à 10 près, le prx d équlbre e euros, c est-à-dre le prx pour lequel l offre et la demade sot égales. Calculer l offre correspodat au prx d équlbre. BTS CG - Lycée Jacques Feyder /5

4 Exercce (9 pots) A) Etude d ue sute O cosdère ue sute ( u ) défe par u = et pour tout eter aturel, u = + 1 0,6u ) Calculer u 1 et u. ) O cosdère la sute ( ) v défe pour tout eter aturel par v = u 500. a) E exprmat v + 1 e focto de u + 1, pus v + 1 e focto de u, ef v + 1 e focto de v, démotrer que ( v ) est ue sute géométrque de raso 0,6 dot o doera le premer terme. b) Exprmer v e focto de. E dédure que u = 400 0, c) Détermer la lmte de la sute ( u ). B) Applcato écoomque L aée de rag zéro, la socété A détet 90 % du marché des télécommucatos das u pays et la socété B, qu vet de se lacer, 10 %. O estme que, chaque aée, 0 % de la cletèle de A chage pour B, et de même 0 % de la cletèle de B chage pour A. O cosdère ue populato représetatve de clets de l aée de rag zéro. As, 900 sot clets de la socété A et 100 sot clets de la socété B. O veut étuder l évoluto de cette populato les aées suvates. 1) a) Vérfer que la socété A compte 740 clets l aée de rag 1. Calculer le ombre de clets de A l aée de rag. b) O ote a le ombre de clets de A de l aée de rag. Etablr que a a ( a ) = 1 0, , E dédure que a = 1 0,6 a ) E utlsat le résultat de la parte A, que peut-o prévor l évoluto du marché des télécommucatos das ce pays? BTS CG - Lycée Jacques Feyder /5

5 ANNEXE (A RENDRE AVEC LA COPIE) Représetato graphque du uage de pots de l exercce 1 Exercce 1 Parte I : 1) Compléter le tableau de valeurs c-dessous ; les valeurs de Y serot arrodes à 10 près. x 1,1 1,5 1,4,45 3 Y = l y,8,14 BTS CG - Lycée Jacques Feyder /5

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

BACCALAURÉAT GÉNÉRAL BLANC MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL BLANC MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL BLANC SESSION 06 MATHÉMATIQUES Sére STL Durée de l épreuve : 4 heures Coeffcet : 4 ENSEIGNEMENT OBLIGATOIRE Les calculatrces électroques de poche sot autorsées, coformémet à la réglemetato

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

Statistique à 2 variables

Statistique à 2 variables Statstque à varables. Exemples Nous sommes souvet cofrotés à des doées etre lesquelles ous essayos d'établr des les telles que : La talle et le pods d'u groupe d'dvdus. le budget vacaces et les reveus

Plus en détail

AVRIL 2007 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2007 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 007 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voe B Opto Écoome MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I Durée : heures Coeffcent : 2 ÉPREUVE OBLIGATOIRE Le (la) canddat (e) dot trater tous les eercces. La qualté de la rédacton, la clarté et la

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optons : - Développeur d applcatons - Admnstrateur de réseaux locaux d entreprse SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures coeffcent

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

(respectivement M n,1 ( )) l espace vectoriel réel

(respectivement M n,1 ( )) l espace vectoriel réel Les calculatrces sot autorsées **** NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto S u caddat est ameé à reérer ce qu eut lu sembler être ue erreur d'éocé,

Plus en détail

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1:

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1: LSMarsa Elradh 1) Esemble des ombres complexes : Actvté 1: Résoudre das IN pus das Z l équato 5+x=1 ; résoudre das Z pus das Q l équato 3x=2 ; résoudre das Q pus das IR l équato : x²=2 Résoudre das IR

Plus en détail

N O M B R E S C O M P L E X E S.

N O M B R E S C O M P L E X E S. T le S 00/005 Ch9 Nombres complexes J TAUZIEDE N O M B R E S C O M P L E X E S I- L ENSEMBLE C DES NOMBRES COMPLEXES Ecrture algébrque des ombres complexes Comme o a motré l suffsace de l esemble Q par

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Chapitre 6 Statistiques Classe :4 SC-EXP

Chapitre 6 Statistiques Classe :4 SC-EXP L-P-Bourguba de Tuns Prof :Ben jedda chokr Chaptre 6 Statstques Classe :4 SC-EXP EXERCICES EXERCICE 1 : Le tableau c-dessous ndque le taux de départ en vacances de la populaton d un pays de 1965 à 1993

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

RÉUSSIR L ÉPREUVE DE MATHÉMATIQUES. Baccalauréat 2015

RÉUSSIR L ÉPREUVE DE MATHÉMATIQUES. Baccalauréat 2015 RÉSSIR L ÉPREVE DE MATHÉMATIQES Baccalauréat Fare retrer l école das l ère du umérque Le mot caddat fat référece au deu sees Mascul et Fém Réussr l épreuve de mathématques au baccalauréat. - Durée et coeffcet

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécaltés : Mercatque, Comptablté et Fnance d Entreprse, Geston des systèmes d nformaton. SESSION 2013 ÉPREUVE DE MATHÉMATIQUES Mercatque, comptablté et fnance d entreprse

Plus en détail

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 202 BACCALAURÉAT TECHNOLOGIQUE Scieces et Techologies de la Gestio Commuicatio et Gestio des Ressources Humaies MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficiet : 2 Dès que le sujet lui est

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur section DUT Maths S2.

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur  section DUT Maths S2. Départemet TECHNIQUES DE COMMERCIALISATION MATHEMATIQUES Semestre 2 Statstques à deux varables COURS Cours e lge : sur http://jff-dut-tc.weebly.com secto DUT Maths S2. IUT de Sat-Etee Départemet TC J.F.Ferrars

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz Olympades Natoales de Mathématques 07 Sélectos régoales er tour Nveau 7C 05 févrer 07 Durée 3 h Exercce (4 pots) ) Vérfer que, pour tous réels x, y, z o a : (x y z) x y z xy xz yz. Soluto ) La somme des

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable Statstque descrptve à ue varable LES SAVOIRS La statstque est ue méthode scetfque qu recuelle, ordoe, aalyse et terprète des doées umérques. Pour ue melleure lsblté, ces doées sot représetées graphquemet.

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

est minimale pour 1 a = et b = 0.

est minimale pour 1 a = et b = 0. EXERCICE. On consdère la sére chronologque suvante : x 3 4 5 0 5 33 4 5 0 Pour chacune des deux affrmatons suvantes, dre s elle est vrae ou s elle est fausse en justfant la réponse fourne. a. Le pont moen

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k Algèbre Chaptre 6 Les matrces carrées Hypothèses : est u eter strctemet postf I est la -matrce uté I La trace d ue matrce carrée La trace d ue -matrce est la somme de ses termes dagoaux O ote la trace

Plus en détail

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères Documet dispoible à http://www.uiv-motp3.fr/miap/es/aes/l1/optiomath. AES optio mathématique Aée 2004 2005 Notes de cours : ajustemet liéaire 1 Cadre : mesure cojoite de deux caractères O se place das

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

DEVOIR EN TEMPS LIBRE A RENDRE LE 17 /02/11 ECS 2

DEVOIR EN TEMPS LIBRE A RENDRE LE 17 /02/11 ECS 2 DEVOIR EN TEPS LIBRE A RENDRE LE 7 /0/ ECS EX : : Le but de ce poblème (dot les tos pates sot dépedates) est l'étude du temps passé das ue mae pa u usage quad u ou pluseus guchets sot à la dsposto du publc,

Plus en détail

Chapitre : Équilibre général de Walras

Chapitre : Équilibre général de Walras Écoome et maagemet Lcece Mcroécoome 3 Aée 04-05 Chaptre : Équbre gééra de Waras Robert Jorda Agets de 'écoome : aucue fuece dvdueemet Système de prx : permettat de réaser des échages Codusat à u état réasabe

Plus en détail

1- z 2. e ) sous la forme e i. i 3

1- z 2. e ) sous la forme e i. i 3 SERIE DE MATHEMATIQUES CLASSE : IEME SCIENCES EXPERIMENTALES THEME : NOMBRES COMPLEXES LYCEE D INDEPENDANCE OUED ELLIL ANNEE SCOLAIRE :0-0 Prof : bllassoud mohamd EXERCICE Mttr sous form algébrqus ls ombrs

Plus en détail

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 ORRTION U B 7 Trmal S mérqu du Nord rcc Sot (P l pla dot u équato st : + y z + = lors, d coordoés ( ; ;, st u vctur ormal d (P omm H st l projté orthogoal d sur (P, alors H t sot coléars Il st H = k H

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Préparation à l'agrégation Interne, année ( )

Préparation à l'agrégation Interne, année ( ) Préarato à l'agrégato Itere, aée 6-7 fdure-m@waadoofr (4 75 6 87 9) Ce roblème exlore le thème arch-classue des olyômes de Tchebychev La arte I établt leur exstece et doe leurs toutes remères rorétés La

Plus en détail

N B : les exercices sont extraits des bacs internationaux

N B : les exercices sont extraits des bacs internationaux SERIE DE MTHEMTIQUES N CLSSE :QUTRIEME SECONDIRE SECTION : SCIENCES EXPERIMENTLES THEME : NOMRES COMPLEXES LYCEE D INDEPENDNCE OUED ELLIL NNEE SCOLIRE :009-00 Prof : ellssoued mohmed Exercce QCM N : les

Plus en détail

VI. Statistique descriptive.

VI. Statistique descriptive. VI. Statstque descrptve. 1. Avat - propos : le sge sommatore. Soet x 1, x,...x : réels x 1 + x +...+ x = x Remarquos : Proprétés. 1 x = x j j1 1. x = x + x 1 p 1. kx = k x 1 1 p1 3. ( x y ) = x + y 1 Exercces.

Plus en détail

MAT4081 Chapitre 3 Régression 3 Transformation de variables

MAT4081 Chapitre 3 Régression 3 Transformation de variables MAT408 Chaptre 3 Régresso 3 Trasformato de varables Les graphques ou les techques dagostques peuvet révéler des volatos des hypothèses de la régresso léare : hétéroscédastcté, par exemple, ou absece de

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

XVII. Les nombres complexes.

XVII. Les nombres complexes. XVII. Les ombres complexes.. Itroducto Progressvemet, ous avos agrad les esembles de ombres e passat de N à Z pus à Q et ef à R. Ces agradssemets ot doé la possblté de résoudre de plus e plus d'équatos.

Plus en détail

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique Chaptre II : Applcato du secod prcpe à l étude de la réacto chmque ; Potetel chmque Pla : ********************** I- Eocé du secod prcpe de la thermodyamque... 2 1- Eocé du secod Prcpe de la hermodyamque...

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail