Rappels sur les tableaux et l algorithme du simplexe

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Rappels sur les tableaux et l algorithme du simplexe"

Transcription

1 Rappels sur les tableaux et l algorithme du simplexe À tout tableau est associée non seulement une base du problème initial (primal) mais également une base du problème dual. Les valeurs des variables basiques primales se lisent dans la dernière colonne du tableau. Les valeurs de la solution basique duale se lisent dans la dernière ligne du tableau. Les variables de décision du dual sont associées aux variables d écart du primal. Réciproquement, les variables d écart du dual sont associées aux variables de décision du primal. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 125

2 Les solutions basiques primale et duale associées à un tableau ont même valeur et vérifient les écarts complémentaires. Dans tous les tableaux visités par l algorithme du simplexe la solution basique primale est toujours admissible. L algorithme s arrête dès qu une solution basique duale admissible est atteinte, le tableau étant alors optimal. Le tableau optimal contient non seulement la solution (optimale) du problème initial mais également celle de son dual. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 126

3 L algorithme dual du simplexe (phase II) Considérons le PL canonique de tableau initial Max z = x 1 2x 2 s.c. 2x 1 + x 2 6 x 1 x 2 4 x 1, x 2 0 T 0 = T 0 n est pas (primal-)admissible mais est dual-admissible! J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 127

4 On peut donc chercher à résoudre le problème dual tout en travaillant dans le tableau primal. Dans T 0, la fonction objectif duale (à minimiser) s écrit w = yb. Il faut donc augmenter une variable de décision duale associée à un élément b i < 0 afin de diminuer w. Le seul candidat est b 2 = 4, la variable primale x 4 va donc quitter la base primale et la variable duale y 2 associée va entrer dans la base duale. Afin de conserver l admissibilité duale, le pivot doit être choisi dans une colonne r vérifiant γ r α 2r = max { γk α 2k α 2k < 0 Comme γ 1 /α 21 = 1 et γ 2 /α 22 = 2, il faut pivoter sur α 21 et faire entrer x 1 dans la base en lieu et place de x 4. }. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 128

5 T 0 = T 1 = y 3 y 4 y 1 y 2 Le tableau T 1 est toujours dual-admissible mais, maintenant, β 1 est négatif, x 3 va donc quitter la base primale et y 1 entrer dans la base duale. Le seul pivot négatif dans la première ligne est α 12 = 1. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 129

6 T 1 = T 2 = y 3 y 4 y 1 y 2 Le tableau T 2 est primal et dual admissible, il est donc optimal. La solution optimale primale est x 1 = x 2 = 2 (x 3 = x 4 = 0) et la solution optimale duale est y 1 = 1, y 2 = 3 (y 3 = y 4 = 0). On a évidemment z = w = 6. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 130

7 Tableau primal / Algo. dual x 1 x 2 x 3 x Tableau dual / Algo. primal y 1 y 2 y 3 y T T T y 3 y 4 y 1 y x 3 x 4 x 1 x 2 J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 131

8 Algorithme dual du simplexe (phase II) Données : Un tableau dual-admissible. Résultat : Un tableau optimal ou un certificat d absence de solutions admissibles. (1) Choix d une variable sortante : Choisir une ligne i avec β i < 0, la variable basique x j avec j = σ(i) quitte la base. S il n existe pas de variable sortante : STOP le tableau courant est optimal. (2) Choix d une variable entrante : Choisir une colonne hors base r maximisant les quotients caractéristiques duaux { r k N γ { }} k γj = max α ij < 0 α ik α ij S il n existe pas de variable entrante : STOP le dual est non borné et le primal sans solutions admissibles. (3) Mise à jour de la base et du tableau : Pivoter autour de α ir et retourner en (1). J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 132

9 Remarque. Si, pendant l application de l algorithme dual, un tableau non admissible est atteint pour lequel aucun pivot ne peut être trouvé, cela signifie que le problème dual est non borné et donc que le problème primal n admet pas de solution admissible. En effet, dans une telle situation, on a b i < 0 et α ij 0 j. Ceci correspond à la contrainte (impossible si x j 0 j) 0 α ij x j = b i < 0. Dual non borné x D x E z Sans solution admissible (primale) x D x E z J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 133

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Sujet 6: Dualité interpretations intuitives

Sujet 6: Dualité interpretations intuitives Sujet 6: Dualité interpretations intuitives MHT 423: Modélisation et optimisation Andrew J. Miller Dernière mise à jour: March 31, 2010 Dans ce sujet... 1 L analyse de sensibilité 2 1 L analyse de sensibilité

Plus en détail

La dualité en programmation linéaire

La dualité en programmation linéaire La dualité en programmation linéaire Motivation : recherche de bornes Dual d un problème canonique Règles de dualisation Théorèmes de dualité faible et forte Théorèmes des écarts complémentaires Interprétation

Plus en détail

Programmation Linéaire - Cours 4

Programmation Linéaire - Cours 4 Programmation Linéaire - Cours 4 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire Dualité 1 Dualité 2 3 Primal / Dual Dualité Les PL vont toujours par paires

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB)

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB) 3D Solutions optimales multiples 3D.1 Unicité de la solution optimale du modèle (FRB) Le modèle (FRB) admet une solution optimale unique. En effet (voir page 182), l'algorithme du simplexe se termine par

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m)

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m) Problème ( points) Un capital de 0 000 euros est placé à un taux d intérêts composés de 2%. La valeur récupérée à l issue du placement est 70,2 euros. Quelle est la durée de ce placement? Soit d la durée

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail

Problèmes de transport

Problèmes de transport Problèmes de transport formulation des problèmes d affectation Hugues Talbot Laboratoire A2SI 31 mars 2009 Problèmes de Transport Introduction Distribution Théorie Équilibrage Modélisation Plan Solution

Plus en détail

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts.

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts. Mathématique pour l informatique Examen durée : 3 heures. Université de Provence Licence Informatique Année 2001-2002 Exercice 1 (Simplexe : 10 points) On donne le problème de programmation linéaire (P)

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Problèmes de transport et transbordement

Problèmes de transport et transbordement Problèmes de transport et transbordement Résolution Hugues Talbot Laboratoire A2SI 9 avril 2009 Plan Introduction Introduction Solution des problèmes de transport Solution de base initiale Le simplexe

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Problème du flot à coût minimum

Problème du flot à coût minimum Problème du flot à coût minimum IFT1575 Modèles de recherche opérationnelle (RO). Optimisation de réseaux e. Flot à coût minimum On a un graphe orienté et connexe chaque arc (i,j), on associe une capacité

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Enfants Agiles. La méthode Agile appliquée à l éducation

Enfants Agiles. La méthode Agile appliquée à l éducation Enfants Agiles La méthode Agile appliquée à l éducation Isableue Blog Les Petits Loups - 2012 Qu est-ce que la méthode Agile? Il s agit d un ensemble de pratiques développées et perfectionnées depuis une

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Feuille 1 : Autour du problème SAT

Feuille 1 : Autour du problème SAT Master-2 d Informatique 2014 2015 Complexit Algorithmique Applique. Feuille 1 : Autour du problème SAT 1 Rappels sur SAT Énoncé du problème. Le problème SAT (ou le problème de Satisfaisabilité) est le

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

Les Cartes et leur Valeur

Les Cartes et leur Valeur RÈGLES CANASTA Règle du Jeu de la Canasta Canasta est le nom d une combinaison de 7 cartes qui donne son nom à cette variante de Rami. Le but du Jeu: Le gagnant est le joueur qui est le premier à atteindre

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Sujet 2 : Programmation linéaire: applications et propriétés

Sujet 2 : Programmation linéaire: applications et propriétés Sujet 2 : Programmation linéaire: applications et propriétés MHT 423 : Modèles et méthodes d optimisation Andrew J. Miller Dernière mise à jour: March 10, 2010 Dans ce sujet... 1 Application : problème

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Algorithmes probabilistes Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Mise en contexte: Indices: Vous êtes à la recherche d un trésor légendaire

Plus en détail

NOTE EXPLICATIVE SUR LA PROGRESSION ACCÉLÉRÉE DANS L ÉCHELLE SALARIALE (6-1.01)

NOTE EXPLICATIVE SUR LA PROGRESSION ACCÉLÉRÉE DANS L ÉCHELLE SALARIALE (6-1.01) Juin 2011 NOTE EXPLICATIVE SUR LA PROGRESSION ACCÉLÉRÉE DANS L ÉCHELLE SALARIALE (6-1.01) La est une nouvelle disposition figurant dans la convention collective 2010-2015 et permettant aux enseignantes

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Certiphyto : bien choisir en fonction de son activité.

Certiphyto : bien choisir en fonction de son activité. Certiphyto : bien choisir en fonction de son activité. Du DAPA au Certificat individuel Le DAPA est mort ou presque Depuis le 1 er janvier 2012, le renouvellement du DAPA n est plus possible. Le DAPA,

Plus en détail

Exemples de problèmes N P-complets

Exemples de problèmes N P-complets Exemples de problèmes N P-complets MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Exemples de problèmes NP-complets 1/22 Plan 1. Rappels essentiels 2. Problème SAT 3. Autres

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Plus courts et plus longs chemins

Plus courts et plus longs chemins Plus courts et plus longs chemins Complément au chapitre 8 «Une voiture nous attend» Soit I={1,2,,n} un ensemble de tâches à ordonnancer. La durée d exécution de chaque tâche i est connue et égale à p

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Année 2014-2015 Le Dobble Cellya Sirot en

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

TP - Modélisation et optimisation des systèmes complexes

TP - Modélisation et optimisation des systèmes complexes Master Informatique 1ere année (M1) Année 2010-2011 TP - Modélisation et optimisation des systèmes complexes Résolution du problème d'aectation généralisé par relaxation lagrangienne 1 Introduction Le

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

Exercices de Programmation Linéaire Modélisation

Exercices de Programmation Linéaire Modélisation Modélisation exercice 1 : On veut préparer 500 litres de punch à partir de cinq boissons A, B, C, D et E. Le punch doit comporter au moins 20% de jus d orange, 10% de jus de pamplemousse et 5% de jus de

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

K1 : Passages dans l application base- élèves 30/04/2007

K1 : Passages dans l application base- élèves 30/04/2007 K1 : Passages dans l application base- élèves 30/04/2007 Remarques importantes avant de commencer La gestion collective ( = enregistrer globalement une décision de passage) doit être utilisée prioritairement

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Chapitre 4 Solutions des problèmes

Chapitre 4 Solutions des problèmes Chapitre 4 Solutions des problèmes 1. Résolution d'un modèle PLTE à deux variables. (a) La région issible de la relaxation continue ( ) est le polygone ABC représenté à la figure cidessous. La solution

Plus en détail

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011 Francesco Quatraro L1 AES 2010/2011 1 Les courbes de coût Considérons la fonction de coût qui donne le coût minimum de production d un niveau d output y: c(w 1, w 2, y) Considérons les prix des facteurs

Plus en détail

4. Programmation en nombres entiers

4. Programmation en nombres entiers IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers b. Séparation et évaluation progressive c. Plans de coupes Résolution de modèles entiers Programmation en nombres entiers

Plus en détail

LES DÉTERMINANTS DE MATRICES

LES DÉTERMINANTS DE MATRICES LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...

Plus en détail

Sujet 5: Dualité faible et forte

Sujet 5: Dualité faible et forte Sujet 5: Dualité faible et forte MHT 423 : Modèles et méthodes d optimisation Andrew J. Miller Dernière mise à jour: March 24, 2010 Dans ce sujet... 1 Dualité faible 2 Dualité forte : Théorème des écarts

Plus en détail

Baccalauréat ST2S Polynésie 16 juin 2014 correction

Baccalauréat ST2S Polynésie 16 juin 2014 correction Baccalauréat STS Polynésie 6 juin 0 correction EXERCICE 8 points On présente dans un tableau, extrait d une feuille de calcul, le nombre de cartes SIM (carte électronique permettant d utiliser un réseau

Plus en détail

Cours 2 : algorithme du simplexe

Cours 2 : algorithme du simplexe Cours 2 : algorithme du simplexe Christophe Gonzales LIP6 Université Paris 6, France Plan du cours Cours 2 : algorithme du simplexe 2/29 1 Rappels sur l algorithme vu la semaine dernière 2 Définition de

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Master 2 LT, MPM, MIR Pôle Lamartine - ULCO Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Durée de l épreuve : 2h00 Documents interdits. Calculatrice autorisée Exercice

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Niveau de production croissant

Niveau de production croissant En effet, la fonction de production définit : l ensemble de production l ensemble des paniers de facteurs qui permettent de produire un niveau donné de bien. Cette fonction permet de définir des courbes

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Travaux dirigés n 1. Programmation linéaire

Travaux dirigés n 1. Programmation linéaire Université de Reims Champagne Ardenne U.F.R. de Sciences Exactes et Naturelles MASTER 1 Informatique - 2014/2015 Pierre Delisle Travaux dirigés n 1 Programmation linéaire Exercice 1 (Résolution d'un programme

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

CQP 208. Chapitre 5 Optimisation. Olivier Godin. 20 novembre 2015. Université de Sherbrooke. Optimisation 1 / 50

CQP 208. Chapitre 5 Optimisation. Olivier Godin. 20 novembre 2015. Université de Sherbrooke. Optimisation 1 / 50 CQP 208 Chapitre 5 Optimisation Olivier Godin Université de Sherbrooke 20 novembre 2015 Optimisation 1 / 50 Plan du chapitre 1 Croissance, décroissance et extremums relatifs d une fonction 2 Extremums

Plus en détail

Programmation linéaire en variables continues : propriétés mathématiques et résolution

Programmation linéaire en variables continues : propriétés mathématiques et résolution Programmation linéaire en variables continues : propriétés mathématiques et résolution 1 Programme linéaire continu Définitions - Notations (1) n min c x 1 n ai x bi, i 1,..., m 1 x 0, ou mincx AX b X

Plus en détail

Titulaires d un M1 à UT1 Capitole en 2009-2010. non inscrits en M2 dans l établissement en 2010-2011

Titulaires d un M1 à UT1 Capitole en 2009-2010. non inscrits en M2 dans l établissement en 2010-2011 Titulaires d un M1 à UT1 Capitole en 2009-2010 non inscrits en M2 dans l établissement en 2010-2011 La population étudiée est celle des étudiants ayant obtenu un M1 à en 2009-2010 (hors formation continue,

Plus en détail

QUELLE STRUCTURE JURIDIQUE CHOISIR?

QUELLE STRUCTURE JURIDIQUE CHOISIR? Dans une démarche de création d entreprise, vous devez réfléchir au statut juridique que vous allez donner à votre entreprise. En effet, il existe plusieurs statuts juridiques et il n est pas toujours

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail