Rappels sur les tableaux et l algorithme du simplexe

Dimension: px
Commencer à balayer dès la page:

Download "Rappels sur les tableaux et l algorithme du simplexe"

Transcription

1 Rappels sur les tableaux et l algorithme du simplexe À tout tableau est associée non seulement une base du problème initial (primal) mais également une base du problème dual. Les valeurs des variables basiques primales se lisent dans la dernière colonne du tableau. Les valeurs de la solution basique duale se lisent dans la dernière ligne du tableau. Les variables de décision du dual sont associées aux variables d écart du primal. Réciproquement, les variables d écart du dual sont associées aux variables de décision du primal. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 125

2 Les solutions basiques primale et duale associées à un tableau ont même valeur et vérifient les écarts complémentaires. Dans tous les tableaux visités par l algorithme du simplexe la solution basique primale est toujours admissible. L algorithme s arrête dès qu une solution basique duale admissible est atteinte, le tableau étant alors optimal. Le tableau optimal contient non seulement la solution (optimale) du problème initial mais également celle de son dual. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 126

3 L algorithme dual du simplexe (phase II) Considérons le PL canonique de tableau initial Max z = x 1 2x 2 s.c. 2x 1 + x 2 6 x 1 x 2 4 x 1, x 2 0 T 0 = T 0 n est pas (primal-)admissible mais est dual-admissible! J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 127

4 On peut donc chercher à résoudre le problème dual tout en travaillant dans le tableau primal. Dans T 0, la fonction objectif duale (à minimiser) s écrit w = yb. Il faut donc augmenter une variable de décision duale associée à un élément b i < 0 afin de diminuer w. Le seul candidat est b 2 = 4, la variable primale x 4 va donc quitter la base primale et la variable duale y 2 associée va entrer dans la base duale. Afin de conserver l admissibilité duale, le pivot doit être choisi dans une colonne r vérifiant γ r α 2r = max { γk α 2k α 2k < 0 Comme γ 1 /α 21 = 1 et γ 2 /α 22 = 2, il faut pivoter sur α 21 et faire entrer x 1 dans la base en lieu et place de x 4. }. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 128

5 T 0 = T 1 = y 3 y 4 y 1 y 2 Le tableau T 1 est toujours dual-admissible mais, maintenant, β 1 est négatif, x 3 va donc quitter la base primale et y 1 entrer dans la base duale. Le seul pivot négatif dans la première ligne est α 12 = 1. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 129

6 T 1 = T 2 = y 3 y 4 y 1 y 2 Le tableau T 2 est primal et dual admissible, il est donc optimal. La solution optimale primale est x 1 = x 2 = 2 (x 3 = x 4 = 0) et la solution optimale duale est y 1 = 1, y 2 = 3 (y 3 = y 4 = 0). On a évidemment z = w = 6. J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 130

7 Tableau primal / Algo. dual x 1 x 2 x 3 x Tableau dual / Algo. primal y 1 y 2 y 3 y T T T y 3 y 4 y 1 y x 3 x 4 x 1 x 2 J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 131

8 Algorithme dual du simplexe (phase II) Données : Un tableau dual-admissible. Résultat : Un tableau optimal ou un certificat d absence de solutions admissibles. (1) Choix d une variable sortante : Choisir une ligne i avec β i < 0, la variable basique x j avec j = σ(i) quitte la base. S il n existe pas de variable sortante : STOP le tableau courant est optimal. (2) Choix d une variable entrante : Choisir une colonne hors base r maximisant les quotients caractéristiques duaux { r k N γ { }} k γj = max α ij < 0 α ik α ij S il n existe pas de variable entrante : STOP le dual est non borné et le primal sans solutions admissibles. (3) Mise à jour de la base et du tableau : Pivoter autour de α ir et retourner en (1). J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 132

9 Remarque. Si, pendant l application de l algorithme dual, un tableau non admissible est atteint pour lequel aucun pivot ne peut être trouvé, cela signifie que le problème dual est non borné et donc que le problème primal n admet pas de solution admissible. En effet, dans une telle situation, on a b i < 0 et α ij 0 j. Ceci correspond à la contrainte (impossible si x j 0 j) 0 α ij x j = b i < 0. Dual non borné x D x E z Sans solution admissible (primale) x D x E z J.-F. Hêche, ROSO-EPFL Recherche opérationnelle SC & PH 133

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

(2) Où trouver une solution de base pour commencer?

(2) Où trouver une solution de base pour commencer? Problèmes avec l algorithme du simplexe p. 1/1 (2) Où trouver une solution de base pour commencer? Modifier le problème de sorte que le nouveau problème auxiliaire aie une solution de base triviale et

Plus en détail

Optimisation Linéaire

Optimisation Linéaire Optimisation Linéaire Cours 2 : algorithme du simplexe Adrien Goëffon Bureau H207 / adrien.goeffon@univ-angers.fr Algorithme du simplexe On souhaite résoudre le programme linéaire suivant (ici sous forme

Plus en détail

Algorithme du Simplexe

Algorithme du Simplexe MATH-F-306 Optimisation chapitre 3 Algorithme du Simplexe 20 avril 2007 Optimisation MATH-F-306 MATH-F-306 3. Algorithme du Simplexe RAPPEL au TABLEAU : Algorithme du Simplexe TODO step 0 : step 1 : step

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Méthode du simplexe Analyse algébrique

Méthode du simplexe Analyse algébrique Analyse algébrique Illustration des théorèmes On reprend l exemple des ceintures de cuir, c- à-d maximiser z, avec : z = 4x + 3x 2 x + x 2 + s = 40 2x + x 2 + s 2 = 60 x, x 2, s, s 2 0 Solution optimale

Plus en détail

Programmation Linéaire - Cours 4

Programmation Linéaire - Cours 4 Programmation Linéaire - Cours 4 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire Dualité 1 Dualité 2 3 Primal / Dual Dualité Les PL vont toujours par paires

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Optimisation Linéaire - TD 2 (Corrigé)

Optimisation Linéaire - TD 2 (Corrigé) Optimisation Linéaire - TD (Corrigé) Exercice 1 : Mise sous forme canonique Mettre les problèmes linéaires suivants sous forme canonique. Problème 1 : max 3x 1 x + x 3 (1) 5x 1 + x + x 3 5 () 3x 1 4x =

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

se trouve en un sommet de l ensemble convexe des solutions admissibles K = {x 0 Ax =

se trouve en un sommet de l ensemble convexe des solutions admissibles K = {x 0 Ax = Chapitre 3 Méthode du simplexe Comme toujours, on suppose que A une matrice de format m n et b R m. On notera les colonnes de A par [a 1, a 2,..., a n ]. Aussi, on fera l hypothèse que le rang de la matrice

Plus en détail

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts.

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts. Mathématique pour l informatique Examen durée : 3 heures. Université de Provence Licence Informatique Année 2001-2002 Exercice 1 (Simplexe : 10 points) On donne le problème de programmation linéaire (P)

Plus en détail

Dualité en PLNE avec la chasse à la bête Par Aline Parreau

Dualité en PLNE avec la chasse à la bête Par Aline Parreau Dualité en PLNE avec la chasse à la bête Par Aline Parreau But de la séance : donner un problème ludique d optimisation combinatoire, utiliser la RO et la dualité pour le résoudre, sentir ce qu est le

Plus en détail

Sujet 6: Dualité interpretations intuitives

Sujet 6: Dualité interpretations intuitives Sujet 6: Dualité interpretations intuitives MHT 423: Modélisation et optimisation Andrew J. Miller Dernière mise à jour: March 31, 2010 Dans ce sujet... 1 L analyse de sensibilité 2 1 L analyse de sensibilité

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Modèle dual. Programmation linéaire (dualité et analyse de sensibilité) Dualité : exemple Wyndor Glass. Modèle dual (suite)

Modèle dual. Programmation linéaire (dualité et analyse de sensibilité) Dualité : exemple Wyndor Glass. Modèle dual (suite) Modèle dual Modèles de recherche opérationnelle (RO Programmation linéaire (dualité et analyse de sensibilité Variables de décision : y i = prix ($/h pour louer du temps à l usine i Dual Glass cherche

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m)

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m) Problème ( points) Un capital de 0 000 euros est placé à un taux d intérêts composés de 2%. La valeur récupérée à l issue du placement est 70,2 euros. Quelle est la durée de ce placement? Soit d la durée

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail

Max z = cx Ax b x 0. x 1.. x n

Max z = cx Ax b x 0. x 1.. x n Chapitre 2 Dualité 21 Introduction Avant de donner la definition formelle d un problème dual, nous allons expliquer comment il s explique en terme de problème de production Une entreprise I fabrique n

Plus en détail

Cours 4: Programmation linéaire

Cours 4: Programmation linéaire Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 1-1 Cours 4: Programmation linéaire Position du problème Algorithme

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Cours de mathématiques - Alternance Gea Programmation linéaire à plusieurs variables

Cours de mathématiques - Alternance Gea Programmation linéaire à plusieurs variables Cours de mathématiques - Alternance Gea Programmation linéaire à plusieurs variables Anne Fredet 2 janvier 2006 Définitions Définition. Un programme linéaire est un programme consistant à trouver un extremum

Plus en détail

IV. PROGRAMMATION LINEAIRE. Forme standard Résolution graphique Définitions et théorèmes Algorithme du simplexe Dualité Approches non linéaires

IV. PROGRAMMATION LINEAIRE. Forme standard Résolution graphique Définitions et théorèmes Algorithme du simplexe Dualité Approches non linéaires Forme standard Résolution graphique Définitions et théorèmes Algorithme du simplexe Dualité Approches non linéaires IV.1 Forme standard (1) Minimiser avec Il est toujours possible de revenir à la forme

Plus en détail

Optimisation dans les réseaux

Optimisation dans les réseaux Optimisation dans les réseaux Recherche Opérationnelle GC-SIE Le problème de transbordement Énoncé sous contraintes Transbordement ichel Bierlaire Lagrangien Dualité Fonction duale Transbordement ichel

Plus en détail

Programmation Linéaire (PLRO) et Recherche Opérationnelle

Programmation Linéaire (PLRO) et Recherche Opérationnelle Feuille 0 Programmation Linéaire et Recherche Opérationnelle Travaux Dirigés Alexandre Tessier Alexandre.Tessier@lifo.univ-orleans.fr Université d Orléans UFR Sciences Département d informatique L3 STIC

Plus en détail

Optimisation linéaire

Optimisation linéaire Cours 1 Optimisation linéaire L optimisation linéaire est un domaine de la recherche opérationnelle. Elle consiste à modéliser des problèmes de recherche opérationnelle à l aide d inégalités linéaires

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Problème du flot à coût minimum

Problème du flot à coût minimum Problème du flot à coût minimum IFT1575 Modèles de recherche opérationnelle (RO). Optimisation de réseaux e. Flot à coût minimum On a un graphe orienté et connexe chaque arc (i,j), on associe une capacité

Plus en détail

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Master 2 LT, MPM, MIR Pôle Lamartine - ULCO Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Durée de l épreuve : 2h00 Documents interdits. Calculatrice autorisée Exercice

Plus en détail

Programmation linéaire

Programmation linéaire Vincent Boucheny (a.k.a. Mankalas) Option SCIA Promo 00 Ce document reprend les prises de notes eectuées durant le cours de Patrick Siarry et n'est en aucun cas destiné à être diusé à l'extérieur du cadre

Plus en détail

Programmation Linéaire - Cours 5

Programmation Linéaire - Cours 5 Programmation Linéaire - Cours 5 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire Algorithme du simplex dual 1 Algorithme du simplex dual 2 3 4 Changement

Plus en détail

Chapitre 6 : Programmation linéaire, Algorithme du simplexe

Chapitre 6 : Programmation linéaire, Algorithme du simplexe Chapitre 6 : Programmation linéaire, Algorithme du simplexe ENSIIE - Module de Recherche Opérationnelle (dimitri.watel@ensiie.fr) 2016-2017 Objectif Résoudre un programme linéaire quelconque de la forme

Plus en détail

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Algorithmes probabilistes Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Mise en contexte: Indices: Vous êtes à la recherche d un trésor légendaire

Plus en détail

- TP 1. Calculs sur les rationnels. -

- TP 1. Calculs sur les rationnels. - - TP 1. Calculs sur les rationnels. - Le but de ce TP est de se constituer une petite bibliothèque sur les rationnels. Elle nous servira tout au long de notre implémentation du simplexe dont les calculs

Plus en détail

IFT2505. Programmation Linéaire

IFT2505. Programmation Linéaire IFT 505 Programmation Linéaire DIRO Université de Montréal http://www.iro.umontreal.ca/~bastin/ift505.php Automne 0 Exemple sur le simplexe dual et primal-dual On considère le problème Le dual est min

Plus en détail

Module 06 - Leçon 03 : La méthode du simplexe

Module 06 - Leçon 03 : La méthode du simplexe Module 06 - Leçon 03 : La méthode du simplexe 1 - Principe Lorsque nous sommes en présence de plus de deux produits, la méthode du simplexe est la seule méthode permettant de trouver la combinaison de

Plus en détail

RO : Programmation Linéaire

RO : Programmation Linéaire RO : Programmation Linéaire N. Brauner Université Grenoble Alpes Exercice 1 : Production de vins (G. Finke) Dans une distillerie américaine on produit trois sortes de vin allemands authentiques : Heidelberg

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Formation CNAM 1. Plan du chapitre 4 Principes de base de la PL. 1. Introduction à la Programmation Linéaire. Exemple d un modèle de PL

Formation CNAM 1. Plan du chapitre 4 Principes de base de la PL. 1. Introduction à la Programmation Linéaire. Exemple d un modèle de PL Optimisation en Informatique RCP04 Cours 3 Principes de base de la Programmation Linéaire (PL) Plan du chapitre 4 Principes de base de la PL. Introduction à la programmation linéaire. Modélisation de problèmes

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Programmation linéaire et Méthode du simplexe (en bref)

Programmation linéaire et Méthode du simplexe (en bref) Université de Versailles Saint-Quentin-en-Yvelines Tahar Z. BOULMEZAOUD boulmeza@math.uvsq.fr Programmation linéaire et Méthode du simplexe (en bref) On appelle programme linéaire un problème d optimisation

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe 1 Rappel Si un problème de programmation linéaire en forme standard possède une solution optimale, alors il existe une solution

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Problème du plus court chemin : Algorithmes et complexité

Problème du plus court chemin : Algorithmes et complexité Problème du plus court chemin : Algorithmes et complexité MSEA: Flot et Routage (d après Ahuja, R.K., T.L. Magnanti and J.B. Orlin, Prentice Hall, 99, et d après les notes des cours de L.A. Wolsey et F.

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite)

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite) Programmation linéaire (PL) IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. Modélisation Problème classique de planification : affecter des ressources limitées à plusieurs activités

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Modélisation en Programmation Linéaire

Modélisation en Programmation Linéaire Ecole Centrale Paris, vincent.mousseau@ecp.fr March 3, 2009 Contexte Modélisation du problème 1 Exemple de référence Contexte Modélisation du problème 2 Les 4 étapes Une seconde illustration 3 4 Définitions

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité IFT575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplee c. Dualité d. Analyse de sensibilité Interprétation des variables d écart Dans la solution optimale du problème

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

IFT2505. Programmation Linéaire

IFT2505. Programmation Linéaire IFT 2505 Programmation Linéaire DIRO Université de Montréal http://www.iro.umontreal.ca/~bastin/ift2505.php Automne 2013 Forme matricielle de la méthode du simplexe Utile pour mieux comprendre, et construire

Plus en détail

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd Cours de mathématiques fondamentales 1 année, DUT GEA Mourad Abouzaïd 9 décembre 2008 2 Table des matières Introduction 7 0 Rappels d algèbre élémentaire 9 0.1 Calcul algébrique................................

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

Programmation Linéaire Nombres Entiers (PLNE)

Programmation Linéaire Nombres Entiers (PLNE) Programmation Linéaire en Nombres Entiers p. 1/1 (PLNE) Toutes les variables sont obligées de prendre des valeurs entières En général les coefficients a i,j sont aussi entiers Et, donc, on peut se limiter

Plus en détail

Deuxième partie II ALGORITHMES DANS LES GRAPHES

Deuxième partie II ALGORITHMES DANS LES GRAPHES Deuxième partie II ALGORITHMES DANS LES GRAPHES Représentation des graphes Représentation en mémoire : matrice d incidence / Matrice d incidence Soit G = (, E) graphe simple non orienté avec n = et m =

Plus en détail

Retour-en-arrière et branch-and-bound

Retour-en-arrière et branch-and-bound Retour-en-arrière et branch-and-bound Pour résoudre un problème, on peut représenter notre recherche de solutions comme un graphe où chaque noeud contient une solution partielle de notre problème et chaque

Plus en détail

I - Programmation linéaire

I - Programmation linéaire EOAA - 2009/10 Préliminaires Formulation Exemple de problème bidimensionnel Généralisation Problème sous forme normale Résolution dans le cas général Programmation linéaire en nombres entiers Exercice

Plus en détail

Programmation linéaire suite

Programmation linéaire suite Programmation linéaire suite Cas limites du simplexe Hugues Talbot Laboratoire A2SI 6 avril 2007 Plan Cas limites de la programmation linéaire Limites de l algorithme du simplexe Solution unique Solution

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

Info0804. Cours 2. La programmation linéaire

Info0804. Cours 2. La programmation linéaire Info0804 Recherche Opérationnelle Cours 2 La programmation linéaire Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 16 décembre 2013 Plan de la séance

Plus en détail

Problèmes de transport

Problèmes de transport Problèmes de transport formulation des problèmes d affectation Hugues Talbot Laboratoire A2SI 31 mars 2009 Problèmes de Transport Introduction Distribution Théorie Équilibrage Modélisation Plan Solution

Plus en détail

Problèmes de transport et transbordement

Problèmes de transport et transbordement Problèmes de transport et transbordement Résolution Hugues Talbot Laboratoire A2SI 9 avril 2009 Plan Introduction Introduction Solution des problèmes de transport Solution de base initiale Le simplexe

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE 0. Introduction. Ce cours a été enseigné jusqu en 2002, en année de licence, à la MIAGE de NANCY. L objectif principal de ce cours est d acquérir une connaissance approfondie de

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle FSTM Recherche Opérationnelle Introduction à la méthode du simplexe Karam ALLALI K. Allali 2 Méthode de résolution algébrique : l algorithme du simplexe - Pour des modèles linéaires continus dont les variables

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

PROGRAMMATION DYNAMIQUE

PROGRAMMATION DYNAMIQUE PROGRAMMATION DYNAMIQUE 1 Le principe d optimalité de Bellman La programmation dynamique est fondée sur le principe d optimalité de Bellman : Soit f une fonction réelle de x et y = (y 1, y 2,..., y n ).

Plus en détail

Recherche opérationnelle

Recherche opérationnelle Université dulittoral Côte d Opale Master 2 en Sciences Economiques et de Gestion Recherche opérationnelle Daniel DE WOLF Dunkerque, Septembre 2006 Table des matières 1 Laprogrammation linéaire. 7 1.1

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Programmation linéaire. Méthode du simplexe.

Programmation linéaire. Méthode du simplexe. Programmation linéaire. Méthode du simplexe. S. EL BERNOUSSI 25 octobre 2010 Table des matières 1 Introduction. 2 2 Notion de programme linéaire. 2 2.1 Exemple................................ 2 2.2 Forme

Plus en détail

Graphes et Recherche Opérationnelle

Graphes et Recherche Opérationnelle Graphes et Recherche Opérationnelle ESIAL 2ème année Notes de cours de J.-F. Scheid 2010-2011 2 Table des matières 1 Introduction générale 5 1.1 Quelques exemples et domaines d applications de la R.O...................

Plus en détail

Le problème de transport

Le problème de transport Quatrième partie Le problème de transport 13 Définition et exemples Un produit doit être transporté de sources (usines) vers des destinations (dépôts, clients). Objectif : déterminer la quantité envoyée

Plus en détail

Exercices de Programmation Linéaire Modélisation

Exercices de Programmation Linéaire Modélisation Modélisation exercice 1 : On veut préparer 500 litres de punch à partir de cinq boissons A, B, C, D et E. Le punch doit comporter au moins 20% de jus d orange, 10% de jus de pamplemousse et 5% de jus de

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Introduction à l optimisation discrète

Introduction à l optimisation discrète Ecole Nationale Supérieure de Techniques Avancées (ENSTA) -http://www.ensta.fr Adam Ouorou France Télécom Division R&D ENSTA - Mars 2006 Plan 1 Ecole Nationale Supérieure de Techniques Avancées (ENSTA)

Plus en détail