PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

Dimension: px
Commencer à balayer dès la page:

Download "PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE"

Transcription

1 PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales et équidistantes, situées dans un même plan. Ces fentes sont appelées les traits du réseau. On caractérise un réseau : - par sa période a, c'est-à-dire par la distance qui sépare 2 points homologues de 2 fentes voisines. - ou plus souvent, par le nombre N de traits par unité de longueur. Evidemment, N.a = 1, N = 1/a. Le réseau est éclairé en lumière parallèle et l'on observe la figure de diffraction à l'infini qu'il produit. Le dispositif expérimental est celui que l'on adopte pour l'étude de tous les phénomènes de diffraction à l'infini. Un collimateur fournit la lumière parallèle qui tombe sur le réseau sous l'incidence i et l'on observe la lumière diffractée dans la direction i' à l'aide d'une lunette visant à l'infini. Dans la pratique, il existe deux types de réseaux : 1 - Les réseaux par transmission, obtenus en traçant des sillons opaques sur une surface transparente. On montre, par application du théorème de Babinet des écrans complémentaires, que la figure de diffraction obtenue est la même que celle produite par des fentes transparentes percées dans un écran opaque. 2 - Les réseaux par réflexion obtenus en traçant des traits sur une surface métallique polie; les sillons se comportent comme s'ils n'étaient pas réfléchissants. La manipulation se fera uniquement avec un réseau par transmission. 2 - Théorie élémentaire - Formule du réseau D'après ce qui a été dit plus haut, on peut faire le calcul en supposant que le réseau utilisé est formé de fentes fines percées dans un écran opaque. Prisme et réseau 1

2 2.1 - En lumière monochromatique Supposons le réseau éclairé en lumière monochromatique. La théorie de la diffraction à l'infini par une fente unique montre que : a) Si la source est elle-même une fente, la figure de diffraction est formée de franges parallèles à la fente source. On se place généralement dans le cas où fente source et fente diffringente sont parallèles. Il suffit alors pour décrire le phénomène d'étudier ce qui se passe dans un plan, dit plan de section principale perpendiculaire à la direction commune des fentes. b) Si la fente diffringente est suffisamment fine, la vibration diffractée possède à peu près la même intensité dans toutes les directions du plan de section principale (voir T.P. Diffraction). c) La vibration diffractée par une fente a même phase que la vibration qui provient de son centre. En éclairant le réseau plan par la lumière parallèle provenant d'une fente source parallèle aux traits du réseau, on observe donc une figure de diffraction formée de franges rectilignes parallèles aux traits du réseau. La position des maxima d'intensité lumineuse se calcule de la façon élémentaire suivante. La différence de marche entre deux vibrations diffractées par deux fentes voisines est : Pour une incidence i donnée, il y aura maximum d'intensité dans la direction i' si cette différence de marche est un multiple entier de la longueur d'onde λ, soit : Ce maximum est dit maximum principal. a (sin i + sin i') = p λ (1) On observe donc une série de raies intenses correspondant aux différents ordres p. Le nombre de valeurs de p accessibles est limité de façon absolue par la relation : (sin i + sin i') = En lumière polychromatique Si la lumière incidente est polychromatique, il existera pour chaque longueur d'onde présente une série de maxima principaux et l'on observera des spectres correspondant aux différents ordres p. Il n'y a évidemment pas de séparation des longueurs d'onde dans le spectre d'ordre 0 puisque sin i = sin i' quelle que soit λ Théorie complète OH + OK = a (sin i + sin i' ) (On vérifiera que cette expression est valable quel que soit le cas de figure, que le réseau fonctionne par réflexion ou par transmission, à condition de compter i et i' tous deux positifs quand ils sont du même côté de la normale). Le calcul précédent n'est qu'approché. Une théorie plus complète du réseau montre qu'en lumière monochromatique, la variation d'intensité est la suivante Théorie élémentaire Théorie exacte On voit que : p-1 p p+1 p-1 p p+1 Prisme et réseau 2

3 a) Entre deux maxima principaux consécutifs, il existe une série de maxima secondaires d'intensité beaucoup plus faible (ils ne peuvent pas être observés dans la manipulation). b) Chaque maximum principal se présente sous la forme d'une raie dont la demi-largeur à la base est λ/l, où L est la largeur totale du réseau. 3 - Méthode du minimum de déviation Par application directe de la formule fondamentale (1), il est possible de faire une mesure relative de longueur d'onde ou de déterminer le nombre de traits par unité de longueur. En pratique la mesure de i et de i' est imprécise, car il n'est pas possible de repérer avec exactitude la direction de la normale au réseau. On élimine cette difficulté en utilisant la méthode du minimum de déviation. Par définition, la déviation est D = i + i' (même convention de signe que plus haut). Cherchons à quelle condition D est minimum dd = di + di' D'autre part, d'après (1), sin i + sin i' = Npλ. D'où cos i di + cos i' di' = 0 Donc au minimum de déviation, on a dd = 0 = di ( 1 - cos i cos i' ) La seule valeur acceptable est i = i' (i = - i' correspond au faisceau direct). La déviation est alors Dmin = 2i = 2i', et la formule fondamentale du réseau devient : 2 sin D min = p N l (2) 2 C'est cette formule qui sera utilisée dans la manipulation. B - PRISME 1 - Marche d'un rayon à travers un prisme transparent Considérons un rayon monochromatique contenu dans le plan perpendiculaire à l'arête du prisme (plan de section principale). Il traverse le prisme en subissant une réfraction à l'entrée et une à la sortie, tout en restant dans le plan d'incidence. L'angle des rayons incident et émergent est l'angle de déviation D. Les angles i, i', r, r', A et D sont définis dans le plan orienté. Les lois de la réfraction et quelques considérations géométriques simples permettent d'écrire les relations suivantes : sin i = n sin r (1) sin i' = n sin r' (2) A = r + r' (3) D = i + i' - A (4) Prisme et réseau 3

4 2 - Variation de D avec i D est une fonction de A, n et i. Pour un prisme donné, A et n sont fixes : la déviation est une fonction de i présentant un minimum. En différenciant les relations précédentes, il vient : cos i di = n cos r dr cos i' di' = n cos r' dr' ñ 0 = dr + dr' dd = di + di' et par conséquent? i'? i =? D? i cos i cos r' cos i' cos r = 1 +? i'? i = 1 - cos i cos r' cos i' cos r Cette dérivée est nulle pour i = i' = i m, ce qui implique r m = r' m = A/2 La valeur im est définie par sin i m = n sin (A/2) La courbe représentant la variation de D (i) est celle de la figure ci-dessous. i 0 est la valeur minimale de i, à laquelle correspond i' = p/2. On vérifie en faisant i= i 0 et i = p/2 que D passe bien par un minimum pour i = i m. Ce minimum est donné par : D m = 2 i m - A d'où sin i m = n sin A/2 = sin (A + D m )/2 Conditions d'émergence : A = 2 α avec 1 = n sin α i 0 = i = p/2 avec sin i 0 = n sin (A -α) 3 - Variation de D avec l'indice n Pour un prisme donné et un angle d'incidence donné, D croit avec n :?D?n = sin A cos i' cos r L'indice est lui-même une fonction de la longueur d'onde, donc le prisme éclairé par un rayonnement non monochromatique dévie de façons différentes les différentes longueurs d'onde. C'est un instrument dispersif. PARTIE PRATIQUE 1 - Description du goniomètre Voir le schéma détaillé dans la salle. En pratique, on mesure l'angle de déviation minimum à l'aide d'un goniomètre. Cet appareil se compose de trois parties : A une plateforme sur laquelle repose le prisme ou le réseau. Celle-ci, mobile autour d'un axe vertical, est munie d'un dispositif de blocage (1) permettant ensuite une rotation très faible au moyen d'une vis micrométrique (2). Prisme et réseau 4

5 B un collimateur, dispositif optique permettant d'obtenir un faisceau parallèle de lumière, muni d'une fente (3) éclairée par une lampe spectrale (4). La largeur de la fente est réglable à l'aide de la vis micrométrique (5). C une plateforme mobile autour d'un axe vertical, munie elle aussi d'un dispositif de blocage (6) permettant ensuite un réglage fin de la rotation au moyen de la vis micrométrique (7). Sur cette plateforme on distingue : * C1, une lunette autocollimatrice composée - d'un objectif (8) avec son dispositif de réglage (9) - d'un réticule (10), croisillon métallique placé perpendiculairement à l'axe optique de la lunette. Ce réticule peut être à la fois "objet" (autocollimation) et "référence" lors des mesures précises des angles (axe du système) - d'un dispositif à lame semi-transparente (11) actionné par un petit levier (12) - d'une source lumineuse interne (13) - d'un oculaire (14) permettant d'adapter l'appareil à la vue de l'observateur - d'une vis de réglage (15) placée sous la lunette autocollimatrice qui permet de régler l'horizontalité de l'axe de celle-ci * C2, un viseur muni de son oculaire (16) qui permet de repérer les rotations de l'ensemble de la plateforme C. 2 - Réglages Avant d'effectuer les mesures, il faut procéder aux réglages de l'appareil en utilisant le prisme. 2.1) Réglages optiques Pour obtenir des images nettes, il est nécessaire de travailler dans les conditions de stigmatisme rigoureux du prisme, c'est-à-dire avec un faisceau de lumière parallèle (rôle du collimateur) tombant dans une zone proche de l'arête du prisme. La lunette autocollimatrice permet de focaliser le faisceau parallèle dévié par le prisme dans son plan focal image (cf. schéma de principe ci-dessous). a - Réglage de la lunette autocollimatrice sur l'infini - Utiliser la source interne de lumière (13). - Régler l'oculaire de façon à voir l'image nette du réticule. - Placer le prisme au centre de la plateforme. - Faire tourner la lunette jusqu'à ce que l'axe optique soit à peu près perpendiculaire à une face du prisme : on voit alors apparaître un cercle plus éclairé, réflexion du faisceau incident sur cette face. - Régler le tirage de la lunette (9) de façon à observer, dans le cercle lumineux, une deuxième image nette du réticule (autocollimation) : le réticule est alors dans le plan focal de l'objectif, la lunette est dite "réglée sur l'infini". b - Réglage du collimateur sur l'infini Comme la lunette autocollimatrice a été réglée sur l'infini, on ne verra de façon nette dans l'oculaire que les objets ou sources lumineuses placés dans le plan focal objet du collimateur. - Utiliser la lampe spectrale. Prisme et réseau 5

6 - Avec la lunette, viser la fente lumineuse disposée derrière le collimateur. - Régler le tirage de ce dernier jusqu'à obtenir une image nette de la fente dans l'oculaire : le collimateur est dit "réglé sur l'infini" (les faisceaux qui en sortent étant parallèles). - Réduire la largeur de la fente (5). 2.2) Réglages mécaniques L'arête du prisme doit être parallèle à l'axe de rotation du goniomètre afin que les angles de déviation soient bien mesurés dans le plan de section principale du prisme. On supposera l'axe de la lunette perpendiculaire à cet axe de rotation. Le réglage est réalisé par autocollimations successives sur chacune des deux faces du prisme. A chaque autocollimation, on agit sur les vis calantes de la plateforme pour diminuer progressivement l'écart entre le réticule et son image. Lorsque le réticule et son image coïncident à peu près quelle que soit la face visée, l'axe de la lunette est alors perpendiculaire aux deux faces du prisme donc à l'arête : les pointés de la lunette se feront donc bien dans le plan perpendiculaire à cette arête. 3 - Etude qualitative Observer à l'aide d'un prisme, puis d'un réseau, le spectre d'une lampe à vapeur de cadmium. Comparer les deux spectres. En particulier, que peut-on dire de la luminosité, de la déviation en fonction de la longueur d'onde, de la séparation des raies? 4 - Etude quantitative 4.1) Mesure de l'angle de déviation minimum Observer avec la lunette l'image de la fente vue à travers le prisme (ou réseau) pour une longueur d'onde donnée. Faire pivoter simultanément la plateforme portant le prisme (ou réseau) et celle portant le viseur de façon à conserver constamment cette image : on voit alors que pour une position de la lunette, si on fait tourner le prisme (ou réseau), l'image de la fente se déplace d'abord dans un sens, passe par une position extrême, puis revient en sens inverse. Amener le centre du réticule sur cette position extrême de l'image : affiner le pointé avec le mouvement micrométrique (7) après le blocage de la plateforme (6). Dans l'oculaire du viseur, noter le repère angulaire α correspondant à ce minimum de déviation. Recommencer l'opération en intervertissant la face d'entrée et la face de sortie par rotation de la plateforme portant le prisme (sans toucher celui-ci!) : noter le repère α'. La symétrie des formules du prisme nous montre que les deux positions α et α' sont symétriques par rapport au faisceau incident. On en déduit : 2 Dm = α' - α 4.2) Application : analyse de la lampe à vapeur de cadmium En utilisant la méthode précédente, déterminer les longueurs d'onde des raies rouge, verte et bleues (2) du spectre, sans omettre l'incertitude sur ces mesures, à l'aide d'un : prisme d'angle au sommet A = 60 ± 1' et de sa courbe d'étalonnage n = f (1/λ 2 ) réseau comportant N = 534 ± 1 traits/mm (cf. valeur donnée dans la salle) Discuter la compatibilité des deux séries de mesures. Conclusion. Prisme et réseau 6

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE Licence de Physique 2000-2001 Université F. Rabelais UFR Sciences & Techniques P. Drevet 1 A1 - GONIOMETRE DE BABINET I. PRINCIPE

Plus en détail

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire TP 06 - Spectroscope à réseau Comment analyser la lumière émise par une source? 1 Principe et réglages du spectrogoniomètre à lunette autocollimatrice Figure 1: Goniomètre Le goniomètre est un appareil

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg

Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg Travaux pratiques Série 1 Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg Objectifs du TP : Revoir l utilisation d un goniomètre (réglages, lecture au vernier ). Revoir

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Jeu d optique laser de démonstration U17300 et jeu complémentaire Manuel d utilisation 1/05 ALF Sommaire Page Exp. n o Expérience Jeu d appareils 1 Introduction 2 Eléments fournis

Plus en détail

Chapitre 5 - Réfraction et dispersion de la lumière

Chapitre 5 - Réfraction et dispersion de la lumière I. Réfraction de la lumière A. Mise en évidence expérimentale 1. Expérience 2. Observation - Dans l air et dans l eau, la lumière se propage en ligne droite. C est le phénomène de propagation rectiligne

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

TP1 ANNEAUX DE NEWTON

TP1 ANNEAUX DE NEWTON TP1 ANNEAUX DE NEWTON PRESENTATION Sujet La «machine à anneaux» de Newton est utilisée pour mesurer les rayons de courbure de lentilles de surfaces sphériques ; l instrument est particulièrement adapté

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

A A. Pour l'œil, placé n importe où et qui observe cette image, la lumière semble provenir de A' et non de A. A A

A A. Pour l'œil, placé n importe où et qui observe cette image, la lumière semble provenir de A' et non de A. A A IMAGE FORMEE PAR UN MIROIR PLAN ET PAR UN MIROIR SPHERIQUE CONVERGENT Objectifs: construire l'image d'un objet donnée par un miroir I. COMMENT SE FORME UNE IMAGE DANS UN MIROIR PLAN 1) Symbole du miroir

Plus en détail

Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures

Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures Travaux pratiques Série 2 Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures Objectifs du TP : Se familiariser avec l utilisation d un interféromètre d apparence complexe.

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

Feuille d'exercices : optique géométrique

Feuille d'exercices : optique géométrique Feuille d'exercices : optique géométrique P Colin 2015/2016 Formulaire : Rappel des relations de conjugaison pour une lentille mince L de centre O, de foyer objet F, de foyer image F et de distance focale

Plus en détail

Chapitre II-3 La dioptrique

Chapitre II-3 La dioptrique Chapitre II-3 La dioptrique A- Introduction Quelques phénomènes causés par la réfraction de la lumière : quelqu'un dans une piscine semble plus petit... un règle en partie immergée semble brisée... un

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER Lycée Clemenceau PCSI (O.Granier) Les lentilles minces (approximation de Gauss) Définitions, lentilles convergentes et divergentes : Dioptre sphérique : on appelle «dioptre sphérique» une surface sphérique

Plus en détail

Fiche à destination des enseignants TS 2 CD ou DVD?

Fiche à destination des enseignants TS 2 CD ou DVD? Fiche à destination des enseignants TS 2 CD ou DVD? Type d'activité Activité expérimentale ou évaluation expérimentale, type ECE Objectifs Pré-requis Conditions de mise en œuvre Liste du matériel, par

Plus en détail

TP3 - Interféromètre de Michelson

TP3 - Interféromètre de Michelson TP3 - Interféromètre de Michelson I: PARTIE THEORIQUE I.1 - Cohérence a) Cohérence temporelle : Une source lumineuse capable d'émettre des vibrations monochromatiques, c'est-à-dire des vibrations illimitées

Plus en détail

Oraux : optique géométrique

Oraux : optique géométrique Extraits de rapports de jury : - Le tracé de rayons, dans des cas les plus triviaux, engendre de nombreuses erreurs et imprécisions, même avec une seule lentille (tracé de l'émergent pour un incident quelconque,

Plus en détail

2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts

2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts 2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts Un télescope de Newton est constitué de trois éléments optiques principaux : - l'objectif ( miroir concave convergent noté M 1 ), - le miroir

Plus en détail

INTERFÉROMÈTRE DE MICHELSON

INTERFÉROMÈTRE DE MICHELSON INTERFÉROMÈTRE DE MICHELSON ATTENTION! LASER ET LAMPE À MERCURE : DANGER! - Ne jamais regarder directement le faisceau Laser, sous peine de brûlures irréversibles de la rétine. - Ne jamais regarder directement

Plus en détail

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE I Qu est-ce que la lumière? Historique : théorie ondulatoire et théorie corpusculaire II Aspect ondulatoire Figure 1-1 : (a) Onde plane électromagnétique

Plus en détail

Module 1, chapitre 4 : LES LENTILLES

Module 1, chapitre 4 : LES LENTILLES Module 1, chapitre 4 : LES LENTILLES Nom : 4.1 Les différents types de lentilles Laboratoire: Les types de lentilles But : Découvrir les caractéristiques principales de divers types de lentilles. Matériel

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

b. L'image est trois fois plus grande que l'objet car en valeur absolue, le grandissement est égal à 3,0.

b. L'image est trois fois plus grande que l'objet car en valeur absolue, le grandissement est égal à 3,0. 1. Mots manquants a. grandissement ; l'image ; l'objet b. conjugaison ; l'image ; distance focale c. son image ; la rétine d. déforme ; la rétine ; accommode e. la rétine f. l'objectif ; à la pellicule

Plus en détail

ANNALE 2005-2006 FILERE FAS

ANNALE 2005-2006 FILERE FAS Première Année Premier Cycle ANNALE 2005-2006 FILERE FAS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON Par M.Rey marie.rey@insa-lyon Physique 1 Filière FAS TABLE DES MATIERES PROPAGATION DE LA LUMIERE...

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Exercices, dioptres sphériques et lentilles

Exercices, dioptres sphériques et lentilles 1 exercices, dioptres sphériques et lentilles Exercices, dioptres sphériques et lentilles 1 Lentille demi-boule Considérons une lentille demi-boule de centre O, de sommet S, de rayon R = OS = 5cm, et d'indice

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

Le microscope optique ou photonique

Le microscope optique ou photonique Le microscope optique ou photonique I description : Le microscope est composé de deux systèmes optiques, l objectif et l oculaire, chacun pouvant être considéré comme une lentille mince convergente L objectif

Plus en détail

UE3 Analyse des Images Optique : géométrie et formation d'image

UE3 Analyse des Images Optique : géométrie et formation d'image UE3 Analyse des Images Optique : géométrie et formation d'image Plan du cours 1 Optique géométrique principes, loi de Snell Descartes stigmatisme, image réelle et virtuelle 2 Formation d'une image formation

Plus en détail

MIROIRS SPHÉRIQUES ET LENTILLES

MIROIRS SPHÉRIQUES ET LENTILLES EXPÉRIENCE 5 MIROIRS SPHÉRIQUES ET LENTILLES I. Introduction et objectifs Les miroirs et les lentilles sont des objets utilisés quotidiennement. Le miroir le plus répandu (et le plus simple) est le miroir

Plus en détail

Optique géométrique et physique

Optique géométrique et physique J.Hormière / 2 Optique géométrique et physique I Un objectif de distance focale f 320 mm est constitué par un doublet (L, L 2 ) de formule 8, 5, 4 (f 8a, e 5a, f 2 4a). La lumière rencontre d abord la

Plus en détail

TP Cours Focométrie des lentilles minces divergentes

TP Cours Focométrie des lentilles minces divergentes Noms des étudiants composant le binôme : TP Cours ocométrie des lentilles minces divergentes Estimer la distance focale image d une lentille divergente est moins aisé que de déterminer celle d une lentille

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème COFFRET D OPTIQUE OEB Contenu Toutes les expériences présentées dans les pages suivantes ont été faites avec ce matériel. CLASSE DE 8 ème CH 6-1 Propagation de la lumière I Propagation de la lumière p

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

Lentilles minces convergentes

Lentilles minces convergentes Lentilles minces convergentes Lors de la rédaction, il est nécessaire de faire des schémas très soignés, au crayon, sur lesquels vous indiquerez avec précision les caractéristiques de la lentille, de l'objet

Plus en détail

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002 Séance de TP 4 Lentilles minces Romain BEL 3 janvier 2002 1 Table des matières 1 Lentilles minces, stigmatisme, relations de conjugaison 3 1.1 Lentilles minces............................. 3 1.2 L'approximation

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

image intermédiaire plan du réticule

image intermédiaire plan du réticule Principe et utilisation de lunette, collimateurs et viseurs On se propose d étudier les appareils permettant de réaliser des pointés et des mesures. Pour l utilisation correcte d un instrument d optique,

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et

Plus en détail

TP n 4 : Lumière et couleurs

TP n 4 : Lumière et couleurs TP n 4 : Lumière et couleurs Plan I. Lumières colorées : 1- Dispersion de la lumière par un prisme ou par un CD-rom : 2- Composition de la lumière blanche : 3- Lumières polychromatiques et monochromatiques

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

Représentation visuelle Chapitre 1 : L œil : Système optique et formation des images

Représentation visuelle Chapitre 1 : L œil : Système optique et formation des images Représentation visuelle Chapitre 1 : L œil : Système optique et formation des images Ce que vous savez déjà - Dans un milieu transparent et homogène (air de la salle de classe), la lumière se propage en

Plus en détail

Question O1. Réponse. Petit schéma : miroir

Question O1. Réponse. Petit schéma : miroir Question O1 Vous mesurez 180 cm, vous vous tenez debout face à un miroir plan dressé verticalement. Quelle doit être la hauteur minimale du miroir pour que vous puissiez vous y voir des pieds à la tête,

Plus en détail

Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique

Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique Nom et numéro d ordre :. I. Réfraction de la lumière. ( 5 pts ) On donne :

Plus en détail

1.1 Description d'une onde électromagnétique plane harmonique

1.1 Description d'une onde électromagnétique plane harmonique 1 Rappels théoriques Les états de polarisation de la lumière 1.1 Description d'une onde électromagnétique plane harmonique Le champ électrique d'une onde plane harmonique en un point M au cours du temps

Plus en détail

054534 Physique Révision Optique 2011-2012. Le schéma suivant représente des rayons lumineux provenant du Soleil et éclairant la Terre.

054534 Physique Révision Optique 2011-2012. Le schéma suivant représente des rayons lumineux provenant du Soleil et éclairant la Terre. Révision physique optique 534 2011-2012 Nom : Groupe : 054534 Physique Révision Optique 2011-2012 1 Le schéma suivant représente des rayons lumineux provenant du Soleil et éclairant la Terre. D'après ce

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles II.2 ptique 1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles 1.1) Définitions 1.1.1) Rayons et faisceaux lumineux

Plus en détail

Chapitre II: lentilles

Chapitre II: lentilles Chapitre II: lentilles II.1) Système optique idéal II.2) Les lentilles et les miroirs II.1) Système optique idéal Surface d onde (1) Surface d onde S: Tous les points de S sont en phase Dans ce cas, S

Plus en détail

Spectroscope à prisme TP 6. I- Présentation et alignement. I.1 Principe du spectroscope à fente

Spectroscope à prisme TP 6. I- Présentation et alignement. I.1 Principe du spectroscope à fente TP 6 Spectroscope à prisme Objectifs : Régler tous les éléments d'un goniomètre : réglage de la lunette autocollimatrice et du collimateur, Mesurer des angles à l'aide du goniomètre, Réaliser des mesures

Plus en détail

2. Expérience 2 : Situation: Kévin observe un poisson. Pourtant il commet une erreur en indiquant la position du poisson. Expliquer ce phénomène.

2. Expérience 2 : Situation: Kévin observe un poisson. Pourtant il commet une erreur en indiquant la position du poisson. Expliquer ce phénomène. TP 14 LA REFRACTION DE LA LUMIERE. INTRODUCTION : La lumière émise par une source lumineuse et qui se propage dans l'espace s'appelle un faisceau lumineux. Un faisceau lumineux est composé de rayons lumineux

Plus en détail

document 1 - indice de réfraction

document 1 - indice de réfraction chap 1 les mécanismes optiques de la vision document 1 - indice de réfraction La lumière est déviée lorsqu'elle passe d'un milieu transparent à un autre. C'est ce phénomène qu'on observe lorsque l'on regarde

Plus en détail

R.DUPERRAY Lycée F.BUISSON PTSI

R.DUPERRAY Lycée F.BUISSON PTSI TP OPTIQUE RDUPERRAY Lycée FBUISSON PTSI LUNETTE ASTRONOMIQUE OBJECTIFS Utiliser des systèmes optiques dans les conditions de Gauss (alignement axial et vertical, éclairage de l objet, ) Connaître les

Plus en détail

1) Sources de lumières

1) Sources de lumières TP COURS OPTIQUE GEOMETRIQUE Lycée F.BUISSON PTSI CONNAISSANCE DE BASES EN OPTIQUE GEOMETRIQUE 1) Sources de lumières 1-1) Sources à spectre de raies ou spectre discontinu Ces sources émettent un spectre

Plus en détail

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles?

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? PENET François LAMARCQ Simon DELAHAYE Nicolas Les lentilles optiques Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? Sommaire : Introduction

Plus en détail

GLOSSAIRE MATHÉMATIQUE

GLOSSAIRE MATHÉMATIQUE Chapitre 9 - GM GLOSSAIRE MATHÉMATIQUE EN GÉOMÉTRIE DE L'ESPACE GM_01 règle GM_02 GM_03 GM_04 GM_05 GM_06 GM_07 tourne GM_08 GM_09 GM_10 GM_11 plan GM_12 GM_13 GM_14 GM_15 GM_16 GM_17 GM_18 Dessin schématisant

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Fente Lumière blanche. Fente Laser rouge. 2 Prisme

Fente Lumière blanche. Fente Laser rouge. 2 Prisme 1L : Représentation visuelle du monde Activité.4 : Lumières colorées I. Décomposition de la lumière blanche Newton (dès 1766) a décomposé la lumière solaire avec un prisme. 1. Expériences au bureau : 1

Plus en détail

Lycée CARNOT- Sup PCSI 1/7

Lycée CARNOT- Sup PCSI 1/7 Lycée CARNOT- Sup PCSI /7 FOCOMETRIE Le but de ce TP, d une durée de 4 heures, est la mise en oeuvre et l'étude de diverses méthodes focométriques, permettant la détermination de la distance focale de

Plus en détail

De la lentille au miroir.

De la lentille au miroir. De la lentille au miroir. De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur? De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur?

Plus en détail

fig 1 - télescope Schmitt-Cassegrain

fig 1 - télescope Schmitt-Cassegrain OPTIQUE GEOMETRIQUE 1 Pour former l'image de la réalité, on utilise un système optique, généralement constitué d'un objectif (système réfractant). Le système optique complet est plus complexe pour certaines

Plus en détail

CHAPITRE 1 TOPOMÉTRIE: RELEVÉ DE TERRAIN AVEC UN NIVEAU OBJECTIFS 2 INTRODUCTION 2 EXEMPLE RÉSOLU 10 EXERCICES À RÉSOUDRE 11

CHAPITRE 1 TOPOMÉTRIE: RELEVÉ DE TERRAIN AVEC UN NIVEAU OBJECTIFS 2 INTRODUCTION 2 EXEMPLE RÉSOLU 10 EXERCICES À RÉSOUDRE 11 Chapitre 1 Topométrie: relevé de terrain avec un niveau 1/1 CHAPITRE 1 TOPOMÉTRIE: RELEVÉ DE TERRAIN AVEC UN NIVEAU OBJECTIFS 2 INTRODUCTION 2 1.1 DÉFINITIONS 3 1.2 STADIMÉTRIE 4 EXEMPLE RÉSOLU 10 EXERCICES

Plus en détail

Le modèle des lentilles minces convergentes

Le modèle des lentilles minces convergentes 1 Le modèle des lentilles minces convergentes LES LENTILLES MINCES CNVERGENTES résumés de cours Définition Une lentille est un milieu transparent limité par deux faces dont l'une au moins est sphérique.

Plus en détail

Montage de physique n 3 : Formation optique d'une image

Montage de physique n 3 : Formation optique d'une image Montage de physique n 3 : Formation optique d'une image Niveau concerné : 2 nde et Term Spé Sources manuel Nathan série Sirius 1 ère S (Avril 2005) manuel Hachette Terminale S - Enseignement de spécialité

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Optique : applications Introduction

Optique : applications Introduction Optique : applications Introduction I. Introduction Au premier semestre nous avons abordés l'optique géométrique, nous avons vu les lois de Snell Descartes qui décrivent comment la lumière est réfléchie

Plus en détail

BTS - SUJET D'OPTIQUE PHYSIQUE

BTS - SUJET D'OPTIQUE PHYSIQUE BTS - SUJET D'OPTIQUE PHYSIQUE DATE : 04/01/16 DUREE : 45min MATIERE : OPTIQUE PHYSIQUE CLASSE : TS A NOM DE L ENSEIGNANT : M. JUANICO Exercice 1 : Cours (7 points) 1/ Faire le dessin du montage du cours

Plus en détail

Collection pour l étude de la lumière polarisée

Collection pour l étude de la lumière polarisée Collection pour l étude de la lumière polarisée OP 1610 10005 Mode d emploi Version 02 Lumière polarisée Les expériences qui sont proposées décrivent les moyens de produire de la lumière polarisée. Elles

Plus en détail

L'apport de la physique au diagnostic médical

L'apport de la physique au diagnostic médical L'apport de la physique au diagnostic médical L'application des découvertes de la physique à l'exploration du corps humain fournit aux médecins des informations essentielles pour leurs diagnostics. Ils

Plus en détail

TP 02 - Production et repérage d une image (partie 1)

TP 02 - Production et repérage d une image (partie 1) 1 TP 02 - Production et repérage d une image (partie 1) Le but de ce TP est de savoir réaliser une image de bonne qualité et de taille voulue sur un écran, mais aussi de savoir utiliser un viseur pour

Plus en détail

09 LES LENTILLES ET L ŒIL

09 LES LENTILLES ET L ŒIL CH I- 09 LES LENTILLES ET L ŒIL PRESENTATION DES LENTILLES 11- Qu est ce qu une lentille?. Une lentille est formée d une matière transparente (verre ou plastique) délimitée par deux surfaces lisses dont

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

Les lentilles minces TP 3

Les lentilles minces TP 3 TP 3 Les lentilles minces Mots-clefs : lentille convergente, lentille divergente, distance focale, équation de conjugaison, réel, virtuel, méthode de Silbermann, autocollimation. Vous disposez de : un

Plus en détail

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

module de biophysique annales d examens

module de biophysique annales d examens QUESTIONS D EXAMENS ELECTRICITE ET BIOELECTRICITE OPTIQUE GEOMETRIQUE ET BIOPHYSIQUE DE LA VISION BIOPHYSIQUE DES RAYONNEMENTS Partie B : - Chapitre Faculté de Médecine - Université d Alger 1/23 Soit un

Plus en détail

PREMIERE PARTIE CRISTALLOGRAPHIE GEOMETRIQUE

PREMIERE PARTIE CRISTALLOGRAPHIE GEOMETRIQUE 1 PREMIERE PARTIE CRISTALLOGRAPHIE GEOMETRIQUE Cette première partie se divise en cinq chapitres : Le chapitre 1 donne quelques généralités sur l'état cristallin. Le chapitre est consacré aux calculs dans

Plus en détail

Optique : expériences de base

Optique : expériences de base Préparation à l agrégation de Sciences-Physiques ENS Physique Optique : expériences de base Sextant, Optique expérimentale 1 I) Sources lumineuses 1) Sources thermiques Elles ont un spectre continu dont

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées.

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées. Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Polarisation [6] Diffraction [7] Interférences

Plus en détail