Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg"

Transcription

1 Travaux pratiques Série 1 Optique : Spectroscope à réseau - Application à la mesure de la constante de Rydberg Objectifs du TP : Revoir l utilisation d un goniomètre (réglages, lecture au vernier ). Revoir les principaux résultats concernant la dispersion de la lumière par un réseau. Mettre en œuvre un protocole de mesure du pas d un réseau par transmission. Envisager une application du réseau en spectroscopie. Matériel à disposition : 1 goniomètre, 1 lampe à vapeur de mercure, 1 lampe à hydrogène, 1 réseau de diffraction d environ 600 traits/mm, 1 ordinateur avec tableur (EXCEL, REGRESSI ou autre) Introduction Dans le domaine visible, le spectre de l atome d hydrogène présente de nombreuses raies dont la plus intense est la raie rouge H, de longueur d onde 656 nm. Au fur et à mesure que l on s approche des faibles longueurs d onde (et donc du violet), les raies se resserrent jusqu à une raie limite H de longueur d onde 365 nm. C est ce que découvrit l astronome anglais Williams HUGGINS, dès 1881, en observant le spectre du rayonnement émis par les étoiles. En 1885, un professeur de mathématiques, Johann BALMER, remarqua que les longueurs d onde de ces raies pouvaient être retrouvées à l aide d une formule simple comportant des nombres entiers. Le résultat de BALMER fut réécrit par le physicien suédois Johannes RYDBERG sous la forme suivante : R H 2 2 n 2 avec n 2 Dans cette formule, R H est la constante de Rydberg, constante que l on cherche à mesurer dans ce TP. La première interprétation du spectre de l hydrogène et de la formule de RYDBERG fut proposée par le physicien danois Niels BOHR en Bien que rationnellement peu satisfaisant, le modèle de BOHR de l atome d hyrdogène reste fondamental sur les plans historique, pédagogique et épistémologique. TP 4 - Optique Page 1 sur 10

2 A. Quelques rappels sur le matériel utilisé dans ce TP # Présentation générale 1. Le goniomètre Un goniomètre, du grec «gônia» qui signifie «angle», est un instrument destiné comme son nom l indique à la mesure d angles. Il comporte : Un plateau circulaire gradué de 0 à 360, et dont la finesse des graduations détermine la précision de l instrument. C est au centre de ce plateau que l on place le système d étude qui nous intéresse (réseau de diffraction, prisme, CD ). Un collimateur, rotatif, destiné à former un faisceau parallèle à partir d une fente source éclairée par une source de lumière placée en amont. Une lunette de visée, rotative, munie d un réticule en forme de croix, permettant de pointer la direction de l image de la fente source. Cette lunette de visée, constituée de deux lentilles (un objectif et un oculaire ; cf. schéma ci-dessous), est réglée de façon à être afocale. Avant d envisager d utiliser le goniomètre pour effectuer des mesures, il est fondamental de régler le collimateur et la lunette de visée à l infini. TP 4 - Optique Page 2 sur 10

3 # Réglage de la lunette et du collimateur On commence impérativement par régler la lunette, qui présente deux bagues de réglage, comme indiqué sur la photo ci-contre. Le but de ce réglage est de rendre le système afocal, et de faire en sorte que l image intermédiaire d un objet à l infini formée par l objectif soit nette dans le plan du réticule. Le réglage de la lunette comporte deux étapes : 1 ère étape : mise au point sur le réticule En agissant sur la bague de réglage de l oculaire, on cherche à obtenir une image nette du réticule sans accomoder. Ce réglage est tout à fait personnel et dépend de la vue de l observateur. 2 ème étape : réglage de l objectif Il s agit de placer le réticule dans le plan focal image de l objectif, de manière à pouvoir observer ensuite l image de la fente source et le réticule de visée nets simultanément. Pour ce réglage, on utilise le principe de l autocollimation. On commence par éclairer le réticule à l aide de la lampe auxiliaire intégrée à la lunette, en n oubliant pas de déployer la lame semi-réfléchissante à l intérieur de la lunette. On dispose ensuite un miroir plan, tenu à la main, devant l objectif. Il faut alors agir sur la bague de réglage de sorte à former l image du réticule nette dans le plan du réticule. Remarque : Une fois ces deux réglages effectués, si un second utilisateur souhaite observer à travers l instrument, le seul réglage à reprendre éventuellement est celui de la mise au point de l oculaire pour l adapter à sa vue. Le réglage de l objectif ne doit plus être modifié en revanche! La lunette étant réglée, on passe au réglage du collimateur. Il suffit de viser le collimateur à l aide de la lunette, puis de tourner la bague de réglage jusqu à ce que l image de la fente soit nette à travers la lunette. Remarques : - Ne pas oublier de remonter la lame semi-réfléchissante de la lunette de visée, sous peine de voir plusieurs images de la fente source simultanément. - Il est impératif d effectuer le réglage du collimateur avec une fente d entrée assez fine afin de se protéger d un éblouissement dangereux! Une fois ces deux instruments réglés, on peut utiliser le goniomètre pour effectuer des mesures d angle entre une direction de référence et une direction de visée. La mesure est alors réalisée par lecture sur un vernier (gradué en minute d angle sur les modèles disponibles au lycée). TP 4 - Optique Page 3 sur 10

4 # Principe de la lecture d un angle au vernier Rien de tel que de raisonner sur un exemple concret! Imaginons la situation suivante : La lecture de l angle indiqué s effectue en 3 temps : On commence par repérer sur la partie fixe la valeur correspondant à la graduation située juste avant le 0 du vernier. Dans cet exemple, la graduation correspond à 5,5 ; la valeur mesurée sera donc comprise entre 5 30 et 6. On relève ensuite sur le vernier la valeur correspondant à la coïncidence vernier/rapporteur fixe. Dans cet exemple, la valeur de coïncidence est de 4. On ajoute enfin ces deux valeurs, ce qui donne ici 5 34 (= 5,57 ). 2. Les lampes Les lampes utilisées dans ce TP sont des lampes spectrales (lampe à vapeur de mercure, lampe à hydrogène). Elles sont constituées d une ampoule renfermant un gaz, que l on ionise par des décharges électriques entre deux électrodes. Les atomes du gaz ainsi excités émettent, lors de leur désexcitation spontanée, un rayonnement qui se présente sous la forme d un spectre de raies caractéristique du gaz présent dans l ampoule. Ces raies sont révélatrices de la quantification des niveaux d énergie dans les atomes et les molécules. Allure d un spectre lumineux discret Les lampes sont alimentées sous haute tension (environ 500 V), via un transformateur élévateur. Cette haute tension est nécessaire pour amorcer la première décharge, lorsque la lampe est froide. Les lampes n atteignent leur régime de fonctionnement permanent qu au bout de quelques minutes. Si l on vient à les éteindre au cours de la séance, il faudra attendre qu elles se refroidissent avant de les rallumer. En effet, la haute tension nécessaire à l amorçage de la première décharge dépend de la pression du gaz, et celle-ci augmente avec la température TP 4 - Optique Page 4 sur 10

5 3. Le réseau par transmission Un réseau plan est un objet constitué de N ouvertures diffractantes identiques, réparties régulièrement dans le plan du réseau. Un voilage transparent constitue un bon exemple de réseau par transmission. Le réseau par transmission étudié dans ce TP peut être représenté par un plan opaque percé d'un grand nombre, noté N, d'ouvertures rectangulaires, parallèles, équidistantes de a. Ces ouvertures rectangulaires (fentes) sont désignées sous le nom de traits du réseau : ils ont une longueur H et une largeur b H. Le paramètre a est le pas du réseau. La largeur totale L du réseau est alors donnée par la relation L Na. On peut également définir le nombre de traits par unité de longueur 1 n. a Le tableau ci-après précise quelques ordres de grandeur : n (traits/mm) a (µm) N H (cm) Réseau classique Réseau performant La qualité d un réseau est liée à sa périodicité : les traits doivent être rigoureusement identiques, sous peine d'obtenir une figure de diffraction parasitée. Les réseaux les plus précis sont les réseaux calibrés qui sont obtenus en gravant une surface métallisée avec une fine pointe de diamant. On peut également fabriquer des réseaux dits holographiques, obtenus en enregistrant la figure d'interférence de deux ondes planes. Ces deux types de réseaux sont très coûteux. L'avantage des réseaux calibrés est que l'on peut en fabriquer des répliques : on dépose sur le réseau original une résine que l'on détache et que l'on fixe sur une plaque de verre. Les répliques obtenues sont souvent de très bonne qualité. B. Quelques rappels sur la théorie de la dispersion de la lumière par un réseau 1. Formule des réseaux Derrière un réseau de N fentes, le phénomène lumineux observé est un phénomène d interférences entre N ondes cohérentes. Concrètement, pour chaque longueur d onde contenue dans le spectre de l onde incidente, on voit apparaître derrière le réseau plusieurs images de la source, situées de part et d autre de la direction de l onde TP 4 - Optique Page 5 sur 10

6 incidente. Par exemple, la figure suivante est celle observée sur un écran lorsqu on éclaire un réseau plan (100 traits/mm) par un laser hélium-néon. La position relative de ces différentes images dépend essentiellement des caractéristiques du réseau et de la longueur d onde. Elles se forment en effet dans les directions qui donnent lieu à un phénomène d interférences totalement constructives entre les N ondes diffractées par les traits du réseau. On note i la direction d incidence, repérée par rapport à la normale au réseau, et la direction d observation (cf. schéma ci-après). Retrouver l'expression de la différence de marche δ à l'infini entre les ondes diffractées par deux traits consécutifs du réseau. En exploitant la condition d interférences constructives, établir la formule des réseaux, qui donne la direction angulaire k, selon laquelle on observe la k-ième image ( k ) de la source derrière le réseau : sink sin i k ( k ) a L entier k est appelé ordre de diffraction. L image de la source associée à la direction k est appelée image d ordre k. Quelle(s) particularité(s) caractérise(nt) l image d ordre 0? TP 4 - Optique Page 6 sur 10

7 2. Minimum de déviation d une longueur d onde Dk Pour l'image d'ordre k associée à la raie de longueur d onde, on définit l'angle de déviation par k i. Montrer, en dérivant la formule des réseaux par rapport à i, que D k passe par un minimum lorsque i varie. Vérifier que, dans le cas où la déviation est minimale, le faisceau incident et le faisceau diffracté ont des directions symétriques par rapport au plan du réseau. Montrer que la déviation minimale donnée par : D k,min pour une longueur d'onde donnée, dans le spectre d'ordre k, est sin Dk,min k 2 2a # Exercice 1 3. Exercices d application Un faisceau laser ( 632,8 nm ) est diffracté par un réseau de 100 traits par millimètre. On suppose que le réseau est éclairé sous incidence normale. 1/ Quel est le nombre d ordres de diffraction observables? 2/ La figure obtenue sur un écran situé à la distance d derrière le réseau (l écran étant parallèle au plan du réseau) est celle présentée précédemment : En admettant que l échelle de la photographie est de 1 :10, évaluer la distance d. # Exercice 2 On éclaire un réseau de pas a par un faisceau parallèle de lumière blanche, sous incidence normale. 1/ Dans le spectre d ordre 1, indiquer la séquence des couleurs observées à partir de la normale au réseau. Qu en est-il pour le spectre d ordre -1? 2/ Etablir la condition pour que les spectres d'ordres k et 1 k ne se recouvrent pas. On supposera que les radiations visibles de la lampe blanche correspondent à des longueurs d'onde comprises entre 400 nm et 800 nm. TP 4 - Optique Page 7 sur 10

8 # Exercice 3 On utilise un réseau de pas a 2,2 m. Il est éclairé par un faisceau parallèle provenant d une lampe à mercure. On isole une raie verte du spectre à l aide d un filtre interférentiel et on pointe pour différents ordres les images obtenues. En repérant les angles par rapport à la normale au réseau, on obtient les résultats suivants : k k En déduire une estimation de la longueur d onde de la raie et l incidence du faisceau sur le réseau. # Exercice 4 On observe le spectre d ordre 2 d une lampe à vapeur de mercure. Pour la raie violette de 435,8 nm, le minimum de déviation est de Pour la raie verte, le minimum de déviation est de Déterminer le nombre de traits par millimètre et la longueur d onde de la raie verte. C. Manipulation n 1 : Mesure du pas du réseau utilisé dans ce TP Régler le goniomètre puis positionner le réseau étudié sur la plateforme mobile. 1. Première méthode : Utilisation de la formule des réseaux en incidence normale # Réglage de l incidence normale du faisceau collimaté sur le réseau Le principe de ce réglage repose sur la méthode de l'autocollimation. Il doit être réalisé très soigneusement, sous peine d introduire une erreur systématique importante dans chacune des mesures qui sera réalisée par la suite! Orienter la plateforme du goniomètre de telles sorte que l'axe du collimateur soit approximativement perpendiculaire au plan du réseau. Eclairer avec la lampe à vapeur de mercure. Repérer l image d'ordre 0 de la fente source et la pointer avec la lunette. Bloquer la lunette dans cette position. Mettre en place la lame semi-réfléchissante de la lunette. Observer la fente du collimateur (ordre 0), le réticule de la lunette et l image du réticule après réflexion sur le réseau (agir si besoin sur les vis de réglage de l horizontalité de la lunette et/ou de la plateforme). TP 4 - Optique Page 8 sur 10

9 Tourner alors la plateforme du goniomètre jusqu'à mettre en coïncidence la fente du collimateur, le réticule et son image. Lorsque c'est le cas, bloquer la plate-forme et ne plus y toucher : le réseau est alors éclairé sous incidence normale. Justifier le protocole de réglage. # Réalisation des mesures Mesurer 0 (position angulaire de l image d'ordre 0 et donc de la normale au réseau). Mesurer k pour toutes les raies visibles de la lampe à vapeur de mercure dans un ordre k donné (on prendra k = 1 ou 2). Compléter le tableau de mesures suivant : Couleur Intensité λ (en nm) k k k 0 sin k Rouge Pâle 623,4 Jaune Intense 579,1 Jaune Intense 577,0 Vert Jaune Très intense 546,1 Vert Très pâle 497,4 Bleu Vert Pâle 491,6 Bleu Violet Intense 435,8 Violet Pâle 407,8 Violet Intense 404,7 Remarque : L'identification de certaines raies n'est pas toujours évidente (notamment dans le bleu et dans le violet). On commencera par la raie rouge la plus extrême et on procèdera par longueurs d'onde décroissantes, en traçant la courbe au fur et à mesure pour vérifier qu'il n'y a pas de point aberrant. Si c'est le cas, la raie a été mal identifiée TP 4 - Optique Page 9 sur 10

10 # Interprétation Tracer la courbe sin k f ( ). En déduire le pas a du réseau. Comparer à la valeur donnée par le constructeur. 2. Deuxième méthode : Utilisation du minimum de déviation # Observation préliminaire Observer la raie verte intense de la lampe au mercure dans le spectre d ordre 1. Tourner lentement la plateforme supportant le réseau afin de la placer dans la position qui donne le minimum de déviation. Au cours de la rotation, on doit observer, dans le champ de la lunette, le déplacement régulier de la raie jusqu à un point de rebroussement, suivi d un changement de sens du déplacement. Le minimum de déviation est atteint au moment où la raie passe par la position de rebroussement. # Mesure du pas du réseau Proposer un protocole permettant de déterminer le pas du réseau à partir du minimum de déviation de la raie verte du mercure. Mettre en place le protocole et en déduire la valeur de a. D. Manipulation n 2 : Mesure de la constante de Rydberg On considère désormais que le pas a du réseau est connu. Justifier que la connaissance de a et la mesure du minimum de déviation D k,min associé à la raie de longueur d onde λ permettent de déterminer λ, ce qui constitue une méthode de mesure intrinsèque de longueur d'onde. Proposer, puis mettre en œuvre, un protocole de mesure de la constante de Rydberg. ATTENTION!!! La lampe à hydrogène ne s'utilise que sur des durées maximales de 1 minute, intercalées de périodes de repos de 10 minutes. TP 4 - Optique Page 10 sur 10

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire TP 06 - Spectroscope à réseau Comment analyser la lumière émise par une source? 1 Principe et réglages du spectrogoniomètre à lunette autocollimatrice Figure 1: Goniomètre Le goniomètre est un appareil

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Sources - Techniques de projection - Lentilles

Sources - Techniques de projection - Lentilles TPC2 TP - Sciences Physiques Sources - Techniques de projection - Lentilles Objectifs généraux de formation Formation disciplinaire - Capacités exigibles Caractériser une source lumineuse par son spectre.

Plus en détail

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE Licence de Physique 2000-2001 Université F. Rabelais UFR Sciences & Techniques P. Drevet 1 A1 - GONIOMETRE DE BABINET I. PRINCIPE

Plus en détail

Oraux : optique géométrique

Oraux : optique géométrique Extraits de rapports de jury : - Le tracé de rayons, dans des cas les plus triviaux, engendre de nombreuses erreurs et imprécisions, même avec une seule lentille (tracé de l'émergent pour un incident quelconque,

Plus en détail

image intermédiaire plan du réticule

image intermédiaire plan du réticule Principe et utilisation de lunette, collimateurs et viseurs On se propose d étudier les appareils permettant de réaliser des pointés et des mesures. Pour l utilisation correcte d un instrument d optique,

Plus en détail

Exercice n 1 : Les taches solaires

Exercice n 1 : Les taches solaires Vendredi 14 octobre Contrôle de physique TS spé Sauf indication contraire, tout résultat doit être justifié. Calculatrice autorisée Exercice n 1 : Les taches solaires On se propose d étudier une lunette

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

TP Cours Focométrie des lentilles minces divergentes

TP Cours Focométrie des lentilles minces divergentes Noms des étudiants composant le binôme : TP Cours ocométrie des lentilles minces divergentes Estimer la distance focale image d une lentille divergente est moins aisé que de déterminer celle d une lentille

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

Correction du TP FOCOMETRIE - Lentilles minces -

Correction du TP FOCOMETRIE - Lentilles minces - Introduction Correction du TP FOCOMETRIE - Lentilles minces - La focométrie consiste en la détermination expérimentale de la distance focale d un instrument d optique. Dans le TP précédent, nous avons

Plus en détail

Les lentilles minces TP 3

Les lentilles minces TP 3 TP 3 Les lentilles minces Mots-clefs : lentille convergente, lentille divergente, distance focale, équation de conjugaison, réel, virtuel, méthode de Silbermann, autocollimation. Vous disposez de : un

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES OBJECTIFS Observation de la diffraction. Observation des interférences. I ) DIFFRACTION D ONDES A LA SURFACE DE L EAU Sur la photographie ci-dessous, on observe que les vagues, initialement rectilignes,

Plus en détail

Fiche à destination des enseignants TS 2 CD ou DVD?

Fiche à destination des enseignants TS 2 CD ou DVD? Fiche à destination des enseignants TS 2 CD ou DVD? Type d'activité Activité expérimentale ou évaluation expérimentale, type ECE Objectifs Pré-requis Conditions de mise en œuvre Liste du matériel, par

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts 1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts Cours I. Modélisation d un œil : 1. Schéma de l œil et vision : L œil est un récepteur de lumière sensible aux radiations lumineuses

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

TP 02 - Production et repérage d une image (partie 1)

TP 02 - Production et repérage d une image (partie 1) 1 TP 02 - Production et repérage d une image (partie 1) Le but de ce TP est de savoir réaliser une image de bonne qualité et de taille voulue sur un écran, mais aussi de savoir utiliser un viseur pour

Plus en détail

Approche documentaire n 1 : autour de l appareil photographique numérique

Approche documentaire n 1 : autour de l appareil photographique numérique Approche documentaire n 1 : autour de l appareil photographique numérique But : «En comparant des images produites par un appareil photographique numérique, discuter l influence de la focale, de la durée

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés

E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés Nous allons voir ici différentes expériences où l utilisation d un spectromètre à CCD permet de réaliser des

Plus en détail

R.DUPERRAY Lycée F.BUISSON PTSI

R.DUPERRAY Lycée F.BUISSON PTSI TP OPTIQUE RDUPERRAY Lycée FBUISSON PTSI LUNETTE ASTRONOMIQUE OBJECTIFS Utiliser des systèmes optiques dans les conditions de Gauss (alignement axial et vertical, éclairage de l objet, ) Connaître les

Plus en détail

Devoir Surveillé n 3

Devoir Surveillé n 3 Devoir Surveillé n 3 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

CAPLP CONCOURS EXTERNE ET CAFEP. Section : mathématiques-sciences physiques

CAPLP CONCOURS EXTERNE ET CAFEP. Section : mathématiques-sciences physiques CAPLP CONCOURS EXTERNE ET CAFEP Section : mathématiques-sciences physiques Leçon en sciences portant sur les programmes de lycée professionnel Ministère de l Education nationale > www.education.gouv.fr

Plus en détail

1 Chemin d un faisceau lumineux

1 Chemin d un faisceau lumineux TD P3 Optique Lentilles sphériques minces Savoir-faire travaillés dans les exercices d application Savoir construire la marche d un rayon lumineux quelconque. Ex. 1 Démontrer la relation de conjugaison

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Lentilles minces convergentes

Lentilles minces convergentes Lentilles minces convergentes Lors de la rédaction, il est nécessaire de faire des schémas très soignés, au crayon, sur lesquels vous indiquerez avec précision les caractéristiques de la lentille, de l'objet

Plus en détail

INTERFÉROMÈTRE DE MICHELSON

INTERFÉROMÈTRE DE MICHELSON INTERFÉROMÈTRE DE MICHELSON ATTENTION! LASER ET LAMPE À MERCURE : DANGER! - Ne jamais regarder directement le faisceau Laser, sous peine de brûlures irréversibles de la rétine. - Ne jamais regarder directement

Plus en détail

Chapitre 2 : Les mécanismes optiques de l œil (p. 19)

Chapitre 2 : Les mécanismes optiques de l œil (p. 19) THÈME 1 : REPRÉSENTATION VISUELLE Chapitre 2 : Les mécanismes optiques de l œil (p. 19) Savoir-faire : Reconnaître la nature convergente ou divergente d une lentille. Représenter symboliquement une lentille

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Repère : SESSION 2008 Durée : 3 H Page : 0/7 Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Page : 1/7 Coefficient : 2

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

obs.5 Sources de lumières colorées exercices

obs.5 Sources de lumières colorées exercices obs.5 Sources de lumières colorées exercices Savoir son cours Mots manquants Chaque radiation lumineuse peut être caractérisée par une grandeur appelée longueur d onde dans le vide. Les infrarouges ont

Plus en détail

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière Physique - Optique et applications pour la Synthèse d Images IUT StDié Cours niveau Licence Optique v.2005-10-05 Stéphane Gobron Plan Introduction 2. Image, réflexion et réfraction 4. Interférences et

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique et et 1/21 1 / 21 et Lumière blanche Lampe à incandescence : lumière blanche Source thermique : Fonctionnement basé sur le rayonnement électromagnétique spontané d un corps chauffé à haute température,

Plus en détail

FOCOMETRIE - Lentilles minces -

FOCOMETRIE - Lentilles minces - Objectifs du TP FOCOMETRIE - Lentilles minces - - Expérimenter et comparer différentes méthodes de détermination de la distance focale (focométrie) d une lentille mince (convergente ou divergente). - Connaître

Plus en détail

Modélisation d une lunette astronomique

Modélisation d une lunette astronomique Modélisation d une lunette astronomique I. But de la manipulation : Étudier une lunette astronomique modélisée par un couple de lentilles minces convergentes, constituant un ensemble afocal qui est à définir.

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE OBJECTIFS : - Distinguer un spectre d émission d un spectre d absorption. - Reconnaître et interpréter un spectre d émission d origine thermique - Savoir qu un

Plus en détail

Focométrie. 1. Rappel : reconnaissance de la nature d une lentille

Focométrie. 1. Rappel : reconnaissance de la nature d une lentille Focométrie La focométrie est l ensemble des méthodes de détermination expérimentale de la distance focale d une lentille mince. 1. Rappel : reconnaissance de la nature d une lentille Il existe deux manières

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER Lycée Clemenceau PCSI (O.Granier) Les lentilles minces (approximation de Gauss) Définitions, lentilles convergentes et divergentes : Dioptre sphérique : on appelle «dioptre sphérique» une surface sphérique

Plus en détail

Optique géométrique et physique

Optique géométrique et physique J.Hormière / 2 Optique géométrique et physique I Un objectif de distance focale f 320 mm est constitué par un doublet (L, L 2 ) de formule 8, 5, 4 (f 8a, e 5a, f 2 4a). La lumière rencontre d abord la

Plus en détail

d- A l aide de la relation de grandissement et de la relation de Chasles OA = OA + AA, retrouver la

d- A l aide de la relation de grandissement et de la relation de Chasles OA = OA + AA, retrouver la DEVOIR SURVEILLÉ SCIENCES PHYSIQUES PREMIÈRE S THÈME : OBSERVER VISION IMAGE COULEUR DS 0 A 0 NOM :... PRÉNOM :... CLASSE :... DATE :... On prendra soin tout au long du devoir de justifier et de rédiger

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

DOSSIER PEDAGOGIQUE Modulo Solaire TP1 12/11/10 Page 1/19 Modulo Solaire TP N 1 Approche, découverte et analyse de performances

DOSSIER PEDAGOGIQUE Modulo Solaire TP1 12/11/10 Page 1/19 Modulo Solaire TP N 1 Approche, découverte et analyse de performances DOSSIER PEDAGOGIQUE Modulo Solaire TP1 12/11/10 Page 1/19 Modulo Solaire TP N 1 Approche, découverte et analyse de performances DOSSIER PEDAGOGIQUE Modulo Solaire TP1 12/11/10 Page 2/19 PREMIERE PARTIE

Plus en détail

TD d optique n o 3 Lentilles sphériques minces

TD d optique n o 3 Lentilles sphériques minces Lycée rançois Arago Perpignan M.P.S.I. - TD d optique n o Lentilles sphériques minces Exercice - Constructions de rayons émergents. Représenter les rayons émergents correspondants aux rayons incidents

Plus en détail

Chapitre «Couleur des objets»

Chapitre «Couleur des objets» Lycée Joliot Curie à 7 PHYSIQUE - Chapitre II Classe de 1 ère S Chapitre «Couleur des objets» La sensation de couleur que nous avons en regardant un objet dépend de nombreux paramètres. Elle dépend, entre

Plus en détail

X LENTILLES SPHERIQUES MINCES

X LENTILLES SPHERIQUES MINCES X LENTILLES SPHERIQUES MINCES Exercices de niveau Dans ces exercices vous apprendrez à manipuler correctement les relations de conjugaison et de grandissement, d abord dans des cas très simples puis plus

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

Mise en pratique : Etude de spectres

Mise en pratique : Etude de spectres Mise en pratique : Etude de spectres Introduction La nouvelle génération de spectromètre à détecteur CCD permet de réaliser n importe quel spectre en temps réel sur toute la gamme de longueur d onde. La

Plus en détail

ANNALE 2005-2006 FILERE FAS

ANNALE 2005-2006 FILERE FAS Première Année Premier Cycle ANNALE 2005-2006 FILERE FAS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON Par M.Rey marie.rey@insa-lyon Physique 1 Filière FAS TABLE DES MATIERES PROPAGATION DE LA LUMIERE...

Plus en détail

1) Sources de lumières

1) Sources de lumières TP COURS OPTIQUE GEOMETRIQUE Lycée F.BUISSON PTSI CONNAISSANCE DE BASES EN OPTIQUE GEOMETRIQUE 1) Sources de lumières 1-1) Sources à spectre de raies ou spectre discontinu Ces sources émettent un spectre

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Chapitre 2 : La couleur des objets (p. 29)

Chapitre 2 : La couleur des objets (p. 29) PRTIE 1 - OSERVER : OULEURS ET IMGES hapitre 2 : La couleur des objets (p. 29) onnaissances : Phénomènes d absorption, de diffusion et de transmission. Savoir-faire : Utiliser les notions de couleur blanche

Plus en détail

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

CLASSE DE SECONDE. Enseignement d Exploration PARTIE 1 PRINCIPE DU PANNEAU SOLAIRE PHOTOVOLTAIQUE

CLASSE DE SECONDE. Enseignement d Exploration PARTIE 1 PRINCIPE DU PANNEAU SOLAIRE PHOTOVOLTAIQUE CLASSE DE SECONDE Enseignement d Exploration Création et Innovation Technologique Dossier de Travail PARTIE 1 PRINCIPE DU PANNEAU SOLAIRE PHOTOVOLTAIQUE En vous basant sur des recherches Internet et les

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

IX. IMAGE D UN OBJET PAR UNE LENTILLE SPHERIQUE MINCE CONVERGENTE

IX. IMAGE D UN OBJET PAR UNE LENTILLE SPHERIQUE MINCE CONVERGENTE page IX-1 IX. IMGE D UN JET PR UNE LENTILLE SPHERIQUE MINCE CNVERGENTE Nous allons utiliser les foyers 1 et leurs propriétés pour établir la position et la grandeur d une image, connaissant celles de l

Plus en détail

Optique : expériences de base

Optique : expériences de base Préparation à l agrégation de Sciences-Physiques ENS Physique Optique : expériences de base Sextant, Optique expérimentale 1 I) Sources lumineuses 1) Sources thermiques Elles ont un spectre continu dont

Plus en détail

TP : Polarisation. Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier.

TP : Polarisation. Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier. TP : Polarisation Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier. I. Rappels sur la polarisation 1. Définition La polarisation

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail

Corrigés de la séance 16 Chap 27: Optique ondulatoire

Corrigés de la séance 16 Chap 27: Optique ondulatoire Corrigés de la séance 16 Chap 27: Optique ondulatoire Questions pour réfléchir : Q. p.10. Une onde de lumière naturelle tombe sur une vitre plate sous un angle de 5 o. Décrivez l état de polarisation du

Plus en détail

TP oeil et lunette astronomique

TP oeil et lunette astronomique TP oeil et lunette astronomique 1 Description de l oeil L oeil est l organe de la vision ; il peut observer directement des objets ou bien examiner les images données par des systèmes optiques ; son rôle

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

Correction ex feuille Etoiles-Spectres.

Correction ex feuille Etoiles-Spectres. Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800

Plus en détail

Chapitre 5 - Réfraction et dispersion de la lumière

Chapitre 5 - Réfraction et dispersion de la lumière I. Réfraction de la lumière A. Mise en évidence expérimentale 1. Expérience 2. Observation - Dans l air et dans l eau, la lumière se propage en ligne droite. C est le phénomène de propagation rectiligne

Plus en détail

Les lentilles additionnelles

Les lentilles additionnelles Les lentilles additionnelles Il existe deux méthodes pour réaliser des photographies rapprochées : ) l augmentation de tirage 2) les lentilles additionnelles C est la seconde méthode qui va être étudié

Plus en détail

Interférences lumineuses

Interférences lumineuses Interférences lumineuses Principe Les phénomènes d interférences résultent de la superposition de 2 ondes lumineuses. Ils ne peuvent se produire que lorsque les conditions suivantes sont réalisées : les

Plus en détail

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille 1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille Cours 1. Vision d un objet : Un objet ne peut être vu que s il émet de la lumière et que celle-ci pénètre dans l

Plus en détail

Chapitre 4 - Lumière et couleur

Chapitre 4 - Lumière et couleur Choix pédagogiques Chapitre 4 - Lumière et couleur Manuel pages 64 à 77 Ce chapitre reprend les notions introduites au collège et en classe de seconde sur les sources de lumières monochromatiques et polychromatiques.

Plus en détail

Diffraction. Comment mesurer le diamètre d un cheveu?...

Diffraction. Comment mesurer le diamètre d un cheveu?... Diffraction Comment mesurer le diamètre d un cheveu?... Doc. 1. Classes d un laser : Selon la puissance et la longueur d'onde d'émission du laser, celui-ci peut représenter un réel danger pour la vue et

Plus en détail

TP05 LA LUNETTE ASTRONOMIQUE LE TELESCOPE DE NEWTON

TP05 LA LUNETTE ASTRONOMIQUE LE TELESCOPE DE NEWTON TP05 LA LUNETTE ASTRONOMIQUE LE TELESCOPE DE NEWTON I. LA LUNETTE ASTRONOMIQUE OBJECTIFS : Une lunette astronomique permet de voir une image grossie d un objet éloigné. Vous devez simuler une lunette astronomique

Plus en détail

ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN!

ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN! TS Thème : Observer ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN! Compétences travaillées (capacités et attitudes) : ANA : proposer une stratégie (protocole expérimental) pour répondre à un problème posé.

Plus en détail

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées.

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées. Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Polarisation [6] Diffraction [7] Interférences

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

Couleur des objets. Voici les spectres de quelques lumières obtenues grâce à des spots rouge, vert et bleu : Spot bleu Spot vert

Couleur des objets. Voici les spectres de quelques lumières obtenues grâce à des spots rouge, vert et bleu : Spot bleu Spot vert Séance n 2 Couleur des objets Une couleur spectrale correspond à une lumière dont le spectre ne présente qu une seule couleur. Il existe 6 couleurs spectrales : rouge, orangé, jaune, vert, bleu, violet.

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

A A. Pour l'œil, placé n importe où et qui observe cette image, la lumière semble provenir de A' et non de A. A A

A A. Pour l'œil, placé n importe où et qui observe cette image, la lumière semble provenir de A' et non de A. A A IMAGE FORMEE PAR UN MIROIR PLAN ET PAR UN MIROIR SPHERIQUE CONVERGENT Objectifs: construire l'image d'un objet donnée par un miroir I. COMMENT SE FORME UNE IMAGE DANS UN MIROIR PLAN 1) Symbole du miroir

Plus en détail

Expression de la Concession et de l Opposition in. La photographie scientifique Par Gérard BETTON (PUF, 1975) 04/06/2015

Expression de la Concession et de l Opposition in. La photographie scientifique Par Gérard BETTON (PUF, 1975) 04/06/2015 1 Expression de la Concession et de l Opposition in La photographie scientifique Par Gérard BETTON (PUF, 1975) 2 Concession /Opposition Compléter avec un des mots ou expressions suivantes : au lieu de

Plus en détail

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème COFFRET D OPTIQUE OEB Contenu Toutes les expériences présentées dans les pages suivantes ont été faites avec ce matériel. CLASSE DE 8 ème CH 6-1 Propagation de la lumière I Propagation de la lumière p

Plus en détail

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes Niveau : terminale S. Thème : Calcul d incertitudes à l aide d outils numériques Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Plus en détail

La spectrophotométrie

La spectrophotométrie Chapitre 2 Document de cours La spectrophotométrie 1 Comment interpréter la couleur d une solution? 1.1 Décomposition de la lumière blanche En 1666, Isaac Newton réalise une expérience cruciale sur la

Plus en détail

TP4 : Etude de solutions colorées

TP4 : Etude de solutions colorées TP4 : Etude de solutions colorées Objectifs Comprendre le principe de la spectrophotométrie Comprendre le problème posé par les peintures photodégradables On dispose d une solution magenta de permanganate

Plus en détail