I. Probabilités : petit bilan de 2 nde

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I. Probabilités : petit bilan de 2 nde"

Transcription

1 ère S FICHE Variables aléatoires I. Probabilités : petit bila de de EXECICE TYPE (voir évaluatio diagostique d etrée e ère S) Eocé O fait tourer ue roue équilibrée comme ci-dessous séparées e 8 secteurs idetiques, puis o lit le uméro e face du repère O cosidère les évèemets suivats : A : «le uméro est strictemet supérieur à 5» : «le uméro est impair» Détermier les probabilités suivates : p(a), p(), p(a ), p(a ) et p( A ) Solutio L uivers Ω compred huit issues possibles : Ω = { ; ; ; ; 5 ; ; 7 ; 8 ; 9} Comme la roue est dite «équilibrée», les évèemets élémetaires sot équiprobables. ombre de cas favorables La probabilité d u évèemet est égale à ombre de cas possibles. A = { ; 7 ; 8} doc p(a) = 8. = { ; ; 5 ; 7} doc p() = 8 = A = {7} doc p(a ) = 8 A : A et A : A ou A = { ; ; 5 ; ; 7 ; 8} doc p(a ) = 8 = emarque : das u cas d équiprobabilité, o peut aussi utiliser la formule : p(a ) = p(a) + p() p(a ) p(a ) = = 8 = A est l évèemet cotraire de A, c'est-à-dire A = { ; ; ; ; 5} doc p( A ) = 5 8 emarque : das u cas d équiprobabilité, o peut aussi utiliser aussi la formule : p( A ) = p(a) p( A ) = 8 = = 5 8

2 II. Loi de probabilité d ue variable aléatoire Défiitio Lorsqu à chaque évéemet élémetaire d ue expériece aléatoire o associe u ombre réel, o dit que l o défiit ue variable aléatoire. Lorsqu à chaque issue possible pour ue variable aléatoire X o associe la probabilité correspodate, o dit que l o défiit la loi de probabilité de X. EXECICE TYPE Détermier ue loi de probabilité Eocé O lace u dé o pipé. O gage 5 si le sort, o perd si le sort et o perd das les autres cas. O ote X la variable aléatoire doat le gai, positif ou égatif, correspodat. Doer, sous forme d u tableau, la loi de probabilité de X. Notatios O ote : (X = 5) l évèemet «X pred la valeur 5» p(x= 5) la probabilité de l évèemet «X pred la valeur 5» Solutio emarques Avat de détermier les probabilités, il faut d abord détermier les valeurs prises par la variable aléatoire X correspodat aux gais possibles : Les valeurs possibles par X sot X =, X =, ou X = 5. O détermie alors esuite la probabilité de chacue de ces valeurs possibles : p(x = ) est e fait la probabilité de l évèemet «Obteir le,, ou 5». Comme le dé est o pipé, les évèemets élémetaires sot équiprobables. ombre de cas favorables p(x = ) = ombre de cas possibles = = De la même maière, p(x = ) = et p(x = 5) = O présete souvet ue loi de probabilité das u tableau : La somme des probabilités décrites das ue loi de probabilités est toujours égale à A ue même expériece aléatoire, o peut associer plusieurs variables aléatoires. Par exemple, avec le lacer de dé ci-dessus, o aurait pu cosidérer ue variable aléatoire Y qui au ombre obteu associe si le ombre est u multiple de et 0 sio La loi de probabilité de Y est : y i 0 Das le TP «Simulatio d ue situatio de probabilité avec u tableur», o a pu observer que : Si o effectue suffisammet de lacers ou quad le ombre de tirages simulés est grad, les fréqueces observées tedet à s approcher de la probabilité théorique. Voir égalemet la fiche «Echatilloages» x i 5 p(x = x i ) p(y = y i )

3 III. Utiliser des arbres podérés de probabilités U exemple pour compredre Das ue ure coteat trois boules blaches et ue boule rouge, idiscerables au toucher, o tire ue ère boule, puis, après avoir remis la ère boule, o tire ue ème boule. Quelle est la probabilité de l évèemet A : «obteir deux boules blaches»? Aalyse E de E ère Arbre complexe! Coclusio : p(a) = 9. p(a) = = 9 Das cet arbre, o regroupe les braches idetiques mais o idique la probabilité de chacue pour se rappeler que chaque brache est pas équiprobable. Plus clair et simple! Pricipe multiplicatif Das u arbre podéré de probabilités, la probabilité d ue issue fiale est le produit des probabilités des braches itermédiaires. emarque Das l exemple ci-dessus, les deux tirages sot dits idépedats. E effet, les résultats du ème tirage sot idetiques quelque soit le résultat du er tirage EXECICE TYPE Eocé Utiliser des arbres podérés de probabilités Détermier la loi de la variable aléatoire X correspodat au ombre de boules blaches obteues si o réalise ue expériece comme ci-dessus mais sas remettre la boule après le er tirage. Solutio Attetio, ici les deux tirages e sot pas idépedats. Cette expériece peut être modéliser par l arbre podéré ci-cotre : Grâce à cet arbre, o obtiet aisi : P(X = ) = + = + = et P(X = ) = = La loi de probabilité de la variable aléatoire X est doc : X = x i P (X = x i )

4 IV. Espérace d ue variable aléatoire Défiitio Cosidéros ue variable aléatoire X qui pred respectivemet les valeurs x, x, x,, x avec les probabilités p, p, p,, p. L espérace mathématique de X est le ombre, oté E(X), défii par : E(X) = x p + x p + x p + + x p x i p i. emarque Das le TP «Simulatio d ue situatio de probabilité avec u tableur», o a pu observer que : Lorsque l o répète ue expériece aléatoire e grad ombre de fois, la moyee de la série statistique ted à s approcher de l espérace mathématique. EXECICE TYPE Eocé Détermier l espérace d ue variable aléatoire Détermier l espérace de la variable aléatoire X décrite à l exercice type ci-dessus. Solutio E(X) = ( ) + ( ) + 5 = + 5 = + 5 = + 5 = Iterprétatio L espérace mathématique est égative : cela sigifie que, après u grad ombre de lacers, il y a de forte chace pour que j ai perdu de l arget à ce jeu Attetio, si j ai beaucoup de chace, je peux quad même repartir e ayat gagé de l arget : il y a aucue certitude Propriété de liéarité Soit a et b deux réels, alors o a : E(aX + b) = ae(x) + b Preuve Si la variable aléatoire X qui pred respectivemet les valeurs x, x, x,, x avec les probabilités p, p, p,, p, alors la variable aléatoire ax + b pred respectivemet les valeurs ax +b, ax +b,, ax +b avec les probabilités p, p, p,, p. d où : E(aX + b) = a (ax i +b) p i a x i p i + b p i x i p i + b p i (a x i p i +b p i ) (factorisatios) = a E(X) + b car x i p i = E(X) et p EXECICE TYPE Eocé Solutio Utiliser la propriété de liéarité de l espérace O cosidère toujours la variable aléatoire X idiquat la gai comme défii ci-dessus.. Décrivez par des phrases la variable aléatoire Z = X +.. Doer la loi de probabilité de Z.. Détermier E(Z) le plus simplemet possible.. La variable aléatoire Z double les gais relatifs correspodat à X e ajoutat. z i p( Z = z i ). E(Z) = E(X+) = E(X) + = ( ) + = =

5 V. Variace et écart-type d ue variable aléatoire Défiitio Cosidéros ue variable aléatoire X qui pred respectivemet les valeurs x, x, x,, x avec les probabilités p, p, p,, p. La variace de X est le ombre, oté V(X), défii par : V(X) = [x E(X)] p + [x E(X)] p + + [x E(X)] p [x i E(X)] p i. L écart-type de X est le ombre, oté σ(x), défii par : σ(x) = V(X). x i E(X) est l écart etre la valeur x i et E(X). emarque La variace, et surtout l écart-type, permettet de comparer la dispersio des valeurs d ue série autour de l espérace EXECICE TYPE 5 Détermier la variace d ue variable aléatoire Eocé Détermier la variace et l écart-type de la variable aléatoire T dot la loi de probabilité est : t i 0 p( T = t i ) 0, 0,5 0, Solutio Détermios tout d abord l espérace mathématique de T : E(T) = ( ) 0, + 0 0,5 + 0, = 0, O a alors : V(T) = [( ) 0,] 0, + [0 0,] 0,5 + [ 0,] 0, =, σ(t) = V(T) =,,. Propriétés V(X) = E( X ) [ E(X) ] (*) Soit a et b deux réels, alors o a : V(aX + b) = a V(X) (**) Preuve Si la variable aléatoire X qui pred respectivemet les valeurs x, x, x,, x avec les probabilités p, p, p,, p, alors la variable aléatoire X pred respectivemet les valeurs x, x,, x avec les probabilités p, p, p,, p. V(X) [x i E(X)] p i x i p i E(X) x i p i + [E(X)] p i x i p i + x i p i E(X) ( x i E(X) x i + [E(X)] ) p i (développemet) E(X) x i p i + x i p i + [E(X)] [E(X)] p i = E(X ) E(X) E(X) + [E(X)] car p i p = E(X ) [E(X)] + [E(X)] = E(X ) [E(X)]. O a démotré (*).

6 V(aX + b) = E( (ax + b) ) [ E(aX + b) ] e utilisat la propriété (*) = E( a X + abx + b ) [ ae(x) + b ] = a E(X ) + abe(x) + b [ a [E(X)] + abe(x) + b ] = a E(X ) + abe(x) + b a [E(X)] abe(x) b = a E(X ) a [E(X)] = a ( E(X ) [E(X)] ) = a V(X) d où (**). EXECICE TYPE Utiliser les propriétés de la variace Eocé O cosidère la variable aléatoire G dot la loi de probabilité est : g i 0 0 p( G = g i ) 0, 0, 0,5. Calculer la variace de G avec la formule (*).. Détermier la loi de probabilité d ue variable aléatoire H dot la variace serait quatre fois celle de G. Solutio. E(G) = ( 0) 0, + 0 0, + 0,5 = ; E(G ) = 00 0, + 0 0, + 0,5 = Doc V(G) = E(G ) E(G) = ( ) = = 8.. L éocé idique que : V(H) = V(G) = V(G) soit avec (**) que : V(H) = V( G ). Il suffit doc que les valeurs prises par H soit le double de celles de G. Autremet dit, la loi de probabilité de H serait : h i 0 0 p( H = h i ) 0, 0, 0,5

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

1 ère S Exercices sur le schéma de Bernoulli (1)

1 ère S Exercices sur le schéma de Bernoulli (1) ère Exercices sur le schéma de Beroulli () 8 Le chevalier de Méré, philosophe et homme de lettres, pose le problème suivat au mathématicie Blaise ascal : «Qu est-ce qui est le plus probable : obteir au

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

Exercices sur les probabilités conditionnelles

Exercices sur les probabilités conditionnelles TS Exercices sur les probabilités coditioelles O lace ue fois u dé truqué. O ote le uméro de la face supérieure. L expériece est modélisée par la loi de probabilité doée das le tableau ci-dessous : Résultats

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance Termiale S. Lycée Desfotaies Melle Chapitre 11 Probabilité Coditioemet et idépedace I. Probabilité coditioelle 1- Exemple Das u lycée coteat N élèves, 4% des élèves sot des filles, % des garços. Parmi

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité Pla du cours Rappels de probabilité Défiitios Axiomes Variable aléatoire Foctio de répartitio Momets R. Flamary, R. Herault, A. Rakotomamojy 9 octobre 4 Exemples de lois Loi uiforme Loi ormale Loi uiforme

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Chapitre 5 : Variables aléatoires discrètes

Chapitre 5 : Variables aléatoires discrètes VARIABLES ALEATOIRES DISCRETES 71 Chapitre 5 : Variables aléatoires discrètes 5.1 Défiitios formelles Défiitio : Soit U l'uivers d'ue expériece aléatoire. Ue variable aléatoire sur U est ue foctio à valeurs

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux.

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux. TS spécialité Cotrôle du mercredi 0 javier 016 (50 miutes) II. (4 poits) Démotrer que pour tout etier relatif, 1 et 1 sot premiers etre eux. Préom : Nom : Note :. / 0 Écrire très lisiblemet, sas rature

Plus en détail

Exemple de corrigé du CAPES de mathématiques

Exemple de corrigé du CAPES de mathématiques Exemple de corrigé du CAPES de mathématiques épreuve 2, sessio 215 athalie DAVAL ESPE-IEM éuio Problème 1 ( Partie A I. O cosidère deux etiers relatifs a et b o uls. 1. O suppose qu il existe des etiers

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

PHEC1 Correction feuille d exercices

PHEC1 Correction feuille d exercices PHEC Correctio feuille d exercice 7 0-0 correctio de l exercice. Loi de R : Il et évidet que R() [[; ]] (au mieux o pioche boule verte et doc boule rouge) et 8 [[; ]]; P (R ) 0 Juti catio du calcul : Pour

Plus en détail

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008.

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008. La plage Par Arauld HECQUET, Raphaël SIMONET DAVIN, Maime LOUIS. Élèves de Secode au Lycée MONTAIGNE de BORDEAUX. Itro : présetatio du sujet Partie I : la pièce Techique de comptage Aée 2008 Le ombre total

Plus en détail

MATHEMATIQUES Option scientifique Vendredi 13 mai 2005 de 8h à 12h

MATHEMATIQUES Option scientifique Vendredi 13 mai 2005 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Cocours d'admissio sur classes préparatoires MATHEMATIQUES Optio scietifique Vedredi 3 mai 5 de 8h à h La présetatio, la lisibilité, l'orthographe, la qualité

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

. Calculer de nouveau f (x) et f (x) puis f (1) et f (1).

. Calculer de nouveau f (x) et f (x) puis f (1) et f (1). Gééralités : O suppose que la variable aléatoire X suit ue loi biomiale B ; ) alculer P(X ) ; P(X ) ; P(X ) ; P(X ) ; P (X ) ; P (X ) ; P(X ). ) alculer E(X) et σ(x) O suppose que la variable aléatoire

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

PROBABILITES. TD n 1. Bg sachant que PA

PROBABILITES. TD n 1. Bg sachant que PA TD 1 1. Quel est l uivers Ω pour l'expériece : o lace 2 fois de suite u dé (o truqué). A quelles parties de Ω correspodet les évéemets suivats : a) A : o obtiet pas d as au cours des 2 lacers ; b) B :

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA AUTOMNE 2003 Date : Samedi 1 er novembre 2003, de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA AUTOMNE 2003 Date : Samedi 1 er novembre 2003, de 14h00 à 17h00 Uiversité du Québec à Motréal Départemet de mathématiques Corrigé MAT 080 MÉTHODES STATISTIQUES EAMEN INTRA AUTOMNE 003 Date : Samedi 1 er ovembre 003, de 14h00 à 17h00 Nom : Préom : Code permaet : Groupe:

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

> 1 ère partie : > 2 ème partie : Suites arithmétiques et géométriques. Probabilités. Séquence 9 MA12. Cned Académie en ligne

> 1 ère partie : > 2 ème partie : Suites arithmétiques et géométriques. Probabilités. Séquence 9 MA12. Cned Académie en ligne > ère partie : Suites arithmétiques et géométriques > ème partie : Probabilités Séquece 9 MA 99 ère partie Chapitre > Suites arithmétiques... 0 A AB Activités, Cours Défiitio, exemples Propriétés Ses de

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices.

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. Lycée Féelo Saite-Marie Termiales ES Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

eduscol Ressources pour le lycée général et technologique Statistiques et probabilités Ressources pour la classe de première générale et technologique

eduscol Ressources pour le lycée général et technologique Statistiques et probabilités Ressources pour la classe de première générale et technologique eduscol Ressources pour le lycée gééral et techologique Ressources pour la classe de première géérale et techologique Statistiques et probabilités Ces documets peuvet être utilisés et modifiés libremet

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Le rapport de corrélation : mesurer la liaison entre une variable qualitative et une variable quantitative.

Le rapport de corrélation : mesurer la liaison entre une variable qualitative et une variable quantitative. Le rapport de corrélatio : mesurer la liaiso etre ue variable qualitative et ue variable quatitative. Frédéric Satos CNRS, UMR 599 PACEA Courriel : frederic.satos@u-bordeaux.fr mars 05 Résumé Le rapport

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée gééral et techologique Ressources pour la classe de première géérale et techologique Statistiques et probabilités Ces documets peuvet être utilisés et modifiés libremet

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES Cours Première S Suites arithmétiues ) Défiitio par récurrece Défiitio : O dit u ue suite ( u ) est ue suite arithmétiue, s il existe u réel r tel ue pour tout etier

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Résumé 10 : Probabilités I

Résumé 10 : Probabilités I http://mpbertholletwordpresscom Résumé 10 : Probabilités I Ω sera u esemble abstrait, c est-à-dire sas structure particulière P(Ω désige l esemble de tous les sous-esembles de Ω, y compris le sous-esemble

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

A RETENIR TERMINALE ES

A RETENIR TERMINALE ES A RETENIR TERMINALE ES Ce documet est destié à "résumer" le cours de termiale. Il e préted pas coteir tout ce que vous devez savoir pour réussir l épreuve. Il est coçu pour que vous puissiez l utiliser

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail