Le raisonnement par récurrence, un outil puissant de démonstration

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le raisonnement par récurrence, un outil puissant de démonstration"

Transcription

1 TS I Itérêt ) Exemple est la site défiie par (site récrrete ; site «arithmético-géométriqe» ; o e coaît pas l expressio d terme gééral e foctio de ) Calclos les premiers termes de cette site Le raisoemet par récrrece, otil pissat de démostratio II Théorème de récrrece ) Éocé (admis sas démostratio) P est e phrase mathématiqe dépedat d etier atrel O sppose qe les dex coditios sivates sot vérifiées : C : P est vraie P est vraie por etier atrel fixé alors la phrase P est vraie por tot etier atrel C : Si la phrase Das ce cas, o pet affirmer qe la phrase Schéma : P est vraie Cojectre : P est vraie P vraie P vraie Alors, por tot etier atrel, P est vraie Il semble qe l o ait por tot etier atrel, (cf passage d mode récrret a mode explicite por e site) ) Problème Si l o ote por la phrase P : «P 7 sot vraies», o vérifie facilemet qe P, P, P Por démotrer qe la phrase est tojors vraie, o e pet pas se coteter de qelqes vérificatios, assi ombreses soiet-elles Por cela, il fadrait disposer d raisoemet qi permette e ombre fii d étapes de motrer qe la phrase P est vraie por tos les etiers atrels (qi sot e ifiité) Le raisoemet par récrrece permet précisémet d opérer «le passage d fii à l ifii» (selo la formle célèbre de Heri Poicaré) 3 ) Atre approche ) Vocablaire C : «iitialisatio» C : «hérédité»-«trasmissibilité» - «propagatio» 3 ) Extesio (phrases vraies à partir d certai rag) Lorsqe P est vraie P vraie P vraie Alors por tot etier atrel III Explicatio d pricipe ) Barreax d e échelle, P est vraie Si l o pet mettre pied sr barrea de l échelle (le barrea ) et si l o pet passer d barrea qelcoqe a sivat, alors o pet gravir tos les barreax de l échelle à partir d barrea O a déjà tilisé type de raisoemet appelé raisoemet de «proche e proche» qi permet d établir des propriétés sr le sige des termes d e site o des majoratios-mioratios (par cotre, pas por des ses de variatio) Le raisoemet par récrrece va permettre de formaliser ce type de raisoemet ) Domios O pet assi doer l image de domios qi tombet les s après les atres

2 3 ) Remarqes La partie «iitialisatio» est très importate ; il existe des phrases qi sot héréditaires mais pas vraies a rag iitial La partie «hérédité» tilise mode de raisoemet dédctif O pet avoir l impressio qe l o part d résltat por démotrer le résltat Ce est évidemmet pas d tot le cas IV Exemple de mise e œvre d raisoemet par récrrece est la site défiie par Démotrer par récrrece qe por tot etier Rédactio Démotrer par récrrece qe por tot etier, o a : Por o défiit la phrase P : Iitialisatio : Vérifios qe P est vraie par hypothèse doc D où P est vraie Hérédité : Cosidéros etier atrel tel qe la phrase c est-à-dire P soit vraie Démotros q alors la phrase P est vraie c est-à-dire Par hypothèse de récrrece, o a : d où Doc P est vraie Coclsio : O a démotré qe P est vraie et qe si etier atrel, alors P est vraie Doc, d après le théorème de récrrece, la phrase vraie por tot etier atrel P est vraie por P est Commetaires Le résltat d e récrrece : «por tot» o «por tot» O doe om à la phrase mathématiqe Elle décole tojors de l éocé qi est doé Trascriptio de la phrase P O sait q tel etier existe O part de (hypothèse de récrrece) O vet arriver à Il fat «icrster» et Coditios C et C d théorème Cela marche comme des domios qi tombet les s après les atres P vraie P vraie P vraie (E gros le «por tot» e marche q avec le!) Il est importat de compredre qe le «por tot» est qelqe chose qe l o «gage» à la fi de la démostratio 3 4

3 V Atre exemple de mise e œvre d raisoemet par récrrece est la site défiie par (reprise de l exemple d I) Démotrer qe por tot etier atrel, o a : Por o défiit la phrase P : Iitialisatio : Vérifios qe P est vraie par hypothèse doc D où P est vraie Hérédité : Démotros q alors la phrase P est vraie c est-à-dire Cosidéros etier atrel tel qe la phrase P soit vraie c est-à-dire Par hypothèse de récrrece, o a : d où Par site, P est vraie Doc Atre rédactio : Coclsio : O a démotré qe (e effet : Doc, d après le théorème de récrrece, la phrase d après les règles sr les pissaces) P est vraie et qe si P est vraie por etier atrel, alors P est vraie por tot etier atrel P est vraie VI Remarqes ) Remarqe historiqe Pascal est le premier mathématicie à avoir fait raisoemet par récrrece por démotrer e propriété («raisoemet idctif») ) Rédactio à bie respecter le protocole (beacop de rédactio, ac qatificater) 3 ) Qelles propriétés pet-o démotrer par récrrece? - Avec des sites O porra démotrer éormémet de résltats : mioratios, majoratios, ses de variatios, expressio d terme gééral d e site, formles sommatoires etc - Sas des sites (cf exos) Propriétés des etiers atrels par exemple Ne pas écrire de raccorci d type P 3 VII Appedice : remarqes sr le symbole ) Qelqes formles désige e site ) Utilisatio : formles sommatoires Voir exercices 5 6

4 COMMENTAIRES Ue propositio est e phrase qi est soit vraie soit fasse Exemples : «divise 5» est fasse «divise» est vraie por tot etier «est ombre décimal» est fasse Objectif : chercher à démotrer q e propriété est vraie por tot etier atrel Certaies propriétés pevet se démotrer directemet Par exemple : «divise» E effet, por tot etier, o a : E revache, il y a des cas où o sait pas démotrer directemet (o e tot cas pas facilemet) q e propriété est vraie por tot etier atrel directemet Par exemple : «est divisible par 9» Le raisoemet par récrrece va os forir moye simple et pissat de démotrer beacop de propriétés Le mercredi 8 décembre A propos d I : «Les calcls e sffiset pas» «Il fat qe ce soit vrai por tot» A propos de la ère récrrece : O a le mot HYPOTHESE («hypothèse de récrrece», «hypothèse géérale») HYPOTHESE e mathématiqes : Palie Galtier : «O e sait pas si c est vrai o pas» «C est qelqe chose qe l o sppose» Floretie : «C est ce q o doit démotrer» Atoie Bélorgey : «Ue hypothèse est e affirmatio qe l o pred por vraie tadis qe l o est pas sûr Ue hypothèse c est qelqe chose qe l o cherche à démotrer» Boe défiitio doée par ROXANE : «E mathématiqes, ce sot totes les iformatios doées par l éocé» E SVT, le mot HYPOTHESE a pas le même q e mathématiqes Attetio ax amalgames avec la SVT E SVT, «émettre e hypothèse», «valider o réfter e hypothèse» E maths «émettre e cojectre» émettre e cojectre émettre e hypothèse Mardi 8 décembre 9 Vicet Faber 4 «Mosier, si o pred la site est la site défiie par Si o vet démotrer qe tos les termes sot positifs o ls, alors o a pas besoi de récrrece» C est e remarqe tot à fait jste Gaéta Le Bail Etdier le ses de variatio de la site «Ici, il vat miex qe je fasse De tote faço, je pex pas faire la foctio» Ici hypothèse géérale = défiitio de la site Hypothèse de récrrece La récrrece e mathématiqes : le mot, l expressio «por tot» Roxae Haziza : Qad o ajote des élémets, qelles sot les règles de priorité d»icrstatio» à appliqer Exemples : Coaissat, o mltiplie d abord par pis o ajote 7 8

5 Coaissat, o a ajoté pis o fait la racie carrée e exemple de récrrece : pls difficile qe le premier e rédactio : O part de l hypothèse géérale O «icrste» l hypothèse de récrrece Pas de qatificater das e récrrece P() est vraie Icorrect : pas de texte e fraçais Le jedi 5 septembre Cors particlier avec Alexadre Léois A qoi sert la foctio P()? Répose : Ce est pas e foctio ; c est e propositio qi déped de l etier O pose cette propositio par commodité Idée persoelle : Relier la récrrece ax algorithmes Notio de bocle Ivariat de bocle La otio d ivariat de bocle permet de doer atre éclairage sr le raisoemet par récrrece 9

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999 TS DS Ldi /0/07 Exercice : sr 6 poits O cosidère la site défiie par 0 0 et por tot, 3.. Démotrer, par récrrece, qe por tot,.. Etdier le ses de variatio de la site 3. Détermier la limite de la site 4. Recopier

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

,=LESfSUITESfAUfBACf2013e

,=LESfSUITESfAUfBACf2013e ,=LESfSUITESfAUfBACf0e Frace métropolitaie septembre 0 5 poits L objet de cet exercice est d étdier la site ( ) défiie sr par 7 0 = et por tot etier atrel, () O porra tiliser sas démostratio le fait qe

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ).

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ). Cors de Mathématiqe S CHAPITRE N Partie : Algebre & Aalyse SUITES - Cors D abord qelqes petits rappels : a = a = a m m a a = a + ( )( ) a m = m a a = b b a + a a = a si a, alors a a a a = + a m = a m Notio

Plus en détail

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points)

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points) TS Cotrôle d samedi er octobre 6 ( heres) Préom et om : Note : / I ( poits : ) poit ; ) poit) O cosidère le polyôme 4 P 6 9 6 89 avec ) Démotrer qe por tot ombre complexe o a : P 6 89 III (4 poits : )

Plus en détail

Les suites numériques

Les suites numériques Les sites mériqes Objectifs : - Maîtriser la otio de covergece; cas particliers de la covergece mootoe; - Maîtriser les sites récrretes + = f( avec f mootoe; cas particlier des sites géométriqes; 3- Voir

Plus en détail

SUITES RECURRENTES - EXERCICES CORRIGES

SUITES RECURRENTES - EXERCICES CORRIGES Exercice. SUITES RECURRENTES - EXERCICES CORRIGES O cosidère la site ( ) défiie par ) Etdier la mootoie de la site ( ) ) a) Démotrer qe, por tot etier atrel, b) Qelle est la limite de la site ( )? = por

Plus en détail

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib Les sites réelles Copyright Dhaoadi Nejib 009 00 http://wwwsigmathscocc Dhaoadi Nejib http://wwwsigmathscocc Page : Sites Réelles Das ce chapitre I désige l esemble des etiers 0 ( 0 N ) I Rappels et complémets

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS Le raisoemet par récurrece, u outil puissat de démostratio I. Itérêt ) Exemple 0 0 u est la suite défiie par u u 2u (suite récurrete ; suite «arithmético-géométrique» ; o e coaît pas l expressio du

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n LFA / ère ES mathématiqes-cors Mme MAINGUY Chapitre 7 Ch7 COURS Gééralités sr les sites I Défiitio Exemples exemple O cosidère la site défiie por par la relatio Calclos ; ; ; ; exemple O cosidère la site

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

1 ère S Exercices sur les suites (3)

1 ère S Exercices sur les suites (3) ère S Exercices sr les sites () (Sites arithmétiqes - sites géométriqes) Soit la site arithmétiqe de premier terme 0 et de raiso r Exprimer e foctio de Soit la site arithmétiqe de premier terme 0 et de

Plus en détail

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u TS Cotrôle d vedredi septembre (5 mites) Préom et om : Note : / II ( poit) 5 À l aide de la calclatrice, détermier la valer arrodie a cetième de S La valer arrodie a cetième de S est égale à I ( poits

Plus en détail

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un I-Défiitios, vocablaire I- : Notio de site : Défiitio : e site d élémets d esemble A est e foctio de N vers R dot l esemble de défiitio est d type A R Si AR, o dit alors qe cette site est e site réelle

Plus en détail

Exercices sur les suites (révisions de 1 ère et compléments)

Exercices sur les suites (révisions de 1 ère et compléments) T O cosidère la site Exercices sr les sites (révisios de ère et complémets) défiie sr par cos Étdier le ses de variatio de la site par étde de foctio Idicatio : O commecera par défiir e foctio f défiie

Plus en détail

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n).

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n). SUITES ET SERIES SUITES 1.Défiitio O appelle site esemble de ombres 1, 2,... défiis das l ordre croissat et vérifiat certaies règles de défiitio. Chaqe ombre de la site s appelle terme, est par exemple

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

On considère qu une suite admet une limite l, ou converge vers l, lorsque :

On considère qu une suite admet une limite l, ou converge vers l, lorsque : I. Gééralités sr les limites de sites. Site covergete O cosidère q e site admet e limite l, o coverge vers l, lorsqe : tot itervalle overt coteat l cotiet tos les termes de la site à partir d certai rag.

Plus en détail

TS Exercices sur les suites (2) 10 Soit u n

TS Exercices sur les suites (2) 10 Soit u n TS Exercices sr les sites () Soit la site défiie sr * par Soit e site défiie sr Tradire sos la forme d e phrase qatifiée la propriété «coverge vers» O cosidère e site défiie sr Tradire e termes de limites

Plus en détail

TS Exercices sur les limites de suites (3)

TS Exercices sur les limites de suites (3) TS Exercices sr les limites de sites () O cosidère la site défiie sr par so premier terme récrrece por tot etier atrel ) Démotrer par récrrece qe, por tot etier atrel, o a : ) Détermier le ses de variatio

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ; Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio

Plus en détail

TS Limites de suites (2)

TS Limites de suites (2) TS Limites de sites () bjectifs : mettre e place et tiliser des défiitios rigoreses des ites de sites I pproche de la défiitio d e site divergeat vers + ) pproche graphie a représeté graphiemet ci-dessos

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques.

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques. Les sites réelles Cote discipliaire 2A Scieces 3A Scieces expérimetales 4AScieces expérimetales Sites arithmétiqes. Sites géométriqes. Comportemet global d e site : Site croissate Site décroissate Site

Plus en détail

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière Mise à ivea licece de mathématiqes Les foctios racie carrée, valer absole o partie etière Eercice Détermier la limite de + + qad ted vers Eercice Vérifier qe ( 5) 6 5 A-t-o l'égalité 6 5 5? Eercice O sohaite

Plus en détail

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn Exercice SUITES AFFINES - EXERCICES CORRIGES Das chaqe cas, motrer qe la site ( v, défiie à partir de la site ( v pis de e foctio de = = Exercice = et v = = 4 O cosidère e site ( défiie sr N par : a Motrer

Plus en détail

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances Amériqe d Nord Mai 0 Série S Exercice Partie A : Restittio orgaisée des coaissaces Démotrer le théorème de Gass e tilisat le théorème de Bézot Partie B O rappelle la propriété coe sos le om de petit théorème

Plus en détail

Elle est associative, commutative et son élément neutre est la suite nulle notée 0

Elle est associative, commutative et son élément neutre est la suite nulle notée 0 Chapitre 9 : Sites mériqes-résmé de cors 1. Gééralités 1.1 Défiitio et exemples Déf: O appelle site tote applicatio de das. Si la site est otée, l'image de est oté pltôt qe (). O otera idifféremmet la

Plus en détail

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n 4 ème aée Maths Sites réelles Septembre 9 A LAATAOUI Exercice : O cosidère la site ( ) défiie par : a) Motrer qe por tot de IN, < 4 b) Motrer qe ( ) est strictemet croissate c) E dédire qe ( ) + 4+, por

Plus en détail

I. Suites géométriques

I. Suites géométriques Chapitre : Les sites géométriqes TES - Recoaître et exploiter e site géométriqe das e sitatio doée - Coaître la formle doat +q++q avec q - Détermier la limite d e site géométriqe de raiso strictemet positive

Plus en détail

v 0 = 0 = 3v n 2 pour tout n N

v 0 = 0 = 3v n 2 pour tout n N Termiale S Aée scolaire 07-08 Chapitre Suites umériques Bejami Gausso fermathsfr Rappels et gééralités sur les suites O rappelle que N désige l esemble des etiers aturels : N = {0; ; ; 6} Défiitio Ue suite

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques Sites arithméties et géométries A Sites arithméties Défiitio et formles Défiitio : forme récrsive Ue site est arithmétie lorse, à partir d terme iitial, l o passe d' terme de la site a terme sivat e ajotat

Plus en détail

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u Chaitre : Sites (Termiales ES sécialité) Activités réaratoires Activité. :. Voici les remiers termes d e site ( ) ; 4 ; ; 4 ; Comléter la hrase sivate : «Chaqe terme est obte e mltiliat le récédet ar.

Plus en détail

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures) S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S + + 3 +... + + et S + + 3 +... + 8 +. Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86..

Plus en détail

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES NUMERIQUES EXERCICES CORRIGES Exercice. Les sites sot défiies par f (. ( Doer la foctio mériqe f correspodate, idiqer le terme iitial de la site, pis calcler les

Plus en détail

ESG MANAGEMENT SCHOOL

ESG MANAGEMENT SCHOOL ESG MANAGEMENT SCHOOL ETABLISSEMENT D ENSEIGNEMENT SUPERIEUR TECHNIQUE PRIVE RECONNU PAR L ETAT DIPLÔME VISÉ PAR LE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE/ GRADE MASTER MEMBRE DE LA CONFERENCE

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Exercice O cosidère la site défiie par O pose Motrer qe ( est e site géométriqe Exprimer

Plus en détail

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie.

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie. Stg Les sites I. Notios sr les sites a. Ue site mériqe est e liste de ombres (les termes) repérés par méro d ordre (l idice), cette liste pet être ifiie. Exemple. La site des ombres impairs :,,... Exemple.

Plus en détail

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u Sites A) Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté tel qe : : La site se ote o avec des parethèses Le terme iitial de la site est o p qad

Plus en détail

Fiche 1 : les suites

Fiche 1 : les suites Fiche Cors Nº : 3 Fiche : les sites Pla de la fiche I - Défiir e site II - Comortemet global d e site III - Comortemet asymtotiqe d e site IV - Oératios et limites V - Théorèmes de comaraiso VI - Comortemet

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u Vdoie Termiale S Chapitre Sites mériqes et comportemet asymptotiqe Nos défiissos e site mériqe de la maière siate : «A chaqe étape, o associe, le ombre de carrés écessaires à la fabricatio de l escalier»

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Fonctions - Dérivation

Fonctions - Dérivation Termiale S Dériatio Chapitre 4 Foctios - Dériatio I- Dériabilité f est e foctio défiie sr D f (iteralle o réio d iteralles C f est sa corbe représatie Foctio dériable e a Nombre dérié Défiitio (Rappels

Plus en détail

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1 L.Glli age sr Lois discrètes Lois discretes Qelqes formles classiqes, très tiles : ; Remarqe : Il existe des formles de récrrece doat e foctio de, Ce sot les formles de Newto, Exercice calcl de? Doc E

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

POUR PRENDRE UN BON DEPART EN TERMINALE S

POUR PRENDRE UN BON DEPART EN TERMINALE S Lycée Charles de Galle POUR PRENDRE UN BON DEPART EN TERMINALE S Foritres por le jor de la retrée : dex cahiers grad format (si possible 4x3) à petits carreax Ue calclatrice avec modle graphiqe Ue pochette

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

CHAPITRE VI SUITES EXERCICES. ) rectangle en P 1 tel que CP. , etc. par récurrence et une formule explicite de cette suite.

CHAPITRE VI SUITES EXERCICES. ) rectangle en P 1 tel que CP. , etc. par récurrence et une formule explicite de cette suite. e B Chapitre VI Sites CHAPITRE VI SUITES EXERCICES ) Doez e défiitio géérale (explicite o par récrrece) des sites dot les premiers termes sot : a),,,, 4 b),, 5, 8, c) 4,,,, 4 5 d) 0,, 4, 9, e) 7, 6, 4,,,

Plus en détail

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =.

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =. Sjet I, élémets de correctio EXERCICE I ( poits) La site est défiie par 0 = et por tot etier atrel, + = 0 = ; =, 7 ; =, 7 ; =, 6666 ; =, 0 ; la site e semble pas être mootoe, elle paraît coverger vers

Plus en détail

La dérivation. Partie A. Objectifs : - revoir et consolider les bases de 1 ère. f (a + h) - apprendre de nouvelles formules de calcul. a + h.

La dérivation. Partie A. Objectifs : - revoir et consolider les bases de 1 ère. f (a + h) - apprendre de nouvelles formules de calcul. a + h. TS La dérivatio C Objectis : - revoir et cosolider les bases de ère - appredre de ovelles ormles de calcl (a + ) M T I. Foctio dérivable e réel - ombre dérivé Partie A (a) A ) Déiitio [octio dérivable

Plus en détail

TS Exercices sur les limites de suites (3)

TS Exercices sur les limites de suites (3) TS Exercices sr es imites de sites () O cosidère a site défiie sr N par so premier terme récrrece por tot etier atre ) Démotrer par récrrece qe, por tot etier atre, o a : ) Détermier e ses de variatio

Plus en détail

4. Activité en Terminale S : «Vers les dérivées des fonctions composées»

4. Activité en Terminale S : «Vers les dérivées des fonctions composées» 4. Activité e Termiale S : «Vers les dérivées des octios composées» a. Eocé Partie I : de octio de la orme avec octio dérivable sr I.. A l aide de la calclatrice, compléter le tablea sivat. Foctio 5 g

Plus en détail

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes.

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes. ECS1B Carot Chapitre 013/014 Chapitre : Raisoemet par récurrece, maipulatio de sommes Objectifs : Écrire propremet u raisoemet par récurrece (simple, double Maipuler les symboles Σ et sas erreur ceci viedra

Plus en détail

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats Asie ji 03 Das l esemble d sjet, et por chaqe qestio, tote trace de recherche même icomplète, o d iitiative même o frctese, sera prise e compte das l évalatio EXERCICE 5 poits Comm à tos les cadidats Das

Plus en détail

Calcul de rayon de convergence concret

Calcul de rayon de convergence concret [http://mp.cpgedpydelome.fr] édité le 24 septembre 206 Eocés Calcl de rayo de covergece cocret Exercice [ 0097 ] [Correctio] Détermier le rayo de covergece des séries etières : (a) 0 2 + 3 z (b) 0 e 2

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Opérations sur les dérivées 1ère S Calculs de dérivées Exemple 2 I. Dérivée d une somme 1 ) Propriété 3 ) Remarque 2 ) Exemples

Opérations sur les dérivées 1ère S Calculs de dérivées Exemple 2 I. Dérivée d une somme 1 ) Propriété 3 ) Remarque 2 ) Exemples ère S Opératios sr les dériées Calcls de dériées O écrit. O pose la ormle. O remplace aec les expressios précédetes. Das le capitre précédet, o a la otio de «octio dériée» et l o a otammet doé les octios

Plus en détail

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n.

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n. Sites A Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté ( o tel qe : : a La site se ote o avec des parethèses ( Le terme iitial de la site est o

Plus en détail

Les primitives. 3 ) Théorème de Darboux (mathématicien du XIX e siècle) Ce théorème est admis sans démonstration.

Les primitives. 3 ) Théorème de Darboux (mathématicien du XIX e siècle) Ce théorème est admis sans démonstration. TS Les primitives ) Théorème de Drbo (mthémticie d XIX e siècle) Ce théorème est dmis ss démostrtio. I. Notio de primitive ) Défiitio Tote foctio défiie et cotie sr itervlle dmet des primitives sr cet

Plus en détail

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques Eame d baccalaréat Sessio de Ji 04 Sectio : Écoomie et gestio Épreve : Mathématiqes Sessio de cotrôle Eercice I) )a) La corbe de f passe par les poits O0,0 et B, e, d où f 0 0 et f e b) La tagete e O à

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL SESSION aril 20 MATHÉMATIQUES Série S Drée de l épree : heres Coefficiet : 7 o 9 Les calclatrices électroiqes de poche sot atorisées, coformémet à la réglemetatio e iger. Le sjet est

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

u est une suite arithmétique

u est une suite arithmétique wwwmathseligecom SUITES ARITHMETIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par = a Calcler ; et b Exprimer e foctio de c Démotrer qe dot o précisera le premier terme EXERCICE

Plus en détail

Chapitre 3: La démonstration par récurrence

Chapitre 3: La démonstration par récurrence CHAPITRE 3 DEMONSTRATION PAR RECURRENCE 33 Chapitre 3: La démostratio par récurrece 3. U exemple pour compredre le pricipe Itroductio : Pour découvrir ue formule doat la somme des premiers ombres impairs,

Plus en détail

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients.

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients. Exercice Ue etreprise fabriqe des pces électroiqes qi sot tilisées por des matériels assi différets qe des téléphoes portables, des lave-lige o des atomobiles. À la sortie de fabricatio, % d etre elles

Plus en détail

SUITES DE NOMBRES RÉELS

SUITES DE NOMBRES RÉELS SUITES DE NOMBRES RÉELS SOMMAIRE. Covergece. Divergece. Gééralités.. Défiitio.. Propriété : icité de la limite 3.3. Défiitio : sites de Cachy. 3.4. Propriété : ( ) coverge ( ) de Cachy ( ) borée. Exemple

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

Exercices sur multiples et diviseurs

Exercices sur multiples et diviseurs TS spé Exercices sur multiples et diviseurs 7 15 6. 15 Vérifier que pr tt etier relatif o a : 6 Détermier les etiers relatifs tels que soit u etier. 1 1 ) Le ombre 11 est-il u multiple de 117? ) Sas calcul,

Plus en détail

» car lim 3n 2 8=+ et lim 2 n 2 +5=+

» car lim 3n 2 8=+ et lim 2 n 2 +5=+ TS. 2014/2015. Lycée Prévert. Corrigé du devoir commu du premier trimestre. Durée : heures. Vedredi 14/11/2014 Exercice 1 : ( 7 pts). A ) Étudier les limites suivates : a) lim 2 8 2 2 +5. Il s'agit d'ue

Plus en détail

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Les sites () Vocablaire sel des sites Rappels de ère et complémets 4 3 Revoir le cors de ère formle explicite I Gééralités ) Défiitio Ue site mérie est e foctio : terme d idice relatio de récrrece sites

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Prodit scalaire das l'espace I) Norme d' ecter das l'espace : défiitio : Soit ecter de l'espace. Soiet dex poits et tels qe =. La orme de otée est la distace. = propriété : L'espace est mi d' repère orthoormé

Plus en détail

Terminale S Les ROC d analyse à connaître.

Terminale S Les ROC d analyse à connaître. Termiale S Les ROC d aalyse à coaître Vos troverez ici les démostratios qe vos avez officiellemet des faire e cors (das le programme) Il est importat de préciser qe cela e sigifie e ac cas q il e faille

Plus en détail

BD - COEFFICIENTS BINOMIAUX

BD - COEFFICIENTS BINOMIAUX BD - COEFFICIENTS BINOMIAUX O ose ( C!!(! si 0 0 or les atres coles ( de Z 2 Doc (2 (3 0 ( 0 ( ( 0 (4 (5 ( ( 2 2 2 ( ( ( ( 0 ( 0 0 Formles élémetaires (6 (7 (8 (9 (0 ( ( ( 0 ( ( 0 BD 2 Les trois formles

Plus en détail

LES SUITES. 1 Suites. 1.1 Suites numériques Approche.

LES SUITES. 1 Suites. 1.1 Suites numériques Approche. UMN04 : Sites COURS Ji 000 LES SUITES. Sites.. Sites mériqes... Approche. O observe das e etreprise, qe les bééfices e millios de fracs réalisés a bot de x aées de foctioemet pevet être modéliser par la

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

Raisonnements mathématiques

Raisonnements mathématiques Chapitre 1 Raisoemets mathématiques Le mathématicie italie Giuseppe Peao était très soucieux d exposer les mathématiques das u cadre précis et rigoureux Das so Formulaire mathématique publié e 1895, il

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Exercices sur multiples et diviseurs

Exercices sur multiples et diviseurs TS spé Exercices sur multiples et diviseurs 7 15 6. 15 Vérifier que pr tt etier relatif o a : 6 Détermier les etiers relatifs tels que soit u etier. 1 1 ) Le ombre 11 est-il u multiple de 117? ) Sas calcul,

Plus en détail

Suites numériques : une activité pour les introduire

Suites numériques : une activité pour les introduire Sites mériqes : e activité por les itrodire Cette activité imagiée por e classe de première STAE pet, e la simplifiat, être tilisée e Bac Pro. Avat de passer à la site échaffemet!. O doe les trois premiers

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

La récurrence à toutes les sauces

La récurrence à toutes les sauces o 57 Das os classes 5 La récrrece à totes les saces Démostratios par récrrece por la classe de TS Lois-Marie Boeval, Catherie Combelles et Jlie Morea Il est tojors itéressat d avoir das ses réserves e

Plus en détail

Exercices sur le raisonnement par récurrence - Corrigé

Exercices sur le raisonnement par récurrence - Corrigé Exercices sur le raisoemet par récurrece - Corrigé Arithmétique 1) Motrer, pour tout etier aturel, que 1 est divisible par 3. O cosidère la propriété : Quelque soit l etier, il existe u etier k tel que

Plus en détail

Raisonnements Mathématiques

Raisonnements Mathématiques Chapitre 1 Raisoemets Mathématiques Le mathématicie italie Giuseppe Peao était très soucieux d exposer les mathématiques das u cadre précis et rigoureux. Das so Formulaire mathématique publié e 1895, il

Plus en détail