UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION"

Transcription

1 UNIVERSITE PARIS 1 PANTEON SORBONNE UFR DE GESTION MATEMATIQUES APPLIQUEES A L ECONOMIE ET A LA GESTION PARTIE II- ANALYSE LICENCE 1 année Cours de Marion GOFFIN 2 semestre

2 Mathématiques Partie II- Analyse Sommaire Semaine du 7 mars 1ère semaine: interrogation d algèbre puis : fiche 1 (avec rappels sur les fonctions ln, exp, puissance : domaine de def, forme de la courbe) Puis, s il reste du temps : Rappels sur les limites en fin de séance. Semaine du 14 mars 2ème semaine: fiche 2 Semaine du 21 mars 3ème semaine: fiche 3, éventuellement début de la fiche 4 Semaine du 28 mars 4ème semaine: fiche 4 (en partie) Semaine du 4 avril 5ème semaine: fin de la fiche 4, début de la fiche 5 Semaine du 18 avril 6ème semaine: interrogation écrite, fin de la fiche 5

3 Fiche n 1- Ensembles et applications (fonctions) Notions vues en cours: - ensembles : généralités, opérations sur les ensembles - relations binaires : relations réflexives, symétriques, antisymétriques, transitives - fonctions : généralités, fonctions réciproques, typologie des fonctions (injections, surjections, bijections), composition des fonctions, ensemble de définition d une fonction. Les fonctions trigonométriques (tan, cos, sin) ne sont pas au programme. Exercice 1 : Déterminez l ensemble de définition D f des fonctions suivantes : a) f x = $²&' $(' b) f x = x' + x 2 c) f(x) = x+1 x 1 d) f x = x+1 x 1 e) f x = x f) f x = 01 (0 21 ' g) f x = ln (x 4) Exercice 2 : Soient f(x) = 3x+1 et g(x)= x ' 1 1- Déterminer l application réciproque (ou inverse) de la fonction f. 2- Définir les applications composées g f et f g. Que peut-on conclure?

4 Fiche n 2- Limites et continuité Notions vues en cours: - limites en un point, limite à droite, à gauche, limites en + et -, opérations sur les limites. - continuité en un point, continuité sur un intervalle, prolongement par continuité - fonction puissance, logarithme, exponentielle Exercice 1 : Etudiez les limites suivantes : a) lim $ &' $ = (>$²('$ $²&$&? b) lim h 0 $(E = &$= E (IJ $ c) lim $ F G $² d) lim $ (K (IJ $ $² Exercice 2 : Etude de la continuité d une fonction numérique réelle Soit la fonction f telle que f (x)= $ LM $ $²& 1 - Pour quelles valeurs de x, f(x) est-elle définie? 2 - Calculer lim f(x) et lim f(x). $ F $ 3 - Montrer que f est continue sur D = 0; 1 1; +. 4 Peut-on prolonger par continuité f en x = 0 et x = 1?

5 Fiche n 3- Dérivées et différentielles Notions vues en cours : - dérivabilité en un point, dérivée à droite, dérivée à gauche, dérivabilité sur un intervalle - calcul de dérivées - différentielles Exercice 1 : Calculez les dérivées suivantes : = a) y=ln 1 + x c) y= x + = d) y= x x + x 3 $ e) y= $ $²& f) y= ln ($² Exercice 2 : Déterminez: a) L équation de la tangente à la courbe C d équation y= x³ 4x + 1 au point de coordonnées (0 ;+1) b) L équation de la tangente à la courbe C d équation y= x³ x + x + 1 au point de coordonnées (-1 ;0) Exercice 3 : Déterminer la différentielle au point x=1 de la fonction f x = 01 $(LM$ On suppose que l on a x = t² 3 : déterminez la différentielle de fog au point t=2.

6 Fiche n 4- Etude de fonctions Plan d étude d une fonction : 1. Recherche de l ensemble de définition 2. Recherche de l ensemble d étude 3. Etude des limites et de la continuité (aux points où la fonction est non définie, aux bornes des intervalles, en + et - ) 4. Etude de la dérivabilité et construction du tableau de variations de f (avec étude des points remarquables : points à tangente horizontale, points pour lesquels la fonction n est pas définie, pas dérivable ) 5. Compléments : concavité, convexité 6. Représentation graphique Exercice : Etudiez les fonctions suivantes selon le plan d étude indiqué ci-dessus : a) f x = $= ( $&' ² b) f x = $X Y 2 ln x 3 c) f x = x ln x si x 0; + f x = xe $ si x ; 0

7 Fiche n 5- Primitives et intégrales - Calculs d aires avec représentation graphique (vus en cours uniquement) - IPP - Reconnaissance des formules usuelles (tableau des primitives) L intégration par changement de variable n est pas au programme Les fonctions trigonométriques ne sont pas au programme Exercice : Calculez les intégrales suivantes : ' a) x + 1 &' dx b) 2x + 1 e $ F dx (indication : par IPP) c) 3x 1 F (3x ' 2x + 3) > dx d) F ^=( ^X(Y^( X dx

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral CALCUL INTEGRAL Eercice Calculez les primitives suivantes : A Calcul direct à partir des formules fondamentales. (5 3d 3 4 3 5 5 ( 7, 4d 3 9 6 5 8 (7 4 6 3d ( t dt (sur t ( 5 3 8 d (sur 5 4 3 * R * R 6

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a) 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre VII : Dérivation Notations : On reprend dans ce chapitre les notations

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Cours informel sur la fonction réciproque.

Cours informel sur la fonction réciproque. Cours informel sur la fonction réciproque. Ce cours aborde de nombreuses parties du programme de terminale scientifique. Les parties qui n'appartiennent pas au programme seront signalées par le sigle hp,

Plus en détail

S1BMATHU : ANALYSE MATHÉMATIQUES POUR LA 1ÈRE

S1BMATHU : ANALYSE MATHÉMATIQUES POUR LA 1ÈRE S1BMATHU : ANALYSE MATHÉMATIQUES POUR LA 1ÈRE ANNÉE DE LICENCE DE BIOLOGIE Resp. K. Bekka UFR de Mathématiques Université de Rennes 1 6 octobre 2015 6 octobre 2015 1 / 96 Adresse de la page du cours http://perso.univ-rennes1.fr/karim.bekka/l1-bio.html

Plus en détail

1 + φ 2 (t) dt. b) En utilisant un raisonnement similaire, calculer l intégrale : cos(t) 4 + sin 2 (t) dt. (sin(sin(2x))) 2 lim

1 + φ 2 (t) dt. b) En utilisant un raisonnement similaire, calculer l intégrale : cos(t) 4 + sin 2 (t) dt. (sin(sin(2x))) 2 lim Analyse Série 1, juillet 2012 Question 1 1. Soit une fonction φ : [a, b] R de classe C 1 (c est-à-dire dérivable et dont la dérivée première est continue) telle que φ(a) = 1 et φ(b) = 1. a) Calculez l

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Suites réelles Chapitre 3. Fonctions d une variable : limite et continuité...

Sommaire. Chapitre 1. Notions de base Chapitre 2. Suites réelles Chapitre 3. Fonctions d une variable : limite et continuité... Sommaire Chapitre 1. Notions de base.................... 7 A. Vocabulaire usuel relatif aux fonctions................. 8 B. Fonctions usuelles......................... 11 Chapitre 2. Suites réelles.....................

Plus en détail

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa 3//2 Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa Année Universitaire 2/2 MATHEMATIQUES (Semestre ) Professeur: M.REDOUABY 3//2 Partie 2 A. Fonctions à une variable réel

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

MATHÉMATIQUES Rappels de cours & exercices corrigés pour le D.U.T. Génie civil Conforme au nouveau programme 2013

MATHÉMATIQUES Rappels de cours & exercices corrigés pour le D.U.T. Génie civil Conforme au nouveau programme 2013 MATHÉMATIQUES Rappels de cours & exercices corrigés pour le D.U.T. Génie civil Conforme au nouveau programme 2013 José OUIN Ingénieur INSA Toulouse Professeur agrégé de Génie civil Professeur agrégé de

Plus en détail

Ecole Nationale d Ingénieurs de Brest. Analyse

Ecole Nationale d Ingénieurs de Brest. Analyse Notes de cours Ecole Nationale d Ingénieurs de Brest Mathématiques 1ère Année Analyse Cours proposé par M. Parenthoën année 2002-2003 enib c mp2002....... 1 Analyse 1 & 2 / 1A Table des matières Analyse

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Logarithme népérien 1 La fonction Logarithme Népérien Existence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors

Plus en détail

DEVOIRS ET CORRIGÉS 2B MATH II Guy Greisen

DEVOIRS ET CORRIGÉS 2B MATH II Guy Greisen DEVOIRS ET CORRIGÉS B MATH II 006-007 Guy Greisen 3 juillet 007 B MATHÉMATIQUES II 1.1 18.10.006 1. Enoncer la définition de : f(x) = + x a. Démontrer à l aide de la définition que : x 3 (3 x) = + f :

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

Programme de mathématiques 4è Sc.Tech : REPARTITION HORAIRE (partie 1)

Programme de mathématiques 4è Sc.Tech : REPARTITION HORAIRE (partie 1) Programme de mathématiques 4è Sc.Tech : REPARTITION ORAIRE (partie ) ) limite et continuité ) Dérivabilité 3) Fonction continue et strictement monotone sur un intervalle - Prolongement par continuité Limite

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

Corrigé de l examen de l unité de Mathématiques LM 151 Université Pierre et Marie Curie.

Corrigé de l examen de l unité de Mathématiques LM 151 Université Pierre et Marie Curie. Corrigé de l examen de l unité de Mathématiques LM 5 Université Pierre et Marie Curie. Responsable: Henri Skoda septembre 5. Question de cours. Donner la définition de deux suites adjacentes puis énoncer

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

Annexe précisant l article 7. Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai

Annexe précisant l article 7. Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai Annexe précisant l article 7 Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai 1. Nombres complexes Le plan complexe : affixe d un point ; parties

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

GENERALITES SUR LES FONCTIONS NUMERIQUES D UNE VARIABLE REELLE

GENERALITES SUR LES FONCTIONS NUMERIQUES D UNE VARIABLE REELLE Chapitre 2 GENERALITES SUR LES FNCTINS NUMERIQUES D UNE VARIABLE REELLE L étude générale d une fonction numérique de la variable réelle a été abordée en Terminale. Nous nous contenterons ici de brefs rappels

Plus en détail

LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y).

LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y). LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y). Pré-requis : Continuité et dérivabilité ; Fonctions logarithme (dérivée et propriétés

Plus en détail

Fiche méthodologique Fonctions usuelles

Fiche méthodologique Fonctions usuelles Fiche méthodologique Fonctions usuelles BCPST Lycée Hoche $\ CC BY: = Pelletier Sylvain On liste ici les fonctions à connaître et leur propriétés. Fonction puissance n-ième et racine n-ième { R R Fonction

Plus en détail

Chap V : De nouvelles fonctions de référence

Chap V : De nouvelles fonctions de référence Chap V : De nouvelles fonctions de référence Cours Chap V, page 1 sur 6 I) Le théorème des bijections réciproques Théorème Théorème des bijections réciproques Si f : I R est continue sur l intervalle I

Plus en détail

Page 1

Page 1 Exercice : définie sur ]0,+ [ les points A et B appartiennent à (C) la droite (AB) est la tangente à (C) en A (C) admet au voisinage de + une branche parabolique de direction ( O, j) la droite d équation

Plus en détail

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur.

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur. 1 Niveau : Titre Cours : Terminale S Chapitre 04 Compléments sur les fonctions. Fonctions trigonométriques et dérivabilité. Jospeh Fourier (21 mars 1768-16 mai 1830) Année : 2014-2015 Citation du moment

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

Activités numériques I 6h Angles 8h. Activités algébriques 6 h Rapports trigonométriques d un angle aigu. Relations

Activités numériques I 6h Angles 8h. Activités algébriques 6 h Rapports trigonométriques d un angle aigu. Relations 2 ème semestre 1 er semestre Répartition du programme de mathématiques de la 1ère année secondaire Activités numériques et algébriques Activités géométriques Activités numériques I 6h Angles 8h Activités

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

Semaine septembre

Semaine septembre B1-2016-2017 Programmes de Khôlles Semaine 19-26 septembre Logique et ensembles Quantificateurs, absurde, contraposée Ensembles, sous-ensembles, P(E), relations ensemblistes. Nombres Récurrence : simple,

Plus en détail

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0 Les Fonctions Les domaines de définitions : 0 ; > 0 ; 0 ; 0 0 > 0 ; 0 Les limites : ) Formes indéterminées ; 0 ; + ; 0 0 ) Formes déterminées = ; + ) ) = 0 ) Référence = 0 ; 0 = ) Limites à l ininie Factoriser

Plus en détail

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction CONCOURS BLANC PCSI MATHÉMATIQUES - Correction Eercice. Calculs d intégrales Les trois questions sont indépendantes. t. Par I.P.P., arctan t dt = t arctan + t dt = t arctan t ln( + t + C.. Il faut se ramener

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Calcul intégral. Soit f, une fonction dérivable sur un intervalle I, F une primitive de f sur I, a et b deux nombres réels de I :

Calcul intégral. Soit f, une fonction dérivable sur un intervalle I, F une primitive de f sur I, a et b deux nombres réels de I : Calcul intégral 1. Savoir 1.1. Définitions 1.1.1. Aire sous la courbe Soit f, une fonction dérivable sur un intervalle I, F une primitive de f sur I, a et b deux nombres réels de I : 1.1.2. Valeur moyenne

Plus en détail

Examen de l UE LM110 Juin 2005

Examen de l UE LM110 Juin 2005 Université Pierre et Marie Curie Licence Sciences et Technologies MIME Eamen de l UE LM110 Juin 2005 La durée de l eamen est de deu heures Les eercices sont indépendants les uns des autres Les notes de

Plus en détail

Fonctions usuelles Limites

Fonctions usuelles Limites Fonctions usuelles Limites I) Généralités Dans tout ce cours, I désignera un intervalle de Y (intervalle ouvert, fermé, semi-ouvert ). Si I = [a, b], on appellera I un segment de Y. On considère la fonction

Plus en détail

sur un intervalle que l on précisera, et préciser

sur un intervalle que l on précisera, et préciser Révision : fonctions logarithmes fonctions exponentiels intégrale Mr : FARHATI HICHEM EX 1 : Partie A : 1) Soit f(x)=1+ (1-x) a) Montrer que f (x)=-x b) Dresser le tableau de variation de f. c) Montrer

Plus en détail

LORRAINE INP executive

LORRAINE INP executive LORRAINE INP executive Devenir Ingénieur par la filière FONTANET UMN Unités de Mise à Niveau en mathématiques Programme des UMN Denise Commenville David Toupance Responsable Filière Fontanet Responsable

Plus en détail

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse Faculté des Sciences de Luminy Année 20 202 Licence MASS Unité Mat8 Exercices d analyse A.BROGLIO TD : Révisions.. Domaine de définition. Déterminer pour chaque valeur de f ci-dessous le domaine de définition

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Fonctions usuelles dérivation fonctions exponentielle et logarithme népérien tangentes à la courbe 1. Notions de convexité et de concavité 2. Dérivées premières, dérivées secondes 3. Point d

Plus en détail

Mathématiques en Classe Préparatoire à l Entrée en Licence

Mathématiques en Classe Préparatoire à l Entrée en Licence Mathématiques en Classe Préparatoire à l Entrée en Licence Pascale Sénéchaud, Remi Antony (statistiques) 1 Faculté des Sciences de Limoges Plan 1 Présentation générale Plan 1 Présentation générale 2 Les

Plus en détail

Révisions de Mathématique

Révisions de Mathématique Révisions de Mathématique Chapitre I Chapitre II Chapitre III Algèbre Trigonométrie Analyse Chapitre I Algèbre 1 Opérations élémentaires sur les nombres réels................ I 3 1.1 Les ensembles IN,

Plus en détail

Programme détaillé du LM100

Programme détaillé du LM100 Programme détaillé du LM100 version 0.1 (24 novembre 2011) Les notions assorties d une ne sont traités que de façon qualitative, ou s il s agit de théorèmes, de façon heuristique et sans démonstration.

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5 ECS-0 Fonctions usuelles /5 Fonction puissance entière (x x n ), pour n N : bijection de R + dans R + si n pair, bijection de R dans R si n impair, croît vers l'inni d'autant plus vite que n est grand

Plus en détail

ENSEMBLES ET APPLICATIONS

ENSEMBLES ET APPLICATIONS ENSEMBLES ET APPLICATIONS 1 Applications : définitions ensemblistes Définition 1.1 Application Soient E et F deux ensembles. On appelle application de E dans F un objet { mathématique f qui à tout élément

Plus en détail

Polynésie septembre Enseignement spécifique

Polynésie septembre Enseignement spécifique Polynésie septembre 5 Enseignement spécifique EXERCICE (7 points (commun à tous les candidats Partie A On rappelle que la partie réelle d un nombre complexe z est notée Re(z Déterminer l écriture exponentielle

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

2 ) Justifier que f est dérivable et calculer f'(x).

2 ) Justifier que f est dérivable et calculer f'(x). Eercice 1: Soit f la fonction définie sur IR - {-2 ; 0 } par f() = ( + 1) 2 2 + 2 1 ) Donner les limites de f au bornes de son ensemble de définition 2 ) Justifier que f est dérivable et calculer f'()

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx.

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx. Lycée Joffre Année 05-06 PCSI Feuille 9 TD n 9: Analyse et fonctions usuelles Fonctions trigonométriques Exercice Résoudre les équations suivantes : cos (x sin (x = 0 4sin(xcos(x = cos (x+cos(x = 4 4 cos(x

Plus en détail

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité UNIVERSITÉ DE CERGY Année 2012-2013 LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH 101 - Pratique des Fonctions Numériques Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion Année 2012-2013 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH101 : Pratique des Fonctions numériques Enseignant responsable : J. Stéphan Documents

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

Etude des fonctions d une variable réelle et fonctions usuelles

Etude des fonctions d une variable réelle et fonctions usuelles Au cours du premier chapitre, nous avons mené nos premières études de fonctions pour démontrer des inégalités. Nous revenons ici sur le principe d une telle étude, et nous en rappellerons les principales

Plus en détail

Exercices : nombres réels et fonctions numériques

Exercices : nombres réels et fonctions numériques ECS 1 Dupuy de Lôme Semaine du 15 octobre 2004 Exercices : nombres réels et fonctions numériques Exercice 1 : Démontrez que pour tout (x, y, z) R 3 Propriétés des nombres réels x + y + z x + y + z et x

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY. Bâtiment 425, ORSAY Cédex, France

Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY. Bâtiment 425, ORSAY Cédex, France Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY Bâtiment 425, 91405 ORSAY Cédex, France Programme de mathématiques pour le PCS0 filières A (dominante maths/physique) et B (dominante

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous :

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous : AP ère ES L Nombre dérivé 2 Exercice : La courbe représentant la fonction f est représentée ci-dessous. ) Donner par lecture grapique f( 2) et f(6). 2) Donner par lecture grapique f ( 2), f (2) et f (6).

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

FONCTIONS USUELLES. 1 fonctions polynomiales et rationnelles. Cours PCSI 2

FONCTIONS USUELLES. 1 fonctions polynomiales et rationnelles. Cours PCSI 2 Cours PCSI Lycée Joffre FONCTIONS USUELLES 1 fonctions polynomiales et rationnelles fonction polynomiale : une fonction polynomiale sur R est une fonction f pour laquelle il existe un entier naturel d,

Plus en détail

Dérivabilité des fonctions réelles

Dérivabilité des fonctions réelles Chapitre 3 Dérivabilité des fonctions réelles La notion de dérivée est une notion fondamentale en analyse. Elle permet d étudier les variations d une fonction, de construire des tangentes à une courbe

Plus en détail

PROGRAMME DE MATHEMATIQUE 5 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 5 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE 1 PROGRAMME DE MATHEMATIQUE 5 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. OBJECTIFS SPECIFIQUES CONTENUS/MATIERES INDICATIONS

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

1 GÉNÉRALITÉS SUR LES FONCTIONS

1 GÉNÉRALITÉS SUR LES FONCTIONS GÉNÉRALITÉS SUR LES FONCTIONS. Calcul formel EXERCICE.. Jeu de paramètres Considérons la fonction appelée logarithme à base a (avec a R + ). Cette fonction, paramétrée par a, est notée f a et est définie

Plus en détail

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1.

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1. Première ES-L IE2 dérivation 205-206 S Exercice : taux d accroissement (2 points) a) Déterminer le taux d accroissement de la fonction f définie sur par : En déduire le nombre dérivé de f en. f(x) 2x²

Plus en détail

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017 Mathématiques Pascal CHAUVIN T le ES 8 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Résumés de cours et Méthodes Maths Terminale S

Résumés de cours et Méthodes Maths Terminale S Stages intensifs Résumés de cours et Méthodes Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 2 Chapitre 1 Fonction exponentielle, logarithme népérien, logarithme décimal 1.1 Fonction

Plus en détail

Les fonctions exponentielles et logarithmiques

Les fonctions exponentielles et logarithmiques Les fonctions exponentielles et logarithmiques MAT 1739 X Été 2010 Département e mathématiques et e statistique Université Ottawa Plan Revue 1 Revue 2 3 4 Revue Definition La fonction y = a x, où a > 0

Plus en détail

CHAPITRE 1 : LES ENSEMBLES ET LES RELATIONS. On appelle ensemble tout rassemblement d objets appelés les éléments de l ensemble.

CHAPITRE 1 : LES ENSEMBLES ET LES RELATIONS. On appelle ensemble tout rassemblement d objets appelés les éléments de l ensemble. 1 CHAPITRE 1 : LES ENSEMBLES ET LES RELATIONS 1. Les ensembles : 1.1. Généralités : 1.1.1. Ensembles : On appelle ensemble tout rassemblement d objets appelés les éléments de l ensemble. Notations : Si

Plus en détail

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes I Introduction Les fonctions sont des outils fondamentaux pour décrire le monde réel en langage mathématique Une fonction m en correspondance deux variables, la variable indépendante (ou variable d'entrée,

Plus en détail

Fonction exponentielle

Fonction exponentielle Table des matières de base q. Définition..................................................2 sens de variation............................................. 2.3 relation fonctionnelle et propriétés...................................

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Considérations générales

Considérations générales Considérations générales - Heures complémentaires non certificatives: les matières reprises dans ce document constituent un supplément aux matières des cours de mathématique dans l optique d apporter aux

Plus en détail

YOUSSEFBOULILA LA FONCTION EXPONENTIELLE DE BASE e LA FONCTION EXPONENTIELLE DE BASE 10

YOUSSEFBOULILA LA FONCTION EXPONENTIELLE DE BASE e LA FONCTION EXPONENTIELLE DE BASE 10 YOUSSEFBOULILA LA FONCTION EXPONENTIELLE DE BASE e LA FONCTION EXPONENTIELLE DE BASE I) Introduction: )a) Construire le graphe de la fonction ln, dans le plan muni d un repère orthonormé Les résultats

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Ensemble de définition, limites aux bornes d un ensemble de définition, asymptotes, horizontale verticale et oblique, centre de symétrie d une courbe.

Ensemble de définition, limites aux bornes d un ensemble de définition, asymptotes, horizontale verticale et oblique, centre de symétrie d une courbe. Lycée Berthelot. Cahier de texte de la classe 708 en mathématiques année 2010-2011. Le 03/09/2010 Prise de contact, rappels de première S sur les limites de fonctions. PPS (pour la prochaine séance) :

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Plan d'étude d'une fonction numérique d'une variable réelle

Plan d'étude d'une fonction numérique d'une variable réelle Plan d'étude d'une fonction numérique d'une variable réelle Christian CYRILLE 5 juillet 2009 "En mathématiques, nous sommes d'avantage des serviteurs que des maîtres." Hermite Une fonction numérique peut

Plus en détail

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours.

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours. Exercices ou premières questions d exercices posés à l oral des concours Exercice ENSEA-ENSAM [ Montrer que α, π ], cos 4 α) + sin 4 α) = 2 2 sin2 2α) puis que si a, b) R+) 2 alors a 2 cos 2 α) + b 2 sin

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail