Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA

Dimension: px
Commencer à balayer dès la page:

Download "Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA"

Transcription

1 Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN

2 SOMMAIRE I. Introduction...2 II. Agrégation avec le module KSC Définition du module KSC Préparation des données Mise en oeuvre...3 III. Création du modèle d'appétence...6 IV. Moteur de recommandation Contribution des variables Analyse des Performances Définition des profils...9 V. Conclusion...10 Data mining & BI Groupe Projet 15 1/10

3 I. INTRODUCTION Notre projet porte sur le thème des recommandations plusieurs fois cité en cours de Data Mining et Business Intelligence (exemple de AMAZON). Le sujet est «l exploitation de tickets de caisse pour score d appétence produits». Comme dans le cas pratique, il s agit de données volumineuses (400 K transactions). Le but de notre projet est la manipulation des données grâce au module KSC (Kxen Sequence Coder) du logiciel de datamining KXEN Analytical Framework. En effet, nous allons utiliser la fonctionnalité d'agrégation pour traiter les tickets de caisse d'un hypermarché. Puis nous allons construire des scores d'appétence sur les différents produits afin de mettre en place un moteur de recommandation. Le présent rapport détaille les démarches effectués et les résultats obtenus. Data mining & BI Groupe Projet 15 2/10

4 II. Agrégation avec le module KSC 1. Définition du module KSC Nous utilisons KSC afin de manipuler des données. KXEN Sequence Coder (KSC) construit automatiquement une table représentant la succession ordonnée d évènements à partir des données disponibles (un log web par exemple). KSC traite les données pour construire un modèle analytique en utilisant des séquences d'évènements. KSC agrège des transactions en calculs et en évènements pour améliorer la qualité du modèle avec les détails de données de transaction : - KSC crée de nouvelles colonnes avec un compte par type d'évènements - KSC crée de nouvelles colonnes avec les transitions entre les évènements - KSC organise les données transactionnelles pour permettre une modélisation en temps réel. 2. Préparation des données Nous avons appris que pour pouvoir manipuler des données sous KXEN, il est nécessaire d'utiliser une base de données. Malheureusement, nous n'avons pas eu accès à une base de données à partir de Windows. Ms Excel ne gérant pas les fichiers volumineux (excédant 65K lignes), nous avons utilisé le logiciel HJSplit qui nous a permis de partitionner le fichier généré par KSC (136K lignes après agrégation). Afin de réaliser l'agrégation, nous avons créé une variable contenant une fausse date qui nous permettra de transposer la variable DEPARTEMENT. La colonne ajoutée a au fichier de données contient la même valeur pour tous les enregistrements. Le fichier généré par KSC ne contiendra alors que les agrégations par comptes de produits achetés par DEPARTEMENT. 3. mise en oeuvre Pour utiliser le module KSC, nous avons besoin des trois fichiers suivants : - sales_customer_ref_desc : fichier de description - sales_by_customer_withdate : contient les transactions par client avec la fausse date - sales_customer_ref : contient les identifiants des clients (custemer_id) Data mining & BI Groupe Projet 15 3/10

5 Après avoir sélectionné ces fichiers, nous avons réalisé à l'aide de l'interface graphique de Kxen une jointure entre les tables sales_by_customer_withdate et sales_customer_ref sur la variable CUSTOMER_ID. La transposition de la variable DEPARTEMENT se fait par rapport aux dates, nous avons donc sélectionné la colonne DATE comme colonne d'évènement. Data mining & BI Groupe Projet 15 4/10

6 Après l'analyse, nous avons sélectionné la case count pour la colonne DEPARTEMENT afin d'obtenir la transposée de cette seule variable. Data mining & BI Groupe Projet 15 5/10

7 III. Création du modèle d'appétence Nous avons généré avec Kxen un script permettant d'appliquer un modèle d'appétence pour chaque département. Pour créer ce modèle, nous avons utilisé comme variables cibles, les variables contenant les comptes des produits achetés par département. Il s'agit des variables créées par KSC que nous avons transformées en variables binaires. La variable vaut 0 si elle égale à 0 et 1 dans le cas contraire. Parmi les variable obtenues, certaines variables vont été exclues car, contenant la même valeur pour tous les enregistrements. Les variables exclues sont les suivantes : ksc_t1_coffee_dairy_departement ksc_t1_kosher_kosher_departement ksc_t1_kxother_department Data mining & BI Groupe Projet 15 6/10

8 Nous avons obtenu avec ce modèle de très bons indices de précision et de robustesse, en effet le KI est supérieur ou égal à 0.98 pour toutes les variables cibles. On constate, avec une fréquence d'achat de 97,08% de la population, que le département Dairy représenté par la variable ksc_c0_dairy_department se situe parmi ceux dont les produits sont le plus achetés. Data mining & BI Groupe Projet 15 7/10

9 IV. Moteur de recommandation 1. Contribution des variables Lorsque nous lancons KSC, il nous génére des variables de sortie, les variables cibles. Elles sont crées grâce aux variables d'entrée, les variables explicatives. Pour notre modèle, nous voyons grâce à ce schéma, la relation qu'il y a entre ces variables d'entrée et celles de sortie : la variable cible ksc_t1_bakery_cheese_departement est exliquée à 77,85% par la variable CUSTOMER_ID. 2. Analyse des courbes de performance Data mining & BI Groupe Projet 15 8/10

10 Sur la figure ci-dessus, la courbe rouge représente les résultats d'une classification aléatoire. La courbe jaune illustre la validation du modèle et la courbe bleue l'estimation. La courbe verte (Wizard) est le résultat de la classification de KXEN. Sur la figure, setrouve en abscisse le numéro des clients, rangés par groupes. En ordonnée, il y a le profit détecté, c'est-à-dire la probabilité de trouver les personnes cherchées. Ici, on analyse la variable ksc_t1_dairy_fruit_departement. Si on prend les numéros de clients sélectionnés en rouge, on aura 35% des clients qui ont achetés des 'Dairy' et après des 'Fruit', sur notre échantillon de validation, grâce à l'outil KXEN, alors qu'il y aurait seulement 18% avec une méthode aléatoire. 3. Définition des profils Lorsque nous avons lancé le moteur KSC sur la variable département, en regroupant par numéro de client (CUSTOMER_ID), nous avons obtenu deux types de variables : ksc_c0_fruit_departement ksc_t1_dairy_fruit_departement Ces deux types correspondent aux varibles ksc : C0 : représente la varible Count de KSC, elle vaut 1 si le client a acheté le produit en question, ici 'Fruit', 0 sinon T1 : représente les variables de transitions générées par le moteur elle vaut 1 si un client à acheter la séquence Dairy-Fruit, 0 sinon Produits Recommandation Acheté Cible OUI NON Fruits Fruits x Laitiers Fruits x surgelés Fruits x BIO Fruits x BIO surgelés x Etc Data mining & BI Groupe Projet 15 9/10

11 V. CONCLUSION Au terme de ce projet nous avons été très satisfait de la cohérence des résultats obtenus. En effet certains «préjugés» sur les types de population ont été confirmés. Comme par exemple les personnes qui achètent des produits bios n achètent pas de surgelés, donc inutile de leur recommander. Par ailleurs nous avons remarqué que KXEN était parfaitement adapté pour traiter ce genre de projet. Malheureusement nous n avons pas pu avoir accès à une base à partir de KXEN. Nous avons du utiliser d autres outils pour arriver à nos fins ce qui est dommage. Data mining & BI Groupe Projet 15 10/10

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures]

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures] Objectif Utiliser les techniques de gestion de la mise en cache pour contrôler et améliorer les performances des requêtes Définir des mesures simples et des mesures calculées pour une table de faits Créer

Plus en détail

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation

Plus en détail

Utilisations des mathématiques à des fins opérationnelles

Utilisations des mathématiques à des fins opérationnelles Utilisations des mathématiques à des fins opérationnelles Michael Vandenbossche mvn@softcomputing.com Soft Computing 165 avenue de Bretagne 59000 Lille 1. Présentation 2. Indicateurs statistiques de base

Plus en détail

IBM SPSS Direct Marketing

IBM SPSS Direct Marketing IBM SPSS Statistics 19 IBM SPSS Direct Marketing Comprenez vos clients et renforcez vos campagnes marketing Points clés Avec IBM SPSS Direct Marketing, vous pouvez : Comprendre vos clients de manière plus

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Microsoft OSQL OSQL ou l'outil de base pour gérer SQL Server

Microsoft OSQL OSQL ou l'outil de base pour gérer SQL Server Microsoft OSQL OSQL ou l'outil de base pour gérer SQL Server Suite à mon précédent article concernant MSDE, je me suis rendu compte à partir des commentaires que de nombreux utilisateurs avaient des problèmes

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

Business Intelligence simple et efficace

Business Intelligence simple et efficace Business Intelligence simple et efficace avec Excel et PowerPivot Jean-Philippe GOUIGOUX Table des matières 1 Chapitre 1 Présentation de PowerPivot A. L analyse de données.....................................................

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

--------------------------------Partie 1 : Dessin d'une courbe en fonction d'une mesure

--------------------------------Partie 1 : Dessin d'une courbe en fonction d'une mesure Vous trouverez dans ce topic quelques astuces pour parvenir assez facilement à obtenir des courbes assez représentatives des mesures enregistrées (les logs) avec VagCom. Note : ce tutorial utilise Excel

Plus en détail

COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS

COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS 1 Les fonctions de base 2 Les fonctions de tri 3 Les fonctions de transformations de variables 4 Les fonctions de calcul 5 Les fonctions de construction de fichier

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Extrait Alimenter l'entrepôt de données avec SSIS Business

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

La fraude à la carte bancaire

La fraude à la carte bancaire Agenda Utilisation des réseaux sociaux dans la lutte contre la fraude Françoise Soulié Fogelman VP Innovation francoise@kxen.com 1. La fraude à la carte bancaire 2. La question des volumes 3. La création

Plus en détail

ECHANTILLONNAGES Fiche de repérage

ECHANTILLONNAGES Fiche de repérage M Objectifs pédagogiques généraux : Fiche de repérage Type : Activité d approche de la notion de fluctuation d échantillonnage et d intervalle de confiance à travers quelques simulations. Niveau : Lycée

Plus en détail

Oracle Database 10g: Les fondamentaux du langage SQL I

Oracle Database 10g: Les fondamentaux du langage SQL I Oracle University Appelez-nous: +33 (0) 1 57 60 20 81 Oracle Database 10g: Les fondamentaux du langage SQL I Durée: 3 Jours Description Ce cours offre aux étudiants une introduction à la technologie de

Plus en détail

1 Introduction aux bases de données

1 Introduction aux bases de données 1 Introduction aux bases de données Qu'est-ce qu'un SGBD? quelles sont ses fonctions? Peut-on mémoriser tous les types de données? Business Object est-il un SGBD? Access? Citez trois logiciels de SGBD

Plus en détail

Présentation du logiciel CTB3D. Centrale de Tableaux de Bord 3 Dimensions

Présentation du logiciel CTB3D. Centrale de Tableaux de Bord 3 Dimensions Présentation du logiciel CTB3D. Centrale de Tableaux de Bord 3 Dimensions Le logiciel offre une méthode simple de centralisation de compte rendus normés sous forme de tableaux Excel pour éditer des tableaux

Plus en détail

Créer le modèle multidimensionnel

Créer le modèle multidimensionnel 231 Chapitre 6 Créer le modèle multidimensionnel 1. Présentation de SSAS multidimensionnel Créer le modèle multidimensionnel SSAS (SQL Server Analysis Services) multidimensionnel est un serveur de bases

Plus en détail

Sage Reports Guide d installation et d utilisation 26.01.2015

Sage Reports Guide d installation et d utilisation 26.01.2015 Sage Reports Guide d installation et d utilisation 26.01.2015 Tables des matières Sage Reports - Guide d installation et d utilisation Tables des matières 2 1.0 Avant-propos 3 2.0 Prérequis, installation

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Méthodes de DM pour la GRC dans les banques

Méthodes de DM pour la GRC dans les banques Techniques de DM pour la GRC dans les banques Page 21 III.1 Introduction Avant de chercher des techniques à appliquer dans la gestion des relations avec les clients. Il faut étudier les données des clients

Plus en détail

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln. MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.fr Plan Introduction Généralités sur les systèmes de détection d intrusion

Plus en détail

Guide d utilisation. www.mssig.com

Guide d utilisation. www.mssig.com Guide d utilisation www.mssig.com TABLE DES MATIÈRES 1. PRÉSENTATION DE SIG BI... 3 1.1. OBJECTIFS... 3 1.2. PRINCIPE... 3 2. PARAMÈTRES INITIAUX... 4 2.1. CONFIGURATION REQUISE... 4 2.2. UTILISATION...

Plus en détail

Université de Picardie - Jules Verne UFR d'economie et de Gestion

Université de Picardie - Jules Verne UFR d'economie et de Gestion Université de Picardie - Jules Verne UFR d'economie et de Gestion 23/09/2014 Excel 2003 - Base de données Avant d apparaitre dans de beaux tableaux synthétiques ou des graphiques, l information d une organisation

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise SQL Serveur 2012+ Programme de formation France Belgique Suisse - Canada Microsoft Partner Formez vos salariés pour optimiser la productivité de votre entreprise Dernière mise à jour le : Avril 2014 Des

Plus en détail

Analyse comparative entre différents outils de BI (Business Intelligence) :

Analyse comparative entre différents outils de BI (Business Intelligence) : Analyse comparative entre différents outils de BI (Business Intelligence) : Réalisé par: NAMIR YASSINE RAGUI ACHRAF Encadré par: PR. L. LAMRINI Dans le domaine d économies des Big Data et Open Data, comment

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

Able Informatique bvba Zakske 16 B-8000 Brugge Belgique Téléphone : + 32 50 34 59 04 www.admiralsoft.com

Able Informatique bvba Zakske 16 B-8000 Brugge Belgique Téléphone : + 32 50 34 59 04 www.admiralsoft.com Able Informatique bvba Zakske 16 B-8000 Brugge Belgique Téléphone : + 32 50 34 59 04 www.admiralsoft.com Logiciel de marketing opérationnel multitâches Votre support de marketing direct Data Quest est

Plus en détail

Devoir Data WareHouse

Devoir Data WareHouse Université Paris XIII Institut Galilée Master 2-EID BENSI Ahmed CHARIFOU Evelyne Devoir Data WareHouse Optimisation, Transformation et Mise à jour utilisées par un ETL Mr R. NEFOUSSI Année 2007-2008 FICHE

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

PLANIFICATION ET SUIVI D'UN PROJET

PLANIFICATION ET SUIVI D'UN PROJET Centre national de la recherche scientifique Direction des systèmes d'information REFERENTIEL QUALITE Guide méthodologique PLANIFICATION ET SUIVI D'UN PROJET Référence : CNRS/DSI/conduite-projet/developpement/gestion-projet/guide-planfi-suivi-projet

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH

PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH HR Public 9 juin 2011 INTRODUCTION Piloter = Mesurer Comment? Via les tableaux de bord RH Réduire l incertitude Stabiliser l information

Plus en détail

BUREAU D ETUDES INFORMATIQUE JOUEUR DE PUISSANCE 4

BUREAU D ETUDES INFORMATIQUE JOUEUR DE PUISSANCE 4 MIETLICKI Pascal 3 MIC C2 BUREAU D ETUDES INFORMATIQUE JOUEUR DE PUISSANCE 4 1. Mode Console... 2 2. Mode Graphique... 2 3. Architecture de notre logiciel... 3 4. Manuel d utilisation... 5 5. Aide au joueur...

Plus en détail

OSIRIS/ Valorisation des données PORTAIL BO MANUEL UTILISATEUR

OSIRIS/ Valorisation des données PORTAIL BO MANUEL UTILISATEUR OSIRIS/ Valorisation des données PORTAIL BO MANUEL UTILISATEUR HISTORIQUE DES VERSIONS Vers. Date Rédacteur Objet de la modification 1.00 Juillet 2007 GTBO_AGRI Création du document 1.01 Février 2009 SAMOA

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

BI = Business Intelligence Master Data-Science Cours 6 - Data Mining

BI = Business Intelligence Master Data-Science Cours 6 - Data Mining BI = Business Intelligence Master Data-Science Cours 6 - Data Mining Ludovic DENOYER - D après Elisa Fromont UPMC 23 mars 2015 Ludovic DENOYER - D après Elisa Fromont Le Data Mining De plus en plus de

Plus en détail

Formations MyReport. Formations MyReport

Formations MyReport. Formations MyReport Formations MyReport Formations MyReport MyReport Data Niveau 1 1 journée Concepteurs des applications "métier" Connaissances 1er niveau en bases de données : notions de tables, bases, champs Connaissances

Plus en détail

www.almohandiss.com Recherche opérationnelle EXERCICES DE Serveur d'exercices 1/16

www.almohandiss.com Recherche opérationnelle EXERCICES DE Serveur d'exercices 1/16 EXERCICES DE RECHERCHE OPERATIONNELLE Serveur d'exercices 1/16 EXERCICE 1. Niveau : Gymnase (Lycée) Auteur : Vincent Isoz (isozv@hotmail.com Mots-clés : recherche opérationnelle Enoncé : Supposons qu'une

Plus en détail

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Université Ibn Zohr Faculté des Sciences Juridiques, Économiques et Sociales Exposé sous le thème : Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Plan : Introduction : L

Plus en détail

Ce qu est le Data Mining

Ce qu est le Data Mining Data Mining 1 Ce qu est le Data Mining Extraction d informations intéressantes non triviales, implicites, préalablement inconnues et potentiellement utiles à partir de données. Autres appellations: ECD

Plus en détail

Créer et modifier un fichier d'import des coordonnées approximatives avec Excel

Créer et modifier un fichier d'import des coordonnées approximatives avec Excel Créer et modifier un fichier d'import des coordonnées approximatives avec Excel Manuel d'utilisation Date: 26.03.2015 Version: 1.0 Auteur: Christoph Rüfenacht Statut: En cours Libéré Classification: publique

Plus en détail

INDUSTRIALISATION ET RATIONALISATION

INDUSTRIALISATION ET RATIONALISATION INDUSTRIALISATION ET RATIONALISATION A. LA PROBLEMATIQUE La mission de toute production informatique est de délivrer le service attendu par les utilisateurs. Ce service se compose de résultats de traitements

Plus en détail

Chapitre 9 Les métadonnées

Chapitre 9 Les métadonnées 217 Chapitre 9 Les métadonnées 1. De l'importance des métadonnées Les métadonnées Au-delà du contenu des données elles-mêmes d'un système, il est souvent très utile de connaître un minimum d'informations

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Construire la courbe LIFT. Ricco RAKOTOMALALA. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1

Construire la courbe LIFT. Ricco RAKOTOMALALA. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 Construire la courbe LIFT Ricco RAKOTOMALALA Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 L exemple du publipostage pour la promotion d un produit Objectif : promouvoir un produit Rôle

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

Logiciel de Télégestion

Logiciel de Télégestion 2 530 Logiciel de Télégestion pour centrales de communication OCI600 ACS600 Logiciel pour la télégestion d'une ou de plusieurs centrales de communication OCI600. Version MS-WINDOWS. Domaines d'application

Plus en détail

Double-cliquez sur l'icône "Keep-it-Easy System" pour lancer le logiciel et le menu principal se présente comme l'image n 1.

Double-cliquez sur l'icône Keep-it-Easy System pour lancer le logiciel et le menu principal se présente comme l'image n 1. Manuel d'utilisation du logiciel du moniteur ECG REF. 23 500 10 Sommaire : 1. Menu principal 2. Description des fonctions principales 2.1 Gestionnaire d'archives 2.2 Continuer l'affichage des données 2.3

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle).

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle). 1 Objectif Description succincte de Pentaho Data Integration Community Edition (Kettle). L informatique décisionnelle («Business Intelligence BI» en anglais, ça fait tout de suite plus glamour) fait référence

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel

Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel Excel est un des meilleurs outils de manipulation de données et parfois il est nécessaire d exploiter des données

Plus en détail

Création dynamique des répertoires WORK et SASUSER des utilisateurs

Création dynamique des répertoires WORK et SASUSER des utilisateurs SAS, Cognos, Stata, Eviews, conseil, expertise, formation, mining, datamining, statistique, connaissance Création dynamique des répertoires WORK et SASUSER des utilisateurs client, valeur client, CRM,

Plus en détail

Microsoft Application Center Test

Microsoft Application Center Test Microsoft Application Center Test L'outil de Test de performance des Sites Web Avec Visual Studio.NET, il est fourni une petite application qui permet de valider la performance de son site Internet ou

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

FreeAnalysis. Schema Designer. Cubes

FreeAnalysis. Schema Designer. Cubes FreeAnalysis Schema Designer Cubes Charles Martin et Patrick Beaucamp BPM Conseil Contact : charles.martin@bpm-conseil.com, patrick.beaucamp@bpm-conseil.com Janvier 2013 Document : BPM_Vanilla_FreeAnalysisSchemaDesigner_v4.2_FR.odt

Plus en détail

Les instructions du DDL

Les instructions du DDL Les instructions du DDL Mots clés : CREATE TABLE, ALTER TABLE, Contrainte d'intégrités, CONSTRAINT, PRIMARY KEY, FOREIGN KEY, REFERENCES, UNIQUE, CHECK, NULL Etablir le schéma entités relations attributs

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

1 Introduction et installation

1 Introduction et installation TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette logique détermine le fonctionnement de la commande. Dans ce dossier nous traiterons les différents

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Guide sommaire: Instructions d'installation de l'outil IBAN

Guide sommaire: Instructions d'installation de l'outil IBAN Guide sommaire: Instructions d'installation de l'outil IBAN Remarques Les indications contenues dans ce document correspondent au stade actuel de développement. SIX Interbank Clearing SA se réserve le

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Festo Belgium SA Rue Colonel Bourg 11 BE-13 Bruxelles www.festo.com Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette

Plus en détail

Optimisation de l environnement de travail

Optimisation de l environnement de travail Optimisation de l environnement de travail SERVICE DES FINANCES Équipe de formation PeopleSoft version 8.9 Septembre 2014 TABLE DES MATIÈRES INTRODUCTION...1 LES AIDES À LA TÂCHE...2 ACCUEIL...2 NOUVELLE

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP

ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP SAS Web Report Studio offre depuis de nombreuses versions la possibilité de visualiser les observations spécifiques à partir des données

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

Les techniques d exploitation de données (Data Mining)

Les techniques d exploitation de données (Data Mining) Les techniques d exploitation de données (Data Mining) 1 Présenté par : Emer Mestiri, M.sc Finance, Data Scientist Conseiller Gestion de risque de crédit, Mouvement Desjardins Sommaire 2 I. Logiciel SAS

Plus en détail

FICHES D UTILISATION DU LOGICIEL LATIS PRO MENU

FICHES D UTILISATION DU LOGICIEL LATIS PRO MENU FICHES D UTILISATION DU LOGICIEL LATIS PRO MENU A- Comment enregistrer les coordonnées successives d un point en mouvement à partir d une vidéo? Pages 2 et 3 B- Comment réaliser l acquisition d une tension?

Plus en détail

Introduction MOSS 2007

Introduction MOSS 2007 Introduction MOSS 2007 Z 2 Chapitre 01 Introduction à MOSS 2007 v. 1.0 Sommaire 1 SharePoint : Découverte... 3 1.1 Introduction... 3 1.2 Ce que vous gagnez à utiliser SharePoint... 3 1.3 Dans quel cas

Plus en détail

Mise à jour de. Sommaire

Mise à jour de. Sommaire Mise à jour de Sommaire I Préparation de la mise à jour de GipCar et GipCar Web... 2 I 1 Mise à jour du centre de contrôle hyperfile et du serveur webdev... 2 I 2 Téléchargement des scripts de mise à jour

Plus en détail