I. Espace vectoriel Mn, p ( )

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "I. Espace vectoriel Mn, p ( )"

Transcription

1 Mhémque cou Ch : Mce So u co (commuf),, * I. ce vecoel M, () emble de mce à lge e coloe : M ( ) {( ) },,,, M A, ( ), ( ) l ème M ème, ( ), M ( ) l ( ) C coloe de A L lge de A ( ) e mu d'ue ucue de ev : A ( ), ( b ) M ( ),,,,,, A+ ( + b ) α, αa ( α ),,,,,, x U veceu coloe e ue mce ( ) O l'defe à u éléme de C M x e e be coque de, f f celle de ϕ e f ϕ L(, ) (... ) (... ),, ( ) L mce de ϕ M( ϕ) ( ) L(, ) M( ) θ ϕ M( ϕ ) ( ) Cood. elo f,,, Cood. elo f ϕ( e ) ϕ( e ),,, e u omohme de ev A ( ) M ( ), ( b ) M ( ) C A M ( ) e déf :,,,,,, q q q C ( c ) (, ),, q, c b el que,,, q k k k q Pou ou ϕ L(, ), ψ L(, ) M( ϕψ) M( ϕ) M( ψ) O éc le mce ( ) ( A) ( C ) coeod à l oo du c : Aocvé e "Dbuvé" I, e o f le odu de éléme de l coloe de ceux de l lge de A qu ( A, ) M ( ) ( CD, ) Mq( ) ( αβ, ) F Mq( ) ( A C) F A ( C F) ( αa+ β) C αa C+ β C A ( αc+ βd) αa C+ βa D δ Id (, ), M M ( ) ( ) ( ) A M ( ) M ( ) I A A I

2 Mhémque cou O e géél commuvé ( kl, ),, O déf M ( ) : ( δ δ ) ( ) e l be coque de M ( ) A ( ) kl kl k l kl ( kl, ),, L A M ( ) A ( C. C. ). ( ) be coque de ( ),( M ) celle de M ( ) kl kl L ème l oo ème L oo kl k ( ) A A C ( M ( ), +,, ) ( M ( ), +,, ) e ue lgèbe o commuve ( > ), d'éléme eue ou l lc I e de dmeo ( L( ), +,, ) ( M ( ), +,, ) θ e u omohme de lgèbe ϕ M( ϕ) x x A v v v A x x ϕ L(, ), M ( ϕ), M ( ) ϕ( ) II. Mce e lco lée ev de dm fe ( e... e ) be de M( ) ϕ x v el que v xe x x ϕ x e u omohme de d M ( v) ( v) ( v... v ),, C M ( v ) M( ) e u omohme de d M ( v... v) M( v... v) ( ) M ( ) M ( v... v ) ( C... C ) e F deux ev de dm fe. ( e... e ) be de, C ( f... f ) be de F ϕ L(, F) M C, C ( ϕ) M ( ϕ( e )... ϕ( e )) A ( ),, ϕ( e ) f L( F, ) M( ) θ e u omohme ϕ MC, ( ) FG,, evde dm fe q,, ϕ L( F, ), ψ L( FG, ) be de G, de F, C de A M ( ψ) M ( ) M ( ϕ) M ( ) C M ( ψ ϕ) A, C, q C, M ( ϕ) M ( ϕ)

3 Mhémque cou A M ( ) A e veble 'l exe M ( ) el que A I A O oe A F, evde dm. be de, C de F. ϕ L( F, ) A M ( ϕ) A e veble ϕ e u omohme de d F A,C M ( ϕ ) C, ev de dm fe e de be ( v... v ) A M ( v... v ) M ( ) A e veble ( v... v ) be de Gl ( ) { A M ( ), A veble } ( Gl ( ), ) e u goue ( Gl( ), ) ( Gl ( ), ) Pou ou ev de dm e be de, ξ e u omohme de goue ϕ M ( ϕ ) III. Sou eemble cule de M() U mce A ( ) ( ) e dgole ou ou (, ),, M,,, λ λ Pou ou,, o oe λ O oe lo A dg( λ... λ ) D ( ) { A M ( ), A dgole } e ue ou lgèbe de M ( ) S A dg( λ... λ ) e dg( µ... µ ) e α A + dg( λ + µ... λ + µ ) α A dg( αλ... αλ ) A dg( λ µ... λ µ ) A dg( λ... λ ) A e veble ou ou,, λ A dg... λ λ d m D ( ) e de D ( ):( ), (,,,) lgèbe ou lgèbe de dm fe u S e veble d, lo A + x A x Peuve : Ule η L ( ) vec x veble Moe ecvé uecvé η () y xy ( A, +,,) lgèbe de dm fe A ège A co e commuve u D ( ) A ( ) M ( ) A e : gule uéeue ( T ( )) : (, ),, > gule féeue ( T ( )) : (, ),, < gule uéeue ceme ( T ( )) (, ),, gule féeue ceme ( T ( )) (, ),, T ( ) e ue ou lgèbe de M ( ) Ae T, ou ou,, ( A) b 3

4 Mhémque cou ( ) e veble ou ou,, T ( ) ( ) A T A A A ( + ) e de T : ( ) e de T : ( ) dmt dmt ( ) e de T : ( ) < e de T : ( ) > dmt dmt A T ( ) A M ( ) Toée u M ( ): M( ) M( ) A A ( b ) q (, ),,, b L oée e u omohme de M u, e (, càd A τ ( ) M( ) τ) τ ( A) Gl( M ( )) A M ( ), M ( ), ( A) q τ A O véfe l oée que oue le oéé moée ou T e T o vlble ou T e T Gl A A ( ) ( ) ( ) Ue mce A M ( ) e yméque A A, e yméque A A S ( ) { A M ( ), A A} A ( ) { A M ( ), A A} S ( ) e A ( ) o de ou-ece vecoel e S ( ) A ( ) M ( ) ( + ) dm S ( ) dm ( ) A ( ) A+ A A A Peuve : A + : e yméque / yméque S A e yméque, lo,, De mèe gééle, ou ( A, ) S ( ), A S ( ) e de S ( ) :{,, } {( + ), < } de A ( ) :{( + ), < } T ( ) T ( ) M ( ) ev de dmeo ( e... e ) be de θ * L(, ) M ( ) e u omohme ϕ M ( ϕ ) ( ϕ ( e )... ϕ ( e )) Le mce lge eéee le fmlle lée IV. Mce de chgeme de be ev de dmeo ( e... e ) e ( w... w ) be de L mce de chgeme de be de à e P M ( w... w ) M ( ) P M ( ϕ) où ϕ e l'uque lco lée qu evoe u P M ( ) ( ) Id Gl 4

5 Mhémque cou P l mce de ge de à v X M () v X M () v X PX P e l mce de chgeme de be de à e F deux ev de dm fe e e be de, C e C be de F P Gl ( ) mce de ge de à, e Q Gl ( ) celle de C à C ϕ L(, F) A M ( ϕ) A M ( ϕ) Alo A QAP C C ev de dm e deux be de ϕ L( ) A M ( ϕ), A M ( ϕ) S P e l mce de chgeme de be de à, A PAP A e M ( ) o emblble 'l exe P Gl ( ) el que A PP L mlude e ue elo d'équvlece u M Deux mce o emblble elle eéee l même. l. d deux be dfféee V. Rg d ue mce ( ) A M ( ) A ( C... C ) où ou ou,, C M ( ) Le g de A g( A) g ( C... C ) dm ( Vec( C... C )) g( A) m(, ) ev de dm ( e... e ) be de A M ( ) S A M v (... v ) lo g( A) g( v... v ) e F deux ev de dm e be de, C be de F ϕ L(, F) A MC( ϕ) M( ) g( A) g( ϕ) S A M ( ) e l mce de ϕ L(, F) g( A) ϕ e uecve de d F g( A) ϕ e ecve de d F S A M ( v... v ) g( A) ( v... v ) e gééce g( A) ( v... v ) e lbe ( A, ) M ( ) A e o équvlee 'l exe P Gl ( ), Q Gl ( ) q A PQ L'équvlece e ue elo d'équvlece (!) Su M ( ), deux mce o emblble, lo elle o équvlee (l écoque e fue) A e o équvlee l exe ϕ L(, F), be de, C, C be de F q A M ( ϕ) M C C ( ϕ), I A M( ) de g,m(, ) A e équvlee à J ( J) o A e M ( ) o équvlee elle o le même g A M J A A A ( ) e emblble à e ue mce de oeceu ( ) A M ( ) g( A) g( A) ( J J ) 5

6 Mhémque cou VI. Clcul exlce de g Pvo de Gu Oéo u le coloe : A M( ) Rel : A ( C ) Oéo Mullco à doe Allue de l mce C C AI ( + + ) (evoe be u be) C αc ( α *) AI ( + ( α ) ) (dgole à coef. dg. o ul) α C C + βc ( β, ) AI ( + β ) (gule à coef. dg. o ul) β Ce o oéo evee à mulle A de mce de Gl ( ): O e chge le g de A O le même oéo u le lge, e mull à guche : L A * * * * * λ * T M ( ), T g( T ) Pvo de Gu ou le g : O e mèe à ue mce gule vec le oéo u le lge e le coloe, ou élme ou ce qu e e-deou de l dgole. Pvo de Gu ou l vee : o e mèe à I vec le oéo u le lge OU u le coloe ( le à l fo), e commeç obe ue mce gule, u e «emo». O f le même oéo e de I ou vo l vee. Auce : P ( M ( ))[ X] PA ( ) : A A A I VII. Comléme k k q O k k k k M ( ) LM ( ( ), ) e l ce de A A, ( A, ) M ( ) ( A) ( A) ϕ L( ) ( M ( ϕ)) e déed de l be choe : o l oe ( ϕ) S e u oeceu, lo ( ) g( ) 6

7 Mhémque cou Mce bloc : M M ( ) m+ q+ A Cm M A mq( ) q( ) C m( ) D ( ) D M M M M q A C F A + CG AF + CH M ( ) N ( ) MN D M G H M + DG F + DH m q q q q q So λ. O équvlece ee : ke( f λid ) { } Il exe v \{ } el que f( v) λv Il exe X M ( ) el que AX λ X U el λ e vleu oe de f, u v \{ } e u veceu oe océ à l vleu oe λ ke( f λid ) e le ou-ece oe f e dgolble elle dme ue be de veceu oe S M( f), A M ( f) P P λ, A P P P P f e golble 'l exe el que M( f) T + N T λ λ * 7

RDV E-commerce 2013 Mercredi 6 Mars, Technopark

RDV E-commerce 2013 Mercredi 6 Mars, Technopark RDV E-mm 2013 Md 6 M, Thpk Smm 1 P q E 2 Q x p? 3 Q v? 4 d é d 2 0 1 5 p 2 0 1 3 6 h g 7 d f é 1 Pq E-mm? Pq S E-Cmm? D d d Md IT XCOM gé dp 2009 phé E-mm.m F à mhé p, XCOM h d déd E-mm, Pm éq, E-Mkg Chff

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

«Trop de chats en refuge : Aidons-les!»

«Trop de chats en refuge : Aidons-les!» q io iific bo ch Mlic g f! l o h c To i? co cio collboio vc Pl 5899 ch 7398 ch y éé boé C l ob félié qi, chq jo, o cibl joi fg Blgiq! 4641 ch l o l chc ov i à l g l fg fill i foy ê à l hx! C qlq chiff

Plus en détail

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté L c - 3 : «L mé é» 4 : «L m» 5 à 11 : L D 12 : L 13 : F é bé L J éèv Lycé L P, èm égé éèv, é f é c 2013-2014, D éc ccé à c ; x c ô, c éê vfé qq é. L - émé chz j? C mé év qq, é à c m q... B... c! LC, c.

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Bougez, protégez votre liberté!

Bougez, protégez votre liberté! > F a Bgz, pégz v bé! www.a-. CAT.ELB.a240215 - Cé ph : Fa Daz à v p aé N az p a v gâh a v! Aj h, p g évq v ; Pa, p 4 aça q, v, éq qaé v. Ca ax é ç, b pa évé ax p âgé a h a p j. E pè v, h pa épagé. Pa

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo- VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010 Lot 4: Validation industrielle Youness LEMRABET Pascal YIM, 19/11/2010 Partenaires Lot 1 Modèle du processus métier L4.1 Modèles PSM Lot 2 Guide d implantation L4.2 Développement & Recette prototype Lot

Plus en détail

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES !"#!$# #"%&&&&' 1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES DEMANDES... 5 1.5.1. Du lundi au vendredi

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Page 1. Test VDSL2. Test ADSL/2/2+/Re-ADSL. Test Résitance Capacitance R/C. TDR-Echomètre 6 km (option) Test PING.

Page 1. Test VDSL2. Test ADSL/2/2+/Re-ADSL. Test Résitance Capacitance R/C. TDR-Echomètre 6 km (option) Test PING. TESTEUR VDSL ADSL/ VDSL L' ARG U S 1 5 1 teste l es résea u x VDSL2, ADSL, Eth ern et sa n s m od u l e a d d i ti on n el. Ce testeu r tou t- en - u n a vec u n écra n cou l eu r offre l a pri se en ch

Plus en détail

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444.

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444. ou n identification fiscal pays hors CEE Aménagement de stand l Décoration DS01 Fourniture et pose de moquette type tapis aiguilleté (norme M3) M2 20.00% 6.09 DS02 Pose de tenture murale norme M1 M2 20.00%

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

Santé et sécurité au travail

Santé et sécurité au travail 29/07/13 INRS Base de données CACES Votre recherche [(Département = 82)] donne 4 documents AFPA MIDI PYRENEES 325, avenue de Montech 8 2 0 1 5 M O N T A U BA N C edex tél. 0 5 6 3 2 2 1 1 2 2 1 b Apave

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

SYSTÈMES DE CONFÉRENCE. Système de conférence analogique CDS 4000 04. Système de conférence numérique DCS 6000 06

SYSTÈMES DE CONFÉRENCE. Système de conférence analogique CDS 4000 04. Système de conférence numérique DCS 6000 06 Système de conférence analogique CDS 4000 04 Système de conférence numérique DCS 6000 06 DIS, Danish Interpretation Systems, fait partie des fabricants les plus réputés de systèmes de conférences. DIS

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Le Préfet de Seine et Marne, Officier de la Légion d'honneur, Officier de l'ordre National du Mérite,

Le Préfet de Seine et Marne, Officier de la Légion d'honneur, Officier de l'ordre National du Mérite, IRECTION ES ACTIONS INTERMINISTERIELLES --------------------------------- Bureau des Installations Classées Mines - Carrières ------------------- Arrêté préfectoral n 04 AI 2 IC 271 autorisant la société

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

c dur Leçon 8 S c i e c v m C s c d f M a c u n S C r t V C o coton café classe carotte sac tricot Sa si ca la co lu cu ra ac cre

c dur Leçon 8 S c i e c v m C s c d f M a c u n S C r t V C o coton café classe carotte sac tricot Sa si ca la co lu cu ra ac cre C est en tricotant que l on fait du tricot. 1 Trouver le son commun à toutes ces images. 2 Encercler les C et c. S c i e c v m C s c d f M a c u n S C r t V C o Sa si ca la co lu cu ra ac cre coton café

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire

Plus en détail

Un exemple d étude de cas

Un exemple d étude de cas Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui

Plus en détail

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Mercredi 5 novembre 2014 Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Hervé PETTON, Directeur Territorial 35 ans d expérience professionnelle en collectivités

Plus en détail

Le son [v] Découpe et colle les images dans la bonne colonne. Prénom : Date : J entends [vi] J entends [va] J entends [vo]

Le son [v] Découpe et colle les images dans la bonne colonne. Prénom : Date : J entends [vi] J entends [va] J entends [vo] Le son [v] Découpe et colle les images dans la bonne colonne. J entends [va] J entends [vo] J entends [vi] J entends [vu] J entends [von] Je n entends pas [v] Le son [v] Ecris O (oui) si tu entends le

Plus en détail

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Votre conseiller publicité. Une Question? 0470/512.999 info@beebopcity.com

Votre conseiller publicité. Une Question? 0470/512.999 info@beebopcity.com Vo coll publcé U Quo? 0470/512.999 fo@bbopcy.com u q. h p, c g chu, bo o o p p u c. pl é c o, dé u, o l x S Log o ux, p. mpum,, c c Do d v o S é o d é c, V c m. c. m, o ux c E-c lg ux o V m é, c ogl g,

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Les réactions ion neutre dans la base de

Les réactions ion neutre dans la base de 1eratelierdugroupederéflexionsurlesbasesdedonnées chimiquespourlemilieuinterstellaire Lesréactionsion neutredanslabasede donnéesosu:r1++r2 P1++P2 NathalieCarrasco,PascalPernot ChristianAlcaraz,RolandThissen,OdileDutuit

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

MASTER de Sciences, Technologies, Santé Mention SCIENCES POUR L INGENIEUR Spécialités :

MASTER de Sciences, Technologies, Santé Mention SCIENCES POUR L INGENIEUR Spécialités : MASTER de Sciences, Technologies, Santé Mention SCIENCES POUR L INGENIEUR Spécialités : IUP GENIE ELECTRIQUE ET INFORMATIQUE INDUSTRIELLE, IUP GENIE MECANIQUE, IUP GENIE DES SYSTEMES INDUSTRIELS, REALITE

Plus en détail

Philippe-Didier GAUTHIER

Philippe-Didier GAUTHIER -Didier Ingénierie, Management, Administration en Éducation et Formation 1 - Parcours professionnel 2 - Projet professionnel 3 - Missions et interventions Portfolio Numérique : - Didier Parcours professionnel

Plus en détail

Période de recensement 2002 - Répartition par âge des cas. Hôpital test <100 lits. Hôpital test 100 à 499 lits. Hôpital test >= 500 lits

Période de recensement 2002 - Répartition par âge des cas. Hôpital test <100 lits. Hôpital test 100 à 499 lits. Hôpital test >= 500 lits Période de recensement 2002 - Répartition par âge des cas Classe d'âge Nombre de cas 0-9 683 10-19 143 20-29 635 30-39 923 40-49 592 50-59 716 60-69 626 70-79 454 80-89 156 90-99 9 Classe d'âge Nombre

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com Dreo Aeropor Mrselle Provee D 9 SADY s TRADING WOOD TRADING Déoro, équpeme de l Mso www.sdys-rd.om Jver 2013 ss prx Premps / Éé ZI Les Bols Dreo Mrselle - Ax ZI Les Esroubls SADY s TRADING Les ouveués

Plus en détail

Sondage SEMO 2011/2012 : Résultats

Sondage SEMO 2011/2012 : Résultats Département fédéral de l économie, de la formation et de la recherche DEFR Secrétariat d'etat à l'économie SECO Marché du travail / Assurance-chômage Mesures du marché du travail Markus Weber 07.06.2013

Plus en détail

L AIDE AUX ATELIERS D ARTISTES :

L AIDE AUX ATELIERS D ARTISTES : RAPPORT DAVID LANGLOIS-MALLET SOUS LA COORDINATION DE CORINNE RUFET, CONSEILLERE REGIONALE D ILE DE FRANCE L AIDE AUX ATELIERS D ARTISTES : PROBLÉMATIQUES INDIVIDUELLES, SOLUTIONS COLLECTIVES? DE L ATELIER-LOGEMENT

Plus en détail

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR SYSTÈME DE SÉCURITÉ INCENDIE www.marque-nf.com ADR > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL TSM EVOLUTION LA SOLUTION ÉVOLU > 3 versions pré-équipées d ECS (Equipement de Contrôle et

Plus en détail

E-REPUTATION ET IDENTITE

E-REPUTATION ET IDENTITE E-REPUTATION ET IDENTITE NUMERIQUE DES ORGANISATION Typologie des menaces et identification des modes de traitement applicables La gestion de l'identité numérique, appelée également e-réputation, constitue

Plus en détail

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes!

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes! Lyon City Card 1 jour 2 jours 3 jours Ta xis et M inibus - Tarifs forfaitaires Jour : 7h - 19h Nuit : 19h - 7h Lyon/ Villeurbanne - Aéroport St Exupéry 59 81 Lyon 5ème et 9ème excentrés - Aéroport St Exupéry

Plus en détail

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources a I 4 F 41 a a L L é à a è Ma Q Ga / S 5 46 51 53 55 2 La Ga G a é a a XX è è, a, a aa. E a é a. D a, ï, aa. L a éé a a a a a. N a a é a a a a Ga G, a a aé a a a, a. é E a a, a ê aé a a é, a aé a. A, a-à

Plus en détail

Le centre de gestion a le plaisir de vous adresser les statistiques professionnelles élaborées à partir des dossiers de gestion 2013.

Le centre de gestion a le plaisir de vous adresser les statistiques professionnelles élaborées à partir des dossiers de gestion 2013. Statistiques 2013 3, rue de Lyon B.P. 531 71010 MACON CEDEX Tél. 03.85.21.90.60 Télécopie 03.85.21.90.69 E-mail : contact@cgai-macon.fr Agrément de la Direction Régionale des Impôts n 1.02.710 du 6 mars

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Informations techniques

Informations techniques Informations techniques Force développée par un vérin Ø du cylindre (mm) Ø de la tige (mm) 12 6 16 6 20 8 25 10 32 12 40 16 50 20 63 20 80 25 100 25 125 32 160 40 200 40 250 50 320 63 ction Surface utile

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

MATHEMATIQUES GRANDEURS ET MESURES

MATHEMATIQUES GRANDEURS ET MESURES FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour

Plus en détail

Centre de Récupération de SoftThinks

Centre de Récupération de SoftThinks Centre de Récupération de SoftThinks Table des matières Révisions... 1 Table des matières... 2 Introduction... 3 Quel est l objectif du Centre de Récupération de SoftThinks?... 3 Que pourrez-vous trouver

Plus en détail

Molécules et Liaison chimique

Molécules et Liaison chimique Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R

Plus en détail

Fiche technique. " Cible/Echantillon " Mode de recueil " Dates de terrain

Fiche technique.  Cible/Echantillon  Mode de recueil  Dates de terrain v, r v «L qé d»? q c pr v Sfr dg d é d r Pré TNS Fch chq " Cb/Ech " Md d rc " D d rr 1001 ré cf ccpé Âgé d 18 p I d p TNS Sfr 267 000 dr Frc L rprévé d c éch ré pr méhd d q : âg, x, prf d rvwé, cr d cvé

Plus en détail

INFORMATIONS DIVERSES

INFORMATIONS DIVERSES Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE

Plus en détail

Peut-on perdre sa dignité?

Peut-on perdre sa dignité? Peut-on perdre sa dignité? Eric Delassus To cite this version: Eric Delassus. Peut-on perdre sa dignité?. 2013. HAL Id: hal-00796705 https://hal.archives-ouvertes.fr/hal-00796705 Submitted

Plus en détail

ENJEUX ENERGETIQUES. Le Monde et la France. L énergie dans les territoires

ENJEUX ENERGETIQUES. Le Monde et la France. L énergie dans les territoires ENJEUX ENERGETIQUES Le Monde et la France L énergie dans les territoires * Bernard LAPONCHE (Données statistiques : Enerdata) 1 Monde : Consommation d énergie primaire (2008 : 12,2 milliards de tep) Energies

Plus en détail

# $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* /!01+'$*2333

# $!%$!&$'(!(!()! $(! *)#%!$'!+!%(!**&%',&-#.*!* /!01+'$*2333 !" # $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* #$-*!%-!!*!%!#!+!%#'$ /!1+'$*2333 $!)! $(!*!" /4 5 $." 6 $-*(!% 6 '##$! $ 6 '##$! $ 6,'+%'! $ 6,'+%'! $ +!,'+%'! $ 65 %7- !""!# $ %! & '%! "!# (

Plus en détail

Q. A quels produits s adresse ce document?

Q. A quels produits s adresse ce document? Licences F O R U M A U X Q U E S T I O N S Adobe Q. A quels produits s adresse ce document? Adobe Acrobat Adobe Font Folio Adobe Acrobat Distiller Server Adobe PageMaker Adobe After Effects Adobe Illustrator

Plus en détail

LE MAGASIN DE FOURNIMENT DU REGIMENT ROYAL DE L ARTILLERIE CANADIENNE

LE MAGASIN DE FOURNIMENT DU REGIMENT ROYAL DE L ARTILLERIE CANADIENNE LE MAGASIN DE FOURNIMENT DU REGIMENT ROYAL DE L ARTILLERIE CANADIENNE Table des matières Fanionsetdrapeaux.3 Cadeauxderetraite...4 Épéeetbâtondedrill...5 Accoutrements.6 Accessoires.8 Articlesenacierinoxydable.9

Plus en détail

CONFERENCE DE PRESSE > LANCEMENT DU «MANIFESTE POUR UNE SOCIÉTÉ POSITIVE»

CONFERENCE DE PRESSE > LANCEMENT DU «MANIFESTE POUR UNE SOCIÉTÉ POSITIVE» CONFERENCE DE PRESSE > LANCEMENT DU «MANIFESTE POUR UNE SOCIÉTÉ POSITIVE» > PRÉSENTATION DES RÉSULTATS DE L INDICE DE LA PERFORMANCE ÉCONOMIQUE POSITIVE 2014 UNE INITIATIVE DE DÉROULÉ DE LA CONFÉRENCE

Plus en détail

CULTURE GÉNÉRALE Histoire de l Art (RC) Philosophie (FB)

CULTURE GÉNÉRALE Histoire de l Art (RC) Philosophie (FB) RE ANNÉE SEMESTRE PRATIQUE ET INITIATION Dessin d observation et projet (FL [cd] + PC [a] + JMH [b]) Couleur / peinture (PC [cd] + AO [ab]) Espace / Volume (CLT [cd] + AT [ab]) Design (FC [ab] GG [cd])

Plus en détail

1.1 Codage de source et test d hypothèse

1.1 Codage de source et test d hypothèse Théorie de l information et codage 200/20 Cours 8février20 Enseignant: Marc Lelarge Scribe: Marc Lelarge Pour information Page webdu cours http://www.di.ens.fr/~lelarge/info.html Notations Pour des variables

Plus en détail

logiciels Reconnus d Intérêts Pédagogiques, encyclopédies, dictionnaires, manuels scolaires,... ;

logiciels Reconnus d Intérêts Pédagogiques, encyclopédies, dictionnaires, manuels scolaires,... ; Les m od es d u tilisation d e l A ctiv board et d A ctiv stu d io M od e 1 A ctiv board, La palette g raph iq u e et sa sou ris...p2 A ctiv stu d io O u tils et g rand s principes...p3 M od e 2 A ctiv

Plus en détail

Pression de fonctionnement maxi Température C Débit à 6 bar avec p=1 (Nl/min) 10-5 +50 1500 9 10-5 +50 1500 9 10-5 +50 1500 9

Pression de fonctionnement maxi Température C Débit à 6 bar avec p=1 (Nl/min) 10-5 +50 1500 9 10-5 +50 1500 9 10-5 +50 1500 9 Disribueur 5/ Tille 6 mm LINE Série 600 Pneumique - ressor 61.5.00.19 Poids gr.35 Pression minimum de piloge br Pour l coe "A" oir l réérence de commnde Tille Serie Disribueur Pneumique 600_FR_01 mm 5/

Plus en détail

! " # $%& '( ) # %* +, -

!  # $%& '( ) # %* +, - ! " # $%& '( ) # %* +, - 1.! "# $ % &%%'( #)*+,)#-. "/%)0123* 4%5%&!$!% 6)"7 '%%% 48-0 9::!%%% % 79;< "# 8 Ploc la lettre du haïku n 40 page 1 Décembre 2010, Association pour la promotion du haïku =%%)>

Plus en détail

Le Partenariat ECES-EFEAC dans le renforcement innovant des capacités électorales en Afrique. Plan de présentation

Le Partenariat ECES-EFEAC dans le renforcement innovant des capacités électorales en Afrique. Plan de présentation Le Partenariat ECES-EFEAC dans le renforcement innovant des capacités électorales en Afrique Programme de mise en place des dynamiques de renforcement institutionnel et de formation pour l ensemble des

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

TP 3 diffusion à travers une membrane

TP 3 diffusion à travers une membrane TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier

Plus en détail

Géomètres-Experts, simplifiez-vous la vie!

Géomètres-Experts, simplifiez-vous la vie! Géomètres-xperts, simplifiez-vous la vie! Septembre 2012 Pour découvrir les services de votre syndicat, cliquez sur les applications. CO FO TIO MA C U C CO M MU TIO ICA O -B UT IQ U S I S FA AF CIAL SO

Plus en détail

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa

Plus en détail

!"!#!$ %!!% #$ %&'($$&' ) Tél. 03 22 71 82 01 Télécopie : 03 22 82 51 29 &% $ ' %$&' $% *! %& ( + %,( %( -%$ *""./012 "34"!4*"".5 #%#!$!

!!#!$ %!!% #$ %&'($$&' ) Tél. 03 22 71 82 01 Télécopie : 03 22 82 51 29 &% $ ' %$&' $% *! %& ( + %,( %( -%$ *./012 34!4*.5 #%#!$! """" Tél. 03 22 71 82 01 Télécopie : 03 22 82 51 29 #$ %&'($$&' ) "#$ %% #%# $& &% $ ' %$&' $% * %& ( + %,( %( -%$ *""./012 "34"4*"".5 Gestion centralisée des identités Page 1/37 1. PRESENTATION DU PROJET...3

Plus en détail

Incorporé au 3 e régiment d infanterie coloniale

Incorporé au 3 e régiment d infanterie coloniale Ax 59 : ch u u c u C B L ch u u c u C B 1 N A Fç Adu Eugè Gg [979?] Au C Afd A Luc Lu Augu M Aub Luc Muc Auc Augu E Auc Lu Auy Ru Auz Rhë Mu D u d c Pf Su N 15 cb 1886 à P N 8 b 1879 à P N 13 û 1885 à

Plus en détail

Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1. Antispam individuel pour la Messagerie évoluée.

Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1. Antispam individuel pour la Messagerie évoluée. Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1 Antispam individuel pour la Messagerie évoluée Guide Utilisateur SOMMAIRE 1. QU EST-CE QUE LE SPAM?...3 1.1. DEFINITION...3 1.2.

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Exercices et corrigés Mathématique générale Version β

Exercices et corrigés Mathématique générale Version β Université libre de Bruxelles Années académiques 2008-2050 Université catholique de Louvain Exercices et corrigés Mathématique générale Version β Laurent Claessens Nicolas Richard Dernière modification

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

A l aise dans mon parking!

A l aise dans mon parking! A ae dan mon pakng! Gude d uaon de voe pakng Voe accè au pakng Pou accéde à voe pakng, vou dpoez d'un badge* qu commande ouveue de poa e poe d enée Nou vou emeon évenueemen une vgnee adhéve à coe u voe

Plus en détail

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré FORMAV

Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré FORMAV Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré Méthode et exercices corrigés générés aléatoirement Pour un meilleur rendu ouvrir ce document avec TeXworks FORMAV

Plus en détail

F a s c i c u l e 6 ÉQUITÉ SALARIALE

F a s c i c u l e 6 ÉQUITÉ SALARIALE F a s c i c u l e 6 ÉQUITÉ SALARIALE 2 Partant de la reconnaissance de la discrimination systémique et historique qu ont subies les femmes dans les ca t é g o r i e s d e m p lois à pré d o m i n a n ce

Plus en détail