Leçon N 1 : Taux d évolution et indices

Dimension: px
Commencer à balayer dès la page:

Download "Leçon N 1 : Taux d évolution et indices"

Transcription

1 Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une autre notation pour, nous écrirons x = ( 0,25) 2 = 0,5. Cette notation s explique aisément : soit a 0, nous avons 2 ( a ) = a et bien ( a ) = a 2 = a = a. De même la racine cubique 3 a, a 0, se notera 3 a. Définition On appelle taux d évolution moyen T M de n évolutions successives, le nombre réel T M tel que n évolutions à ce taux T M donnera le même résultat que l évolution globale constatée. Sur une grandeur y et n évolutions cela donne (y 0 0) : T M T M T M T M y 0 y y 2 etc y n y n Taux d évolution T y = y 0 ( + T M ) ; y 2 = y ( + T M ) = y 0 ( + T M )( + T M ) = y 0 ( + T M ) 2 ; etc.. y n = y 0 ( + T M ) n t T M est un pourcentage (T M = M = t M %). ( + T M ) est un coefficient multiplicateur. 00 Pour calculer T M, nous allons utiliser un exposant fractionnaire en effet, T M vérifie l équation : y 0 ( + T M ) n = y 0 ( + T) donc ( + T M ) n = + T et donc + T M = ( + T) n On dit aussi que le coefficient multiplicateur + T M est la moyenne géométrique de tous les coefficients multiplicateurs successifs + T ; + T 2 ; etc ; + T n. Un exemple s impose : Soit un prix P 0, nous constatons sur 3 ans, une baisse de 0% puis une hausse de 20% et enfin une baisse de 0%. Déterminer le taux moyen d évolution. Nous avons en suivant les variations successives : P = P 0 ( 0,) = 0,9 P 0 ; P 2 = P ( + 0,2) =,2P =,2(0,9)P 0 =,08P 0 (remarque une augmentation de 8%) puis enfin P 3 = P 2 ( 0,) = 0,9P 2 = 0,9(,08)P 0 = 0,972P 0. Sur les trois années, nous constatons une baisse : 0,972 = 0,028, donc une baisse de 2,8% au total. T = 0,028. Nous aurons + T M = ( 0,028) 3 + T M = ( 0,972) 3 + T M 0,9905 donc : T M 0, Soit en terme clair, une baisse moyenne d environ 0,95%.

2 Les indices Définition L indice de la grandeur par rapport à R (la quantité de référence est I = 00. R Nous pouvons apprendre à utiliser les indices et à les comprendre dans un tableau : uantités R 2 Valeurs 8 9,5 7,22 Indices 00?? Comment calculer les indices? Il faut en premier lieu repérer la quantité de référence, il s agit de la quantité qui reçoit l indice 00. Puis, on applique la formule donnée : 9,5 7,22 I = 00 = 8,75 et I2 = 00 = 90, uantités R 2 Valeurs 8 9,5 7,22 Indices 00 8,75 90,25 Nous pouvons calculer les taux d évolution : V 9,5 8 T = F VI R = = = 0,875 soit +8,75% mais on peut aussi faire : VI R 8 I T = 00 = 0,875 soit 8,75%. 00 Attention au taux d évolution entre et 2 : T = 2 7,22 9,5 = = 0,24 soit 24%. 9,5 90,25 8,75 Ici aussi, nous pouvons faire : T = = 0,24 soit 24%. 8,75 Deux remarques importantes : Entre R et 2, le taux d»évolution est de : T 2 = 2 R I 00 ou 2 = 0, 0975 = 9,75%. R 00 Et nous ne pouvons pas additionner T et T : 8,75 + ( 24%) = 5,25% 9,75%. On ne peut additionner deux pourcentages de quantités différentes. (T est calculé par rapport à R et T est calculé par rapport à ) Au point de vue du langage, entre I et I 2, nous disons il y a une perte de 20,5 de points d indice, cela ne veut pas dire 20,5% car en fait, le calcul montre une baisse de 24%. (Pour entraînement, calculer le taux moyen d évolution sur les deux évolutions ci-dessus) (Réponse : + T M = ( 0,0975) 2 ceci donnera T M = 0,05 = 5%) (Vérification : 8( 0,05) = 7,6 et 7,6( 0,05) = 7,22) I Enfin le lien entre le taux d évolution et l indice : T = ou I = 00( + T). 00

3 TERMINALE STG FICHE TAUX D EVOLUTION - INDICES Exercice Compléter le tableau suivant : Taux d évolution Evolution entre y de y à y 2 et y 2 Coefficient multiplicateur de y à y 2 5% baisse 0,04% 40% 20% Calculer le taux moyen d évolution si on considère maintenant que les 4 évolutions ci-dessus sont des évolutions successives d une même quantité. uel est le taux global d évolution réciproque? Exercice 2 CM ) Si le taux d évolution entre et est une diminution de 60% alors l indice de par rapport à : a) 60 b) 40 c) 60 2) Si l indice de par rapport à est de 70 alors le taux d évolution est : a) 30% b) 70% c) 30% 3) Si = 2 alors l indice de 2 par rapport à est : a) 0 b) 00 c) 4) Si l indice de y 2 par rapport à y est de 50 alors le taux d évolution est de : a) 50% b),5% c) 50% Exercice 3 (Extrait de BAC) La Chine, les USA et la France sont parmi les principales destinations de vacances dans le Monde. Le graphique ci-dessous montre l évolution de nombre de touristes étrangers en millions venus dans ces trois pays entre 998 et Nombre de touristes 80 75,2 76, ,5 FRANCE ,9 48,5 46,4 4,9 USA 40 36,8 25, 27 3,2 33,2 CHINE (Années)

4 ) On estime qu en 2002, la Chine, les USA et la France avaient respectivement 300, 270 et 60 millions d habitants. Pour 2002 et pour la France, le rapport du nombre de touristes 76,7 étrangers au nombre d habitants est,28. Calculer une valeur approchée de chacun 60 des rapports pour les USA et pour la Chine. Ces trois rapports sont ils rangés dans le même ordre que le nombre des touristes? 2) Le nombre de touristes étrangers arrivant en Chine n a cessé d augmenter entre 998 et Cette croissance est-elle linéaire? Chaque année combien est-il arrivé en moyenne de touristes supplémentaires entre 998 et 2002? 3) Pour les USA, on constate une forte baisse durant la période Montrer que le taux d évolution moyen annuel durant cette période de deux ans est 9,3%. Sachant que la baisse de 2000 à 200 a été d environ 0,6%, calculer le nombre de touristes étrangers venus aux USA en 200. Calculer le taux d évolution du nombre de touristes étrangers arrivés aux USA entre 999 et Calculer le nombre de touristes qui auraient dû arriver aux USA en 2002 si le taux précédemment calculé s était maintenu durant les deux périodes et ?

5 Correction Exercice Taux d évolution Evolution entre y de y à y 2 et y 2 Coefficient multiplicateur de y à y 2 5% Baisse 0,05 = 0,95 0,04% Hausse + 0,0004 =, % Baisse 0,4 = 0,6 20% Hausse +,2 = 2,2 Les coefficients multiplicateurs sont de la forme + T ou T selon qu il y a augmentation 40 ou diminution (T exprimé en décimal, exemple 40% = = 0,4) 00 Pour le dernier exemple, nous voyons que la quantité à plus que doublée en effet, 00% d augmentation correspond à une quantité qui double ( = ( + ) = 2) et pour +20%, la quantité est multiplié par 2,2. Exemple : Soit une marchandise qui coûte 20, plusieurs années après, elle vaut =,2 soit 20% d augmentation ; 44 = 20( +,2) = 20(2,2). 20 Formules importantes : t Formule pour les augmentations = ( + T) (Si on a + t%, T = ) 00 t Formule pour les diminutions = ( T) (avec de même, si on t%, T = ) 00 Le taux d évolution global est pour une quantité x : x( 0,05)( + 0,0004)( 0,4)( +,2) = x(0,95)(,0004)(0,6)(2,2) =, soit T = + 0, (soit 25,4506%) T M doit vérifier l équation : + T M = ( + 0,254506) 4 + T M,0583 donc T M 0,0583 soit + 5,83%. Pour calculer le taux d évolution réciproque, nous devons considérer que nous sommes passés d une quantité x à une quantité,254506x donc à l inverse le taux sera : V 0, T = F VI x,254506x x(,254506) = = = 0,2029 VI,254506x,254506x, Soit environ une baisse globale d environ 20,3%. Exercice 2 ) Nous avons = ( 0,6) = 0,4 donc ' ' = 0, 4. I = 00 = 0,4 00 = 40. ou directement T = 00( + T) = 00( 0,6) = 40. Réponse b) exacte. I 70 2) T = = = 0,7 = 0,3 soit une baisse de 30% Réponse a) exacte.

6 3) Si = 2, alors I 2/ = 2 00 = 00 car Réponse b) exacte. 2 =. y 4) I y2/y = 50 or I y2/y = 2 y 00= 50 donc 2 =,5 y2 =,5 y = ( + 0,5)y. y y Ce qui veut dire que y a subit une augmentation de 50%. Réponse c) exacte. Exercice 3 76,7 ) Pour la France, le rapport du nombre de touristes au nombre d habitants est :, , 8 Pour la Chine, le rapport du nombre de touristes au nombre d habitants est : 0, , 9 Pour les USA, le rapport du nombre de touristes au nombre d habitants est : 0, Pour le nombre de touristes nous avons 36,8 ; 4,9 et 76,7 et pour les rapports, 0,02 ; 0,6 et,28 ; les rapports sont classés dans le même ordre mais cela aurait pu être autrement car dans ces rapports, la quantité de référence, le nombre d habitants du pays est variable! 2) Etude pour la Chine, calculons l augmentation du nombre de touristes d année en année : De 998 à 999, nous avons 27 25, = +,9. De 999 à 2000, nous avons 3,2 27 = + 4,2. Dés maintenant, nous pouvons dire que la croissance n a pas été linéaire en effet, dans une croissance linéaire (Voir les suites, u n+ = u n + r, r reste constant) Cela continue les années suivantes car : De 2000 à 200, nous avons 33,2 3,2 = +2. De 200 à 2002, nous avons 36,8 33,2 = +3,6. Nous pouvons donner ces résultats en pourcentage, c est-à-dire en taux d évolution : 27 25, De 998 à 999, T = 0,076 soit environ +7,6%. 25, 3,2 27 De 999 à 2000, T 2 = 0,56 soit environ +5,6% ,2 3,2 De 2000 à 200, T 3 = 0,064 soit environ +6,4%. 3,2 36,8 33,2 De 200 à 2002, T 4 = 0,08 soit environ +0,8%. 33,2 Nous pouvons calculer le taux moyen T m entre 999 et 2002 : 36,8 25, Le taux global est : 0,466 soit 46,6%. 25, Nous aurons + T M ( + 0,466) 4 soit T M,00 ; T M 0,00 soit +0%. 3) Etude pour les USA : Calculons le taux d évolution moyen pour les années 2000 à 2002 : Le taux d évolution entre 2000 et 2002 est :

7 4,9 50,9 T = 0,77 (Baisse de 7,7%) 50,9 Le taux moyen sur ces deux années est : + T M = ( + T) 2 ou plus simplement écrit : + T M = + T donc T M = 0,77 0,093 donc 9,3% environ. La baisse de 2000 à 200 a été d environ 0,6% donc le nombre de touristes venus aux USA en 200 a été de : 50,9 ( 0,06) = 50,9 (0,894) = 45,50. Le nombre de touristes a donc baissé à 45,50 millions. Entre 999 et 2000, le taux d évolution a été de : 50,9 48,5 = 0,049 soit une hausse de 4,9%. 48,5 Si ce taux s était maintenu, en 2002, nous aurions dû avoir : 50,9( + 0,049)( + 0,049) = 50,9(,049) 2 = 56,0 millions de touristes. pour 200 puis 2002

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

4.14 Influence de la température sur les résistances

4.14 Influence de la température sur les résistances nfluence de la température sur la résistance 4.14 nfluence de la température sur les résistances ne résistance R, parcourue par un courant pendant un certain temps t, dissipe une énergie calorifique (W

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t.

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Les pourcentages I Définition : Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Exemple : Ecrire sous forme décimale les taux de

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Excel 2010 Module 13. Comment créer un tableau d amortissement dégressif d une immobilisation. Enseignant : Christophe Malpart

Excel 2010 Module 13. Comment créer un tableau d amortissement dégressif d une immobilisation. Enseignant : Christophe Malpart Excel 2010 Module 13 Comment créer un tableau d amortissement dégressif d une immobilisation Enseignant : Christophe Malpart Excel 2010. Module 13. Christophe Malpart Sommaire 1 Introduction 3 2 Calcul

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Evaluation de l impact des indicateurs du. Cost of Doing Business sur le taux de croissance de Maurice

Evaluation de l impact des indicateurs du. Cost of Doing Business sur le taux de croissance de Maurice Evaluation de l impact des indicateurs du Cost of Doing Business sur le taux de croissance de Maurice Janvier 205 TABLE DE MATIERES I. Introduction... II. La Méthodologie... 3 III. Analyse Empirique...

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1

Plus en détail

TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES

TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES Coût de revient du produit + Marge du fabricant = Prix de vente HT au distributeur Prix d'achat HT du distributeur + Marge du distributeur =

Plus en détail

L ALGORITHMIQUE. Algorithme

L ALGORITHMIQUE. Algorithme L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Intensité sonore et niveau d intensité sonore

Intensité sonore et niveau d intensité sonore ntensité sonore et niveau d intensité sonore Dans le programme figure la compétence suivante : Connaître et exploiter la relation liant le niveau d intensité sonore à l intensité sonore. Cette fiche se

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Investissement dans la construction de nouveaux bâtiments résidentiels (travaux mis en place) Méthodologie

Investissement dans la construction de nouveaux bâtiments résidentiels (travaux mis en place) Méthodologie Investissement dans la construction de nouveaux bâtiments résidentiels (travaux mis en place) Méthodologie Division de l investissement et du stock de capital Méthodologie L'investissement dans la construction

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Module 16 : Les fonctions de recherche et de référence

Module 16 : Les fonctions de recherche et de référence Module 16 : Les fonctions de recherche et de référence 16.0 Introduction L une des fonctions les plus importantes d Excel, c est la possibilité de chercher une valeur spécifique dans un grand nombre de

Plus en détail

LA BATTERIE DU PORTABLE

LA BATTERIE DU PORTABLE LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Théorie Financière 2. Valeur actuelle Evaluation d obligations

Théorie Financière 2. Valeur actuelle Evaluation d obligations Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Les mathématiques financières

Les mathématiques financières Chapitre 13 Les mathématiques financières Gérer ses finances personnelles ou jouer le rôle de conseiller dans ce domaine demande que l on ait une bonne connaissance des produits financiers et des marchés

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Les bases de la comptabilité une leçon pour comprendre les grands principes comptables

Les bases de la comptabilité une leçon pour comprendre les grands principes comptables Les bases de la comptabilité une leçon pour comprendre les grands principes comptables Dans cette leçon, vous allez découvrir les principes fondamentaux de la comptabilité, et visualiser les incidences

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

Gestion de trésorerie: guide d auto-apprentissage. Gestion de trésorerie et taux de change multiples

Gestion de trésorerie: guide d auto-apprentissage. Gestion de trésorerie et taux de change multiples Gestion de trésorerie: guide d auto-apprentissage Cours de niveau avancé Leçon 9: Gestion de trésorerie et taux de change multiples Objectifs À la fin de cette leçon, vous devriez savoir: définir les besoins

Plus en détail

Date : Note /20 : EVALUATION Nom : Prénom : Classe : Traitement sur mots

Date : Note /20 : EVALUATION Nom : Prénom : Classe : Traitement sur mots Date : Note /20 : EVALUATION Nom : Prénom : Classe : Traitement sur mots API-1 Etre capable de : Sélectionner un format de mot adapté au type de donnée à traiter par un API. D interpréter les données contenues

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Projet de loi n o 4. Présentation. Présenté par M. Laurent Lessard Ministre des Affaires municipales, des Régions et de l Occupation du territoire

Projet de loi n o 4. Présentation. Présenté par M. Laurent Lessard Ministre des Affaires municipales, des Régions et de l Occupation du territoire DEUXIÈME SESSION TRENTE-NEUVIÈME LéGISLATURE Projet de loi n o 4 Loi permettant aux municipalités d octroyer un crédit de taxes à certains propriétaires d immeubles résidentiels touchés par une hausse

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

FORMATION EXCEL 2013

FORMATION EXCEL 2013 FORMATION EXCEL 2013 Livret 3 Calculs avec Excel 2013 : Formules et fonctions THIERRY TILLIER Produit et diffusé par coursdinfo.fr Ce support de cours est réservé à un usage personnel. Toute utilisation

Plus en détail

Collecter des informations statistiques

Collecter des informations statistiques Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle

Plus en détail

Carré parfait et son côté

Carré parfait et son côté LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées

Plus en détail

UN EXEMPLE D EVALUATION DISCIPLINAIRE : EN ECONOMIE-GESTION (Droit)

UN EXEMPLE D EVALUATION DISCIPLINAIRE : EN ECONOMIE-GESTION (Droit) UN EXEMPLE D EVALUATION DISCIPLINAIRE : EN ECONOMIE-GESTION (Droit) Apportant un complément indispensable aux enseignements d'économie, de management des organisations et de sciences de gestion, l enseignement

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Festo Belgium SA Rue Colonel Bourg 11 BE-13 Bruxelles www.festo.com Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

THEME : CLES DE CONTROLE. Division euclidienne

THEME : CLES DE CONTROLE. Division euclidienne THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail