Nombres réels et suites numériques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Nombres réels et suites numériques"

Transcription

1 Nombres réels et suites numériques Nombres réels Ensembles usuels de nombres : entiers relatifs, nombres décimaux, rationnels. Droite réelle, droite réelle achevée. Relation d'ordre sur R. Partie entière et intervalles. sui.1 sui.2 sui.3 Distance entre deux réels. Majorant, maximum, minorant, minimum. Borne supérieure (resp. inférieure) d une partie non vide majorée (resp. minorée) de R. Partie entière d un nombre réel. sui.4 Caractérisation des intervalles de R. Généralités sur les suites réelles Modes de définition d une suite, suites extraites. Opérations. Monotonie, stricte monotonie. Suites minorées, majorées, bornées. Suites arithmétiques et suites géométriques. sui2.1 sui2.2 sui2.3 Reconnaître une suite définie de façon explicite, implicite ou par récurrence. Reconnaître une suite extraite. Manipuler sur des exemples des majorations et minorations TG et somme de suites arithmétiques et géométriques.

2 Limite d une suite réelle Limites finie et infinie, unicité. Suite convergente, suite divergente. Toute suite réelle convergente est bornée. Limites et suites extraites. Opérations. sui3.1 sui3.2 sui3.3 Définitions. Opérations sur les limites de suites Lever une indétermination. Théorèmes d existence d une limite Théorème de convergence par encadrement. Théorème de la limite monotone. sui4.1 Exploiter ces théorèmes sur des exemples. sui5.1 Exploiter une inégalité pour prouver une divergence. Comparaisons de suites Divergence par comparaison, relations de comparaison : négligeabilité, équivalence. Croissances comparées. sui5.2 sui5.3 Compatibilité de l équivalence avec le produit, le quotient, les puissances. Exploiter les relations de comparaison pour déterminer le comportement asymptotique de suites. sui5.4 Croissances comparées de n α, a n et (ln(n)) β.

3 Espaces vectoriels ev1.1 Connaitre les espaces vectoriels de référence. ev1.2 Identifier un ensemble comme un sous-espace vectoriel d un espace vectoriel connu (dont les droites et plans vectoriels). Espaces et sous-espaces vectoriels ev1.3 ev1.4 Sous-espace engendré par une famille finie de vecteurs. Notation vect( ). Savoir déterminer l'intersection de sous-espaces vectoriels. ev1.5 Formule de Taylor-Young. ev1.6 Somme de deux sous-espaces F et G d un K-espace vectoriel E. Somme directe et sev supplémentaires.

4 ev2.1 Déterminer si une famille donnée est libre ou liée (vecteurs colinéaires, vecteurs coplanaires). Familles finies de vecteurs ev2.2 Déterminer si une famille est génératrice. ev2.3 Connaître les bases canoniques des ev usuels (coordonnées dans une base). ev2.4 Base adaptée à une somme directe.

5 Limites et continuité Limite finie ou infinie en un point ou en ± Définitions des différentes limites. Unicité de la limite. Si f admet une limite finie en a alors f est bornée au voisinage de a. Limite à gauche, limite à droite. Opérations. lim1.1 lim1.2 lim1.3 lim1.4 Définitions et notations. Maîtriser le formalisme mathématique de la définition de la limite et le mettre en relation avec l intuition géométrique. Opérations sur les fonctions admettant une limite finie ou infinie en a. Exploiter ces résultats sur des exemples. Partie entière d un nombre réel. Image d une suite de limite L par une fonction admettant une limite en L. Comparaison des fonctions Passage à la limite dans une inégalité Théorème de la limite monotone. Relations de négligeabilité et d équivalence. limi2.1 Adapter au cas des fonctions les définitions et les résultats étudiés sur les suites.

6 Continuité en un point Définition de la continuité de f au point a de I. Continuité à droite et à gauche. Prolongement par continuité en un point. Opérations sur les fonctions continues : somme, produit, quotient, composition. con1.1 con1.2 Maîtriser le formalisme mathématique de la définition de la limite. Si a appartient à I, alors f est continue en a si et seulement si f a une limite finie en a ; sinon, f a une limite finie en a si et seulement si elle se prolonge par continuité en a. Savoir exploiter les opérations sur des exemples pour justifier la continuité de fonctions (même item sur un intervalle). con2.1 Savoir justifier un prolongement par continuité en un point. Continuité sur un intervalle Définition. Opérations. Prolongement. TVI et images d'intervalles. con2.2 Théorème des valeurs intermédiaires. Dichotomie. con2.3 Image d un intervalle par une fonction continue. Continuité et bijectivité Fonction bijective d un intervalle I sur une partie de R. Fonction réciproque. con2.4 con3.1 con3.2 Une fonction continue sur un segment est bornée et atteint ses bornes. Comparaison des représentations graphiques d une bijection et de sa réciproque. Toute fonction f continue et strictement monotone sur un intervalle I réalise une bijection de I sur l intervalle f(i), et sa réciproque est continue et strictement monotone sur f(i) (et demêmemonotonie que f).

7 Applications linéaires apl1.1 Endomorphismes, isomorphismes et automorphismes. Identité, homothéties. Notations. apl1.2 Règles de calcul dans ces espaces (combinaison linéaire, composée d applications linéaires, réciproque d un isomorphisme, composée d isomorphismes). Généralités apl1.3 Image directe, image réciproque d un sous-espace vectoriel. apl1.4 apl1.5 Déterminer une base de l image, du noyau d une application linéaire. Caractériser l injectivité à l aide du noyau et la surjectivité à l aide de l image. Isomorphismes apl2.1 Espaces isomorphes, caractérisation par la dimension. Si E et F ontmême dimension finie alors une application linéaire de E dans F est bijective si et seulement si elle est injective ou surjective. Modes de définition d une application linéaire apl3.1 Une application linéaire est entièrement déterminée par l image d une base. Une application linéaire définie sur E = E1 E2 est entièrement déterminée par ses restrictions à E1 et E2. Rang d une application linéaire apl4.1 Application linéaire de rang fini. Connaître et utiliser le théorème du rang.

8 Application linéaire de K p dans K n canoniquement associée à une matrice apl5.1 apl5.2 Application X AX. Linéarité. L image AX est combinaison linéaire des colonnes de A. Déterminer des équations de l image et du noyau de A. On utilise l échelonnement d un système pour déterminer des équations de l image. apl6.1 Matrice d une application linéaire u dans un couple de bases. Notations. Exprimer les coordonnées de u(x) en fonction de celles de x. Représentation matricielle en dimension finie apl6.2 Matrice de passage d une base à une autre. apl6.3 Effet d un changement de bases sur la matrice d un vecteur, d une application linéaire, d un endomorphisme. apl7.1 Calcul du rang d'une matrice (d'une AL) vu comme le rang de ses vecteurs colonnes dans K n. Rang d une matrice apl7.2 Caractérisation des matrices inversibles à l aide du rang. Conservation du rang par multiplication à droite ou à gauche par une matrice inversible.

9 Dérivabilité dér1.1 Définitions et notations. Savoir justifier l'existence de la dérivée en un point. dér1.2 Savoir exploiter les opérations sur des exemples pour justifier la dérivabilité de fonctions. Nombre dérivé, fonction dérivée, opérations Définition et équivalence avec l existence d un développement limité en a à l ordre 1. Dérivabilité à droite et à gauche en a. Dérivabilité d une fonction sur un intervalle. dér1.3 Maîtriser le calcul des fonctions dérivées. fon2.1 dér1.4 Interpréter géométriquement la dérivée d une fonction en un point. Equation de la tangente en un point. Si f est une bijection de l intervalle I sur l intervalle J, si f est dérivable en a, condition nécessaire et suffisante de dérivabilité de f -1 en f(a) et calcul de la dérivée. Extension aux opérations sur les fonctions dérivables sur un intervalle. En particulier, réciproque d une bijection de classe C 1.

10 dér2.1 Notion d extremum local. Condition nécessaire d extremum local en un point intérieur. Propriétés des fonctions dérivables dér2.2 Caractérisation des fonctions constantes, croissantes, strictement croissantes parmi les fonctions dérivables. dér2.3 Inégalité des accroissements finis. Appliquer ces résultats sur des exemples. dér2.4 Théorème de la limite de la dérivée. Dérivées d ordre supérieur dér3.1 Maitriser les opérations : somme, produit (formule de Leibniz), composée, réciproque.

11 Espaces vectoriels de dimension finie dimf1.1 Connaître la définition et les exemples usuels d'ev de dim finie. Dimension finie dimf1.2 Théorème de la base extraite. Application à l existence d une base d un K-espace vectoriel E non nul de dimension finie. dimf1.3 Savoir utiliser le théorème: Si E est dimension n et F une famille de n vecteurs de E, alors F est une base de E si et seulement si F est libre, si et seulement si F est génératrice. dimf2.1 Démontrer l égalité de deux sous-espaces vectoriels à l aide d une inclusion et de l égalité de leurs dimensions. Sous-espaces d un espace vectoriel de dimension finie dimf2.2 Démontrer que deux sous-espaces vectoriels sont supplémentaires à l aide de la caractérisation par l intersection nulle et la somme des dimensions. dimf2.3 Dimension de la somme de deux sous-espaces : formule de Grassmann. Cas d une somme directe. Famille finie de vecteurs dimf3.1 Rang d une famille finie (u1,...,up ) de vecteurs d un K- espace vectoriel. Une famille de vecteurs (u1,...,up ) est libre si et seulement si rg(u1,...,up ) = p.

12 Développements limités dl1.1 Donner du sens à la définition, l'unicité, une troncature. dl1.2 Opérations sur les développements limités : combinaison linéaire, produit. Généralités Opérations sur les développements limités : combinaison linéaire, produit. dl1.3 dl1.4 Opérations sur les développements limités : composition, application au quotient. Intégration terme à terme d un développement limité. dl1.5 Formule de Taylor-Young. dl1.6 Développements limités usuels.

13 dl2.1 Calcul de limites. Utiliser les développements limités pour lever une forme indéterminée. Applications des développements limités Calcul de limites et étude locale d une fonction. dl2.2 dl2.3 Étude locale d une fonction. Déterminer, grâce à un développement limité, un prolongement par continuité, la dérivabilité, la nature d un extremum, une tangente et sa position relative par rapport à la courbe. dl2.4 Déterminer, grâce à un développement limité les éventuelles asymptotes et leurs positions relatives locales.

14 Intégration sur un segment Contenus Item Capacités et commentaires int1.1 Interpréter géométriquement une intégrale. Intégrale d une fonction continue Intégrale d une fonction f continue sur un segment [a,b]. Notation. int1.2 int1.3 Propriétés : linéarité, positivité, croissance. Relation de Chasles. Valeur absolue d une intégrale (inégalité triangulaire). Inégalité de la moyenne. int1.4 Une fonction continue et positive sur [a,b] est nulle si et seulement si son intégrale est nulle.

15 int2.1 Th fondamental: Si f est une fonction continue sur I et si x 0 est un point de cet intervalle, alors x int(f(t),x 0,x) est l unique primitive de f sur I s annulant en x0. En particulier, toute fonction continue sur I admet des primitives sur I. Calcul intégral Th fondamental. Calcul d une intégrale au moyen d une primitive. IPP et changement de variable. int2.2 int2.3 Calcul d une intégrale via la reconnaissance d'une primitive usuelle. Calcul d une intégrale via une IPP int2.4 Calcul d une intégrale via un changement de variable. int2.5 Déterminer la solution vérifiant une condition initiale donnée. Formule de Taylor avec reste intégral int3.1 Exploiter la formule de Taylor avec reste intégral pour établir des égalités, des inégalités.

16 Probabilités sur un univers fini prob1.1 Maîtriser les notions d' expérience aléatoire, d'ensemble des issues d une expérience aléatoire (univers). Evénements élémentaire, certain, impossible, contraire, incompatibles. prob1.2 Opérations sur les événements. Système complet d événements. Espaces probabilisés finis prob1.3 prob1.4 Définition d'une probabilité. Probabilités de l union de deux événements, de l événement contraire, croissance d une probabilité. Déterminer une base de l image, du noyau d une application linéaire. prob1.5 Reconnaître une situation d'équiprobabilité (ou probabilité uniforme). prob2.1 Représenter une expérience aléatoire à l aide d arbres de probabilités. Indépendance et conditionnement prob2.2 Calculer une probabilité conditionnelle. prob2.3 Formules des probabilités composées, des probabilités totales et formule de Bayes. prob2.4 Indépendance de deux événements. Indépendance mutuelle d une famille finie d événements.

17 Variables aléatoires sur un univers fini Variables aléatoires Variable aléatoire réelle. Image d une variable aléatoire par une application. varal1.1 Déterminer la loi d une variable aléatoire à partir de sa fonction de répartition. Couples de variables aléatoires et indépendance varal2.1 Maîtriser le vocabulaire relatif aux lois conjointe, marginale et conditionnelle. Couple de variables aléatoires indépendantes. Espérance, variance et écart type d une variable aléatoire Théorème de transfert, en particulier, E(aX +b) = ae(x)+ b pour a et b deux réels donnés. Linéarité de l espérance (admis). varal3.1 Calculer l'espérance d'une va et savoir l'interpréter en terme de moyenne pondérée. varal3.2 Calculer l'espérance du produit de deux variables aléatoires indépendantes. varal3.3 Calculer variance et de l écart type d'une va et savoir l'interpréter en terme de moyenne pondérée. Lois usuelles Loi certaine, loi uniforme, loi de Bernoulli et loi binomiale. varal4.1 Reconnaître des situations modélisables par ces lois. Savoir calculer leurs espérance et variance.

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

Programme de mathématiques du concours Edhec AST1. (Actualisation du 14 octobre 2011)

Programme de mathématiques du concours Edhec AST1. (Actualisation du 14 octobre 2011) Programme de mathématiques du concours Edhec AST1 (Actualisation du 14 octobre 2011) L'épreuve dure 2 heures et est composée de plusieurs exercices indépendants. Cette épreuve a pour objectif de vérifier

Plus en détail

Semaine septembre

Semaine septembre B1-2016-2017 Programmes de Khôlles Semaine 19-26 septembre Logique et ensembles Quantificateurs, absurde, contraposée Ensembles, sous-ensembles, P(E), relations ensemblistes. Nombres Récurrence : simple,

Plus en détail

Section III de l annexe III de l arrêté modifié du 13 juin 2003 fixant les modalités des concours d accès aux écoles vétérinaires

Section III de l annexe III de l arrêté modifié du 13 juin 2003 fixant les modalités des concours d accès aux écoles vétérinaires Section III de l annexe III de l arrêté modifié du 13 juin 2003 fixant les modalités des concours d accès aux écoles vétérinaires PROGRAMME DE MATHEMATIQUES CONCOURS B ENV 1. ANALYSE Le programme d analyse

Plus en détail

Formulaire de Maths Xavier Chauvet

Formulaire de Maths Xavier Chauvet Formulaire de Maths Xavier Chauvet Ancien élève de l Ecole Normale Supérieure - ENS Ulm Professeur agrégé de Mathématiques en classes préparatoires au Lycée Lakanal à Sceaux 1 Sommaire 1. Algèbre...4 2.

Plus en détail

Programme détaillé du LM100

Programme détaillé du LM100 Programme détaillé du LM100 version 0.1 (24 novembre 2011) Les notions assorties d une ne sont traités que de façon qualitative, ou s il s agit de théorèmes, de façon heuristique et sans démonstration.

Plus en détail

Séries numériques. Marcotte Sébastien 1

Séries numériques. Marcotte Sébastien 1 Programme de colle : semaines 1/2 Séries numériques I. Généralités 1) Dénitions Somme partielle d'une série, convergence, divergence. Divergence grossière. Reste d'une série convergente, limite du reste.

Plus en détail

Retour de l interro n o 1. Ven 27/09 (1h) cours : Sam 28/09 (2h) cours : 2. Théorèmes d opérations. Octobre. Mar 01/10 (2h) Ven 04/10 (1h)

Retour de l interro n o 1. Ven 27/09 (1h) cours : Sam 28/09 (2h) cours : 2. Théorèmes d opérations. Octobre. Mar 01/10 (2h) Ven 04/10 (1h) Septembre Jeu 05/09 (2h) Présentation de l année de Terminale S. Distribution feuille «Algorithmes : quelques rappels» (exercices + cours, 2 pages) Chapitre I. Récurrence, suites 1. Raisonnement par récurrence

Plus en détail

Ecricome 2008 Correction

Ecricome 2008 Correction Ecricome 2008 Correction Exercice 1 + 2 2, = 2 4 + 3 =,, réels} 1. 0,0 =, donc. Soit,. On peut écrire 1 0 0 2 1 2, = 0 1 0 + 2 1 4 0 0 1 1 1 3 1 0 0 L ensemble apparaît comme l ensemble des combinaisons

Plus en détail

Progression Terminale S MATHS enseignement spécifique

Progression Terminale S MATHS enseignement spécifique Progression 2013-2014 - Terminale S MATHS enseignement spécifique 1 RECURRENCE ET SUITES BORNEES SEMAINES 1, 2 et 3 I. Suites : généralités 2) Exemples de suites 3) Variation et monotonie d une suite 4)

Plus en détail

LORRAINE INP executive

LORRAINE INP executive LORRAINE INP executive Devenir Ingénieur par la filière FONTANET UMN Unités de Mise à Niveau en mathématiques Programme des UMN Denise Commenville David Toupance Responsable Filière Fontanet Responsable

Plus en détail

Programme de mathématiques 4è Sc.Tech : REPARTITION HORAIRE (partie 1)

Programme de mathématiques 4è Sc.Tech : REPARTITION HORAIRE (partie 1) Programme de mathématiques 4è Sc.Tech : REPARTITION ORAIRE (partie ) ) limite et continuité ) Dérivabilité 3) Fonction continue et strictement monotone sur un intervalle - Prolongement par continuité Limite

Plus en détail

Cahier de texte mathématiques PC

Cahier de texte mathématiques PC Cahier de texte mathématiques PC Pelletier Sylvain PC, Lycée Descartes Jeudi 1 septembre Prise de contact avec la classe. Présentation de l enseignement des mathématiques et de l informatique en classe

Plus en détail

Leçons d analyse et probabilités

Leçons d analyse et probabilités Leçons d analyse et probabilités 201 : Étude de suites numériques définies par différents types de récurrence. Applications. 202 : Séries à termes réels positifs. Applications. 203 : Séries à termes réels

Plus en détail

Devoir Vacances Commentaires et corrections

Devoir Vacances Commentaires et corrections Devoir Vacances Commentaires et corrections Voici quelques éléments pour vous aider à faire ce devoir et les corrections de quelques erreurs d énoncé : I) Exercice 1 Les parties 1 et 2 sont indépendantes.

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Annexe précisant l article 7. Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai

Annexe précisant l article 7. Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai Annexe précisant l article 7 Concours Ensai, spécialité «économie et gestion». Programme de l oral de mathématiques spécifique Ensai 1. Nombres complexes Le plan complexe : affixe d un point ; parties

Plus en détail

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11 Table des matières Chapitre 1 Les trinômes du second degré 11 I. Les trinômes du second degré : caractérisation... 1 II. Variations des fonctions trinôme du second degré... 13 III. Représentation graphique...

Plus en détail

Progression de mathématiques TS

Progression de mathématiques TS Progression de mathématiques TS I II Les complexes - Part-Oane 1.1 Introduction 1.1.1 Le nombre i 1.1.2 Les nombres complexes sous forme algébrique 1.2 Représentation graphique 1.3 Conjugué d un complexe

Plus en détail

Comparaison des anciens et des nouveaux programmes de PTSI

Comparaison des anciens et des nouveaux programmes de PTSI Comparaison des anciens et des nouveaux programmes de PTSI Les plans des deux programmes étant sensiblement différents, nous avons choisi de présenter les modifications en suivant l ordre du nouveau programme.

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Mathématiques ECE 2 Lycée Hoche ( ) o (g(x)) Équivalents usuels et équivalent des fonctions polynomiales en ±

Mathématiques ECE 2 Lycée Hoche ( ) o (g(x)) Équivalents usuels et équivalent des fonctions polynomiales en ± Programme de colle - Semaine n 1: du 18/09/2017 au 23/09/2017 Connaissances minimales attendues Chapitre 1 - Comportement asymptotique des fonctions de la variable réelle à valeurs réelles Fonction dénie

Plus en détail

Variables aléatoires réelles

Variables aléatoires réelles Variables aléatoires réelles Table des matières 1 Généralités sur les variables aléatoires réelles. 3 1.1 Rappels sur les σ-algèbres ou tribus d événements................................. 3 1.2 σ-algèbre

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

PROGRAMME DE MATHÉMATIQUES DE LA CLASSE TECHNOLOGIE - BIOLOGIE. Première année. I. Nombres complexes et trigonométrie.

PROGRAMME DE MATHÉMATIQUES DE LA CLASSE TECHNOLOGIE - BIOLOGIE. Première année. I. Nombres complexes et trigonométrie. PROGRAMME DE MATHÉMATIQUES DE LA CLASSE TECHNOLOGIE - BIOLOGIE Première année I. Nombres complexes et trigonométrie. Les nombres complexes sont introduits dans ce programme en raison de leur importance

Plus en détail

PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d'accès aux écoles agronomiques

PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d'accès aux écoles agronomiques PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d'accès aux écoles agronomiques l. ANALYSE Le programme d'analyse doit permettre l'acquisition de la maîtrise du calcul pour son utilité dans

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

ENSEMBLES ET APPLICATIONS

ENSEMBLES ET APPLICATIONS ENSEMBLES ET APPLICATIONS 1 Applications : définitions ensemblistes Définition 1.1 Application Soient E et F deux ensembles. On appelle application de E dans F un objet { mathématique f qui à tout élément

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Programme de Terminale C 24 juin 1971

Programme de Terminale C 24 juin 1971 DERNIÈRE IMPRESSION LE 17 juillet 2014 à 23:59 Programme de Terminale C 24 juin 1971 (Horaire hebdomadaire : 9 heures) a) Les paragraphes marqués d un astérisque (*) ne peuvent faire l objet de questions

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Résumé 01 : Algèbre Linéaire (I)

Résumé 01 : Algèbre Linéaire (I) http://mpbertholletwordpresscom Résumé 1 : Algèbre Linéaire (I) Dans tout ce chapitre, K sera le corps R ou C, et E sera un espace vectoriel sur K Vous remarquerez les grandes similitudes qui existent

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Programme de Mathématique. Préparation Physique-Chimie &Technologie. Analyse et Géométrie Différentielle. Deuxième Année

Programme de Mathématique. Préparation Physique-Chimie &Technologie. Analyse et Géométrie Différentielle. Deuxième Année I. SUITES ET FONCTIONS 1. Normes et distances, suites 2. Espaces vectoriels normés de dimension finie 3. Séries de nombres réels ou complexes 4. Suites et séries de fonctions 5. Travaux pratiques Programme

Plus en détail

Cours du Samedi 10 Octobre 2009 : Cours n 1.

Cours du Samedi 10 Octobre 2009 : Cours n 1. Cours du Samedi 10 Octobre 2009 : Cours n 1. Chapitre N 1 : Les nombres réels et les propriétés de R : la construction de R à partir de N, Z, et Q ; les développements décimaux et l élaboration de D ;

Plus en détail

MPSI 1 Semaine 3, du 9 au 13 Octobre 2017

MPSI 1 Semaine 3, du 9 au 13 Octobre 2017 Chap. A3 : applications entre ensembles quelconques injections, surjections, bijections. Illustrations et cas particulier des fonctions de R dans R, de R p dans R m I Les applications entre ensembles quelconques

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017 Mathématiques Pascal CHAUVIN T le ES 8 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot NOMBRES RÉELS 1 Approximations d un réel 1.1 Ensembles de nombres Notation 1.1 On note R l ensemble des nombres réels. On note Q l ensemble des nombres rationnels i.e. l ensemble des nombres de la forme

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

Programme de Terminale

Programme de Terminale Programme de Terminale I. Analyse Objectif 4 - Exploiter les dérivées, les primitives, les représentations graphiques des fonctions et élargir le champ des fonctions étudiées Comme en Première, le programme

Plus en détail

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min 19-3- 2010 J.F.C. F.N.P.V. p. 1 V EXTREMUM 1. Les définitions de base Il convient d avoir une parfaite connaissance des définitions qui suivent Déf. 37 f est une application d une partie D de R n dans

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY. Bâtiment 425, ORSAY Cédex, France

Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY. Bâtiment 425, ORSAY Cédex, France Université Paris-Sud UMR 8628 du CNRS LABORATOIRE DE MATHEMATIQUE D ORSAY Bâtiment 425, 91405 ORSAY Cédex, France Programme de mathématiques pour le PCS0 filières A (dominante maths/physique) et B (dominante

Plus en détail

Les auteurs. Avant-propos. Remerciements. Partie 1 Algèbre 1

Les auteurs. Avant-propos. Remerciements. Partie 1 Algèbre 1 Table des matières Les auteurs Avant-propos Remerciements v xvii xviii Partie 1 Algèbre 1 1 Espaces vectoriels, applications linéaires 3 I Bases........................................... 3 I.1 Combinaisons

Plus en détail

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 009 des écoles des mines d Albi, Alès, Douai, Nantes. Corrigé Problème (Algèbre et géométrie Partie (Étude de deu applications Nous noterons deg P le degré du polynôme P. Pour tout polynôme

Plus en détail

SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES

SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES http://jf.burnol.free.fr/ens.html#agrint SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES D'après le site http://agrint.agreg.org et le rapport du jury pour la session 2016. Document mis

Plus en détail

Chapitre VI Applications linéaires

Chapitre VI Applications linéaires Chapitre VI Applications linéaires Dans ce cours, désigne R, C ou un corps commutatif quelconque. I Généralités 1. Définition Soient et deux -ev donnés. Une application est dite linéaire si. C est-à-dire

Plus en détail

Comparaison des programmes de mathématiques au cycle terminal du lycée

Comparaison des programmes de mathématiques au cycle terminal du lycée Comparaison des programmes de mathématiques au cycle terminal du lycée 10 avril 2013 Plan du document Préambule........................................................... 2 A - Première S.........................................................

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0 Les Fonctions Les domaines de définitions : 0 ; > 0 ; 0 ; 0 0 > 0 ; 0 Les limites : ) Formes indéterminées ; 0 ; + ; 0 0 ) Formes déterminées = ; + ) ) = 0 ) Référence = 0 ; 0 = ) Limites à l ininie Factoriser

Plus en détail

Exos T S. résolus. erm. Maths. Claudine RENARD Geneviève ROCHE

Exos T S. résolus. erm. Maths. Claudine RENARD Geneviève ROCHE Exos résolus T S erm Maths Claudine RENARD Geneviève ROCHE CONCEPTION GRAPHIQUE Couverture : Mélissa Chalot Intérieur : Karine Nayé COMPOSITION, MISE EN PAGES ET SCHÉMAS ScienTech Livre HACHETTE Livre

Plus en détail

CHAPITRE 19 Dérivation des fonctions d une variable réelle

CHAPITRE 19 Dérivation des fonctions d une variable réelle CHAPITRE 19 Dérivation des fonctions d une variable réelle Sommaire 19.1 Nombre dérivé et fonction dérivée........................... 2 19.1.1 Définitions......................................... 2 19.1.2

Plus en détail

Chapitre VIII Calcul matriciel

Chapitre VIII Calcul matriciel Chapitre VIII Calcul matriciel Dans ce cours, désigne, ou un corps commutatif quelconque. I Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires.

Plus en détail

Corrigé du Concours Blanc

Corrigé du Concours Blanc Corrigé du Concours Blanc Exercice : On considère la fonction f définie par : f(x = x + 2 2 ln(e x + et on note (C la courbe représentative de f dans un repère orthonorrnal.. Etude de la fonction f. a.

Plus en détail

PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d accès aux écoles agronomiques

PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d accès aux écoles agronomiques PROGRAMME DE MATHEMATIQUES de la voie B du concours commun d accès aux écoles agronomiques 1. ANALYSE Le programme d analyse doit permettre l acquisition de la maîtrise du calcul pour son utilité dans

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Corrigé du concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique.

Corrigé du concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique. Corrigé du concours commun 009 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique. Problème On rappelle que le nombre e = exp(), 7, e 0, 6,, 4 et ln(3), 0. Partie (Étude d une fonction)

Plus en détail

Algèbre 1. Unité pédagogique et enseignant à contacter pour tout complément d'information

Algèbre 1. Unité pédagogique et enseignant à contacter pour tout complément d'information Algèbre 1 pédagogique et enseignant à contacter pour tout complément d'information Stephane Gaussent stephane.gaussent@univ-st-etienne.fr Ce cours est optionnel pour la Pour les étudiants de la mention

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a) 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre VII : Dérivation Notations : On reprend dans ce chapitre les notations

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Suites réelles Chapitre 3. Fonctions d une variable : limite et continuité...

Sommaire. Chapitre 1. Notions de base Chapitre 2. Suites réelles Chapitre 3. Fonctions d une variable : limite et continuité... Sommaire Chapitre 1. Notions de base.................... 7 A. Vocabulaire usuel relatif aux fonctions................. 8 B. Fonctions usuelles......................... 11 Chapitre 2. Suites réelles.....................

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Terminale SSI 1 Chapitre 1 : limites et continuité 1

Terminale SSI 1 Chapitre 1 : limites et continuité 1 Terminale SSI 1 Chapitre 1 : limites et continuité 1 1 Introduction 1.1 Limites de suites En classe de première, on a déjà rencontré les limites de suites. Définition On dit qu'une suite u, définie sur

Plus en détail

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36 Dimension des espaces vectoriels () Dimension des espaces vectoriels 1 / 36 1 Familles libres, génératrices et bases 2 Espaces vectoriels de dimension finie 3 Sous-espaces vectoriel de dimension finie

Plus en détail

Calcul intégral et suite numérique Intégration Exercices corrigés

Calcul intégral et suite numérique Intégration Exercices corrigés Calcul intégral et suite numérique Intégration Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : étudier le sens de variation d une suite

Plus en détail

EXERCICES SANS PRÉPARATION 2013

EXERCICES SANS PRÉPARATION 2013 7-12- 2014 JFC p 1 EERCICES SANS PRÉPARATION 2013 Question 1 HEC 2013-1-S46 Soit une variable aléatoire à valeurs strictement positives, admettant une densité f et vérifiant la propriété suivante : la

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Exercices 6 Limites et fonctions continues Extension de la notion de limite aux fonctions. Étude des propriétés locales et globales des fonctions continues sur un intervalle. 6 Limites et fonctions continues.........................................................

Plus en détail

SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES

SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES http://jf.burnol.free.fr/ens.html#agrint SUJETS POUR LES ORAUX DE L'AGRÉGATION INTERNE DE MATHÉMATIQUES Listes extraites du rapport du jury pour la session 2017 (http://agrint.agreg.org/archives.html).

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS DE DIMENSION FINIE 1 Familles de vecteurs 1.1 Opérations sur une famille engendrant un sous-espace vectoriel Lemme 1.1 Soient E un K-espace vectoriel, A et B deux parties de E. Alors

Plus en détail

Les fonctions réciproques

Les fonctions réciproques DOCUMENT 28 Les fonctions réciproques 1. Introduction et définition Pour tout ensemble E, il existe une loi de composition naturelle sur l ensemble des applications de E dans E qui est la composition des

Plus en détail

La formule de Taylor et les développements limités

La formule de Taylor et les développements limités La formule de Taylor et les développements ités I) La formule f de Taylor 1.1 ) Formule de Taylor avec reste intégral On considère une fonction de classe (c est-à-dire 1 fois dérivables et à dérivées continues,

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2015/2016 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES APPLICATIONS LINÉAIRES 1 Définition et premiers exemples 1.1 Définition Définition 1.1 Application linéaire Soient E et F deux K-espaces vectoriels. On appelle application linéaire de E dans F toute application

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

Applications linéaires

Applications linéaires Chapitre 4 Applications linéaires I) Généralités sur les applications linéaires 1) Définitions Définition 1 Soient E et F deux R-espaces vectoriels On appelle application linéaire de E dans F toute application

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

MATHS MPSI MÉTHODES EXERCICES PROBLÈMES VUIBERT

MATHS MPSI MÉTHODES EXERCICES PROBLÈMES VUIBERT VUIBERT MÉTHODES EXERCICES PROBLÈMES MATHS MPSI Tout le programme Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés A.

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Partie I - Calcul d une intégrale

Partie I - Calcul d une intégrale 3-- 29 JFC p EM LYON 29 S JF COSSUTTA Lcée Marcelin BERTHELOT SAINT-MAUR jean-francoiscossutta@wanadoofr PROBLÈME Partie I - Calcul d une intégrale f a,b : e a e b est continue sur ], + [ Au voisinage

Plus en détail

ECRICOME VOIE E 204 ANNALES DE MATHEMATIQUES 204 ECRICOME 204 VOIE E CORRIGE Le langage Pascal n étant plus au programme, nous n avons pas traité les questions d informatique. EXERCICE I ) PARTIE I : réduction

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Mathématiques Seconde année Préambule Programme de mathématiques TB2 Objectifs

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50 Fonctions réelles de deux variables () Fonctions réelles de deux variables 1 / 50 1 Fonctions de deux variables réelles à valeurs dans R 2 Calcul différentiel 3 Extrema d une fonction de deux variables

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

Différentes formules de Taylor pour une fonction d une variable réelle

Différentes formules de Taylor pour une fonction d une variable réelle 25 Différentes formules de Taylor pour une fonction d une variable réelle Il y a beaucoup de résultats dans cette proposition de leçon (en prévision de questions que pourrait poser le jury). Comme il n

Plus en détail

Terminale S. Savoir-faire. Les équations différentielles de type y = ay + b avec a et b réels!

Terminale S. Savoir-faire. Les équations différentielles de type y = ay + b avec a et b réels! Les équations différentielles de type y = ay + b avec a et b réels! Comment résoudre une équation différentielle de type y = ay + b? On s assure qu elle est de la forme y = ay + b On applique les formules

Plus en détail