Le zoo du Big Data Comment apprivoiser les animaux

Dimension: px
Commencer à balayer dès la page:

Download "Le zoo du Big Data Comment apprivoiser les animaux"

Transcription

1 Le zoo du Big Data Comment apprivoiser les animaux La nécessité d'une plateforme intégrée pour les informations de l'entreprise Octobre 2012 Un livre blanc de Dr Barry Devlin, 9sight Consulting Le Big data est probablement l'évolution la plus importante dans l'utilisation des informations par les commerciaux et les informaticiens, cette dernière décennie. Elle révolutionne la manière dont les entreprises décident, fonctionnent, réussissent ou échouent. En exploitant les informations intelligemment, elle permet d'anticiper le changement et d'en tirer parti. Pour ce faire, l'équipe informatique doit regarder au-delà des technologies traditionnelles et faire appel à de nouveaux outils pour traiter des volumes plus importants de données hétérogènes, et ce, plus rapidement que jamais. L'analyse du zoo du Big Data a omis un point essentiel : que le volume soit petit ou gros, ce sont toujours des données. Il convient les gérer et les intégrer dans toute l'entreprise pour les valoriser pleinement et garantir leur utilisation cohérente. Apprivoiser le Big Data est une condition essentielle pour obtenir cette valeur. Ce livre blanc propose trois solutions : 1. La base pour extraire la valeur métier maximale des volumes massifs de données à leur source est une plateforme technologiquement diversifiée et étroitement intégrée pour toutes les informations (Big Data et transactions traditionnelles). 2. Une approche d'entreprise réunissant plateforme, produits et processus est indispensable pour préserver la qualité et l'utilisation à long terme du Big Data, conjointement avec les données provenant de systèmes de Business Intelligence et autres. Sommaire 3 La parabole des aveugles et de l'éléphant Le contexte du Big Data 5 Big Data et petits volumes vus du ciel 7 Une plateforme intégrée pour tous les types d'information 9 Mise en œuvre d'une plateforme d'informations intégrée 11 Conclusion 3. Le déploiement rapide des projets de Big Data est nécessaire pour tirer parti au plus tôt des nouvelles opportunités commerciales. Pour ce faire, il contient d'intégrer progressivement des fonctionnalités de Big Data dans l'infrastructure de gestion des données au sein de l'entrepôt de données.

2 Apprivoiser les animaux du Big Data est la prochaine étape dans la gestion des données. Parrainé par : International Business Machines Copyright 2012, 9sight Consulting. Tous droits réservés. 2

3 S i le Big Data était un mammifère, ce serait un éléphant. Peut-être imaginezvous un petit éléphant jaune. Moi pas. J'imagine un grand éléphant gris, membre d'un troupeau. Je parle de quelque de plus grand que Hadoop. Je parle de tous les types de données que les entreprises collectent dans des quantités de plus en plus importantes. À cet égard et malgré sa nouveauté technique, le Big Data ressemble aux autres données : il faut le gérer et l'utiliser correctement à l'échelle de l'entreprise pour en extraire une valeur métier significative et obtenir l'impact durable annoncé. Si le Big Data était un reptile, ce serait un caméléon. Avant 2005, le Big Data était une expression utilisée par des scientifiques incapables de stocker ou d'analyser toutes les données produites par leurs expériences. C'est toujours le cas. Ensuite, le Big Data est devenu un terrain de jeu pour les chercheurs qui, au sein d'entreprises comme Google et Netflix, exploitaient des volumes massifs de données Web à leur disposition. C'est toujours le cas. En 2008, Hadoop est devenu un projet «Open Source» prioritaire d'apache, synonyme de Big Data. C'est toujours le cas. Avant 2010, même le magazine The Economist a publié un numéro spécial 1 sur le Big Data et les spécialistes du marketing ont commencé à tout renommer. Le Big Data englobe tout ceci et bien plus encore. Mais aujourd'hui, il est temps d'arrêter de triturer la forme. Désormais, le Big Data est au cœur d'une technologie de pointe, qui bouleverse la donne en profondeur : l'analyse métier ou Business Analytics. La vitesse d'exécution de cette technologie et les volumes qu'elle prend en charge sont tels que l'ancien paradigme consistant à tout copier et tout nettoyer dans un entrepôt de données est complètement obsolète. La majeure partie de cette analyse doit être effectuée sur des volumes massifs de données dans leur format natif, aussi proche que possible de leur source. Et nul besoin d'être un grand penseur pour savoir qu'une approche fédérée ou virtualisée réunissant l'entrepôt de données et le Big Data est indispensable. Le Big Data ouvre de nouvelles opportunités d'analyse et d'anticipation permettant aux entreprises de surclasser significativement leurs concurrents 2. En 2011, McKinsey estimait que le Big Data pourrait générer 300 milliards de dollars dans le secteur de la santé et 250 milliards de dollars dans le secteur public aux États-Unis 3. Clairement, les opportunités commerciales ne manquent pas et les premiers positionnés en tirent déjà parti. Ceci dit, tout n'est pas aussi simple. Parmi les prévisions de Gartner pour 2012 et au-delà 4, on pouvait lire : «En 2015, plus de 85 % des entreprises du classement Fortune 500 ne seront pas en mesure d'exploiter efficacement le Big Data à leur avantage» en raison de leur incapacité à relever les défis techniques et en matière de gestion. Ces défis concernent essentiellement l'informatique. Le Big Data n'est pas le seul élément de l'infrastructure. Pour un déploiement et une utilisation efficaces, il doit être intégré dans les processus métier existants. Il doit être et sera associé à tous les outils informationnels actuellement en place dans une plateforme d'entreprise complète. Idéalement, la mise en place du Big Data doit être progressive et, la plupart du temps, précoce pour être véritablement efficace. Pourtant, trois idées reçues perdurent sur le Big Data. Tout d'abord, il peut résoudre le problème de la faim dans le monde ou, du moins, garantir la réussite de chaque entreprise. Ensuite, il semble supplanter toutes les technologies traditionnelles de Business Intelligence et d'entrepôt de données. Enfin, tout le monde semble l'utiliser. Malheureusement, aucune de ces affirmations n'est vraie! Au final, le Big Data ressemble davantage à un virus qui apparaît et se propage comme une pandémie. La vérité est à la fois plus révolutionnaire et plus terre à terre. Le Big Data peut et va ouvrir des opportunités commerciales gigantesques mais uniquement si nous conservons nos racines : des processus de gestion des données efficaces et des technologies d'entreprise bien intégrées. Le Big Data ouvre de grandes opportunités, mais peu d'entreprises en tireront parti efficacement. Copyright 2012, 9sight Consulting. Tous droits réservés. 3

4 La parabole des aveugles et de l'éléphant Le contexte du Big Data «Six hommes d Hindoustan / très enclins à parfaire leurs connaissances, Allèrent voir un éléphant / (bien que tous fussent aveugles), Afin que chacun en l'observant / puisse satisfaire sa curiosité. 5 L a parabole des aveugles qui touchent différentes parties d'un éléphant et en tirent des conclusions fausses découvrant que toute vérité est relative illustre assez bien la situation actuelle du marché par rapport au Big Data. Chaque consultant et chaque fournisseur voient et décrivent le Big Data en fonction des parties qu'ils touchent sans parler des outils qu'ils possèdent ni des marchés qu'ils aspirent à conquérir. L'impression globale est celle d'une confusion que nous allons dissiper tout de suite. Chaque année, la quantité d'informations stockée et traitée augmente de plus de 50 %, Le Big Data se selon IDC 6. Cette caractéristique appelée à juste titre volume est à l'origine de l'expression développe «Big Data». La plupart des définitions du Big Data y ajoutent deux autres mots : la vitesse rapidement, mais le (le rythme de plus en plus rapide d'arrivée et de traitement des données) et la variété (la définir précisément n'est pas chose diversité croissante des structures de données à prendre en charge). IBM a récemment facile. introduit un quatrième aspect : la véracité, c'est-à-dire la nécessité de considérer comme fiables les données utilisées pour prendre des décisions stratégiques et opérationnelles. Certains analystes tiennent à ajouter la variabilité ; d'autres, la valeur, la viralité, la validité et la viscosité. Ces définitions ne sont ni satisfaisantes, ni cohérentes. En fait, le terme vague est probablement celui qui convient le mieux. Aucun de ces termes ne se prête à une mesure précise. Donc, comment de simples mortels peuvent-ils répondre à cette simple question : le Big Data est-il pour moi? L'approche la plus simple, suivie de manière pragmatique par les tout premiers sur le marché, consiste à examiner les utilisations commerciales du Big Data et à voir comment les mettre en œuvre. Bien sûr, cette approche ne peut pas être complète, car de nouvelles utilisations sont susceptibles d'être découvertes. Mais, le Big Data peut avoir son importance si votre entreprise travaille dans un ou plusieurs des secteurs suivants : 1. Le marketing utilise le contenu des médias sociaux, les informations sur les relations et les données collectées en interne sur les interactions avec les clients (comme les Le volume, la vitesse journaux des centres d'appels), pour mieux connaître les motivations des clients. et la variété ont Dans des secteurs tels que la vente au détail, les biens de consommation et les beaucoup moins télécommunications, où l'interaction avec un grand nombre de clients peut être d'importance que ce que vous faites avec directe ou indirecte, le Big Data permet une transition entre l'échantillonnage et le Big Data. l'analyse d'un jeu complet de données, entre des segments démographiques et des marchés très ciblés, et entre un suivi à long terme de données historiques et une réaction en temps réel à des nouveaux événements. Le but ultime étant la prévision du comportement des clients et la suggestion d'actions, comme une deuxième meilleure offre. 2. L'identification des fraudes et d'autres irrégularités dans les données des transactions financières porte sur des volumes croissants de transactions de petite valeur, sur des intervalles de temps de Copyright 2012, 9sight Consulting. Tous droits réservés. 4

5 plus en plus courts. Les techniques d'analyse de Big Data sur les flux de données avant ou sans stockage sur disque sont devenues la norme. 3. La prévision en temps réel devient possible car les services de distribution eau, électricité, télécommunications peuvent désormais suivre la consommation des clients individuellement, grâce à une technologie de capteurs omniprésents et à des processus de Big Data capables de traiter ces données. La valeur réside dans la capacité à prédire les pics et les creux de consommation, et dans une certaine mesure, à les lisser en influençant le comportement des clients. 4. Le suivi d'articles physiques (aliments, appareils électroménagers, colis ou conteneurs) par les fabricants, les producteurs et les distributeurs, depuis la distribution jusqu'à la mise au rebut, permet d'optimiser les processus métier et d'améliorer le taux de satisfaction des clients. Les personnes, en tant qu'entités physiques, peuvent aussi faire l'objet d'un suivi pour des motifs liés au commerce ou à la surveillance. 5. Le renouvellement des processus métier par une utilisation innovante des données générées par les capteurs permet de modifier des secteurs d'activité entiers. Par exemple, une compagnie d'assurance peut fixer le montant des primes en fonction du comportement réel des automobilistes et non d'un risque moyen calculé de manière statistique. Au-delà des questions éthiques, les données génomiques individuelles et les dossiers médicaux électroniques constituent des opportunités intéressantes pour les compagnies d'assurance santé. Il convient également de faire barrage à certaines idées fausses propagées par des soi-disant experts qui se focalisent trop sur chaque partie de l'éléphant. Le Big Data est bien plus que des flux de médias sociaux comme Twitter et Facebook. Ce type de données est important mais essentiellement pour des clients réels et des transactions économiques que nous enregistrons habituellement dans des systèmes opérationnels et que nous analysons avec des outils de BI (Business Intelligence). De même, une vision axée uniquement sur les données de capteurs, provenant de l'«internet des objets», omet que l'utilisation ou l'analyse de ces données doit, d'une façon ou d'une autre, s'intégrer dans les processus métier actuels ou repensés. De même, une équipe de scientifiques des données, travaillant de manière autonome, ne peut pas espérer changer les processus métier en exploitant une seule source de données sur une nouvelle plateforme technique. L'intégration des données de plusieurs sources traditionnelles ou nouvelles, à l'aide de multiples outils, est la première condition. La deuxième est un processus bien intégré, prenant en compte toutes les données pour pouvoir les valoriser pleinement. Autre idée reçue : la technologie du Big Data peut ou doit supplanter les bases de données relationnelles ou les entrepôts de données d'entreprise (EDW). Cette conception est excessivement simpliste. En fait, la technologie du Big Data est une extension et une intégration des techniques et outils existants, depuis le traitement séquentiel jusqu'aux systèmes de gestion de base de données. L'écosystème Hadoop, par exemple, traite en parallèle des fichiers volumineux l'un après l'autre. Les bases de données relationnelles et leurs outils se focalisent, entre autres, sur la gestion systématique des informations et la cohérence des données. À l'inverse, la technologie du Big Data met l'accent sur d'autres caractéristiques très prisées, comme la rapidité d'accès, la variabilité des schémas et, bien entendu, des volumes massifs de données. La vérité aujourd'hui, c'est que de nombreux processus métier très performants ont besoin d'allier ces deux caractéristiques. Certaines tâches nécessitent de la souplesse, des frontières mouvantes et des approches innovantes. D'autres requièrent de la certitude, un champ d'application délimité et un respect des règles. Les processus Les processus métier évolutifs requièrent des approches et des outils traditionnels, ainsi que des Copyright 2012, 9sight Consulting. Tous droits réservés. 5 approches et des outils de Big Data.

6 métier franchissent un seuil de complexité qui dépasse les capacités de traitement des systèmes traditionnels, mais qu'un système de Big Data caractérisé par le volume, la variété et la vitesse est incapable de prendre en charge. Nous avons besoin d'une plateforme et d'outils professionnels qui combinent les deux. Pour définir une telle plateforme, il faut admettre que nous assistons à une transition rapide entre un monde dominé par un type de données et un autre monde où trois types d'information ont une importance équivalente. Copyright 2012, 9sight Consulting. Tous droits réservés. 6

7 Big Data et petits volumes vus du ciel «L'éther entier est le domaine de l'aigle : La terre entière est la patrie d'un brave.» 7 E n adoptant le point de vue d'un aigle planant au-dessus de toutes les divisions et de tous les silos des organisations et systèmes existants, l'équipe informatique peut voir comment les informations et les processus interagissent. Fondamentalement, nous avons besoin d'une nouvelle représentation mentale des informations et de leurs trois composantes étroitement imbriquées : 1. Informations d'origine humaine * : toutes les informations sont créées par des individus. Elles constituent une vision éminemment subjective de nos expériences personnelles. Auparavant conservées dans des livres et des œuvres d'art, puis dans des photographies, des enregistrements sonores et des vidéos, les informations d'origine humaine sont aujourd'hui en grande partie numérisées et stockées électroniquement sous des formes aussi différentes que les tweets et les films. Elles ont une structure variable, ne sont pas contrôlées et peuvent même fausser la perception de la réalité, notamment pour les entreprises. La structuration et la standardisation notamment par la modélisation sont nécessaires pour définir une version commune de la vérité. Nous convertissons les informations d'origine humaine en données traitées par des processus, de plusieurs manières dont la plus simple est la saisie dans des systèmes d'enregistrement. 2. Données traitées par processus : chaque entreprise ou organisation met en œuvre des processus qui, entre autres, mémorisent et contrôlent des événements, comme l'enregistrement d'un client, la fabrication d'un produit ou la passation d'une commande. Ces données incluent des transactions, des tables de référence et des relations, ainsi que des métadonnées qui définissent le contexte, le tout dans un format très structuré. Traditionnellement, les données traitées par processus formaient l'essentiel de ce que l'informatique gérait et traitait, qu'il s'agisse de données opérationnelles ou de BI. Leur format très structuré et réglementé en fait un support idéal pour des tâches telles que la gestion des informations, la préservation de la qualité des données, etc. 3. Données générées par des machines : nous déléguons de plus en plus aux machines la mesurer et l'enregistrement des événements et des situations dont nous faisons l'expérience physique. Les données générées par des machines simples enregistrements de capteur ou journaux informatiques complexes sont bien structurées et considérées comme un reflet fiable de la réalité. Elles représentent une part croissante des informations stockées et traitées par de nombreuses entreprises. Leur volume est en constante augmentation car les capteurs prolifèrent. Bien que leur structure se prête bien aux opérations informatiques, leur taille et leur vitesse de circulation dépassent les capacités des systèmes traditionnels, comme l'edw, pour les données traitées par processus. Les tailles relatives et l'importance subjective de ces trois composantes ont évolué Les données métier traditionnelles sont le résultat d'expériences personnelles et de mesures effectuées par des machines ; le Big Data remet les processus métier en contact direct avec la réalité du monde. * Dans le contexte de ces trois composantes, les «données» sont bien structurées et/ou modélisées, et les «informations» sont peu structurées et centrées sur l'humain. Copyright 2012, 9sight Consulting. Tous droits réservés. 7

8 ces dix dernières années et devraient encore changer dans la décennie qui vient. Jusqu'à la fin du dernier millénaire, les données traitées par processus prédominaient. Les informations d'origine humaine et les données générées par des machines qui existaient sous forme numérique représentaient un volume relativement faible et étaient considérées comme négligeables par rapport aux données bien gérées des systèmes opérationnels et informationnels. La dernière décennie a été marquée par l'explosion du Big Data constitué d'informations d'origine humaine et de données générées par des machines. La dernière composante, sous la forme de données de médias sociaux, a cristallisé toute l'attention. Ces prochaines années, la croissance rapide de l'internet des objets va renforcer l'importance et le volume des données générées par des machines. Cependant, comme vous pouvez le voir dans la figure 1, les informations d'origine humaine et les données générées par des machines sont à l'origine des données traitées par processus qui sont au centre de nos préoccupations depuis longtemps, bien que seule une petite partie bien définie soit traitée par les processus métier traditionnels. Ces sources sont à la fois plus souples et plus rapides que les données traitées par processus traditionnelles. En fait, les processus métier qui créent des données traitées par processus sont conçus pour réduire la souplesse et la rapidité de circulation, afin de préserver la qualité et la cohérence des données obtenues. Ceci transparaît clairement dans les processus à l'œuvre dans l'edw, mais également dans les systèmes opérationnels où la validation et le nettoyage des données garantissent la véracité et la viabilité des données enregistrées. XAujourd'hui, le volume d'informations d'origine humaine et de données générées par des machines est beaucoup plus important. Leur rythme de changement et leur variabilité sont plus importants que ceux des données traitées par processus. Leur copie et leur transformation par les processus traditionnels sont de moins en moins commodes. De fait, une technologie spécialisée, baptisée Business Analytics, est souvent nécessaire pour traiter et exploiter les informations d'origine humaine et les données générées par des machines, aussi près de leurs sources et aussi rapidement que possible. Ceci dit, le flux de données traitées par processus et les métadonnées qui leur sont associées dans l'environnement de Business Analytics sont tout aussi importants pour créer du sens, du contexte et de la cohérence dans le processus d'analyse. Le Big Data et le Business Analytics complètent le processus d'information en boucle, qui a toujours été implicite dans les technologies de l'information. Les implications concrètes de ce modèle à trois composantes d'information sont significatives et multiples : Le traitement de Big Data, quelle que soit la technologie employée, s'appuie sur les données traitées par processus et les métadonnées traditionnelles pour créer le contexte et la cohérence indispensables à une utilisation pleinement pertinente. Figure 1 : Les trois composa ntes de l'information La technologie de Business Analytics traite le Big Data aussi près que possible de sa source pour une vitesse et une efficacité optimales. Copyright 2012, 9sight Consulting. Tous droits réservés. 8

9 Les résultats du traitement de Big Data doivent être retransmis aux processus métier traditionnels pour permettre à l'entreprise de changer et d'évoluer. Un environnement totalement cohérent, avec une plateforme intégrée, et une organisation à l'échelle de l'entreprise sont indispensables pour une mise en œuvre réussie. Face à la prévalence grandissante du Big Data, les commerciaux et les informaticiens doivent renoncer à l'ancienne dépendance vis-à-vis des données traitées par processus, et adopter ces composantes plus souples et plus évolutives d'informations sur le monde réel. La compréhension de la relation entre ces trois composantes d'information est essentielle pour utiliser le Big Data en toute sécurité et de manière productive au sein de l'entreprise. Pour définir et gérer cette relation, et rendre ces trois types d'information disponibles dans toute l'entreprise, il faut une plateforme d'informations intégrée. C'est ce que nous allons voir dans la section suivante. Les données traitées par processus et les métadonnées traditionnelles sont primordiales pour comprendre le contexte et gérer l'utilisation du Big Data. Copyright 2012, 9sight Consulting. Tous droits réservés. 9

10 Une plateforme intégrée pour tous les types d'information «L'aigle peut planer ; les castors construisent des barrages.» 8 S i les développeurs d'entrepôt de données étaient des animaux, ils seraient certainement des castors, travaillant sans relâche à réguler les flux de données et créant un référentiel complet d'informations métier cohérentes. Les entrepôts de données et les environnements de gestion de données d'entreprise associés, comme les systèmes de gestion de données de référence (MDM), sont des référentiels fiables de données traitées par processus qui sont bien gérées et bien contrôlées. En revanche, l'origine du mouvement du Big Data dans la science et les entreprises spécialistes du Web, comme Google et Yahoo!, très compétentes en ingénierie, a conduit à une approche fondée sur une technologie «Open Source» et une programmation personnalisée. Une telle approche met davantage l'accent sur l'adaptabilité, le volume et la vitesse que sur la qualité des données. Aujourd'hui, les entreprises ont besoin de ces deux volets, l'un ne pouvant remplacer l'autre. Une plateforme intégrée pour tous les types d'information (voir la figure 2) doit donc mobiliser plusieurs technologies d'analyse et de base de données. Optimisée pour un type particulier de traitement et d'accès, chacune constitue un pilier et est nommée en fonction de son rôle métier. 1. Au centre, le premier pilier Données métier essentielles correspond à des données cohérentes et fiables, stockées dans les systèmes EDW et MDM. Les bases de données relationnelles traditionnelles, comme IBM DB2, constituent la technologie de base. Souvent stockées dans les EDW aujourd'hui, les données de chaque application, servant à prendre des décisions et à créer des rapports, sont exclues. Figure 2 : La plateforme d'informatio ns intégrée 2. Le deuxième pilier, Données d'analyse et de création de rapports essentielles, contient les données exclues du pilier précédent. Idéalement, ce pilier est, lui aussi, une base de données relationnelle. Les plateformes d'entrepôt de données, comme IBM InfoSphere Warehouse, IBM Smart Analytics System et le nouvel IBM PureData System for Operational Analytics, ont toute leur place ici. Les entreprises qui ont besoin de performances de haut niveau pour les requêtes peuvent choisir un système d'analyse intégrant le traitement massivement parallèle (MPP), des bases de données en colonnes ou d'autres technologies de pointe comme le nouvel IBM PureData System for Analytics (mis en Copyright 2012, 9sight Consulting. Tous droits réservés. 10

11 œuvre par la technologie Netezza). 3. Le pilier Informations d'analyse détaillées requiert des capacités de traitement importantes et très souples, comme l'analyse statistique et l'exploration de textes, souvent mises en œuvre dans l'environnement Hadoop. 4. Le pilier Données d'analyse rapides requiert une technologie permettant d'analyser les données très rapidement, comme avec IBM InfoSphere Streams. Souvent générées par plusieurs sources, ces données doivent être analysées en continu et agrégées avec une latence quasi nulle pour générer des alertes et prendre des décisions en temps réel. 5. À l'intersection de la rapidité et de la flexibilité, le pilier Données d'analyse spécialisées effectue un traitement spécialisé (NoSQL, XML, graphique et autres bases/magasins de données). Il apparaît en double dans la plateforme, car il s'applique aux données générées par des machines et aux informations d'origine humaine. La figure 2 montre comment ces piliers sont répartis entre les trois composantes de l'information et place les systèmes d'enregistrement opérationnels traditionnels au cœur de la plateforme. Le pilier central de la plateforme ressemble beaucoup à l'architecture d'un entrepôt de données traditionnel, à cette différence près que dans les entrepôts utilisés pour l'analyse et la création de rapports, les données peuvent et souvent doivent provenir directement des systèmes opérationnels. La plateforme d'informations intégrée contient toutes les informations générées et utilisées par l'entreprise. Les métadonnées sont essentielles à cette nouvelle architecture pour contextualiser les informations et permettre une gouvernance appropriée. Dans les composantes traitées par processus et générées par des machines, les métadonnées sont explicites et, en général, stockées séparément. Dans la composante d'origine humaine, elles ont tendance à être implicites dans les informations ellesmêmes. Il est donc impératif d'élaborer de nouvelles approches pour modéliser, identifier et visualiser les sources internes et externes de données, ainsi que leurs relations comme dans les outils IBM Vivisimo d'optimisation des informations au sein de la plateforme. Parmi les fonctionnalités requises, l'intégration des données qui déplace, copie, nettoie et conditionne les données dans la plateforme (flèches noires), et la virtualisation des données (liens orange) jouent un rôle central. Bien entendu, les métadonnées sont incontournables dans ces deux fonctionnalités. L'intégration des données, également appelée ETL (pour Extract/Tranform/Load, littéralement extraction/transformation/chargement), existait déjà dans les entrepôts de données et remplit la même fonction dans la plateforme d'informations intégrée. Quant à la virtualisation des données, certains puristes des entrepôts de données la proscrivent. Ceci dit, contrairement à l'architecture EDW classique dans laquelle tous les flux de données traversent un même entrepôt instancié physiquement, la plateforme d'informations intégrée regroupe plusieurs entrepôts unifiés logiquement par les données métier et les métadonnées essentielles. La virtualisation des données permet aux utilisateurs et aux applications d'accéder aux données stockées dans des technologies hétérogènes et sur plusieurs sites via une couche sémantique. Elle offre une vue métier des informations, masque la complexité technique de l'accès et autorise une jonction en temps réel des résultats provenant de plusieurs sources. Les outils d'administration et de Business Analytics incluent toutes les fonctions que vous attendez : exploration, visualisation, identification, développement d'applications, gestion des systèmes, etc. Le Business Analytics couvre à la fois l'utilisation du Big Data et les fonctionnalités de BI traditionnelles. Copyright 2012, 9sight Consulting. Tous droits réservés. 11

12 Dans sa forme la plus aboutie, la plateforme intégrée contient toutes les informations générées et utilisées par l'entreprise. Ces informations proviennent des interactions La plateforme de l'entreprise avec des machines et des personnes, tant en interne qu'en externe, d'informations intégrée ainsi qu'avec d'autres organisations. C'est ce que montre la partie inférieure de la est l'unification virtuelle figure 2. En général, les événements sont enregistrés par des capteurs et des du Big Data et des machines. Les communications correspondent aux interactions entre les personnes. informations métier traditionnelles. Et les transactions désignent les interactions qui ont une importance financière pour l'entreprise. Ces transactions sont primordiales pour une entreprise, c'est pourquoi elles ont compté parmi les premiers à être informatisés, et les systèmes opérationnels effectuent un travail complet de contrôle qualité avant de les accepter. Elles constituent également la principale source de données métier essentielles. Les événements et les communications nécessitent un contrôle qualité moindre et peuvent donc être chargés directement dans les systèmes qui les utilisent et les analysent. Mise en œuvre d'une plateforme d'informations intégrée Comment mangez-vous un éléphant? Par petits morceaux C omme le Big Data, si les informations sous toutes leurs formes étaient un animal, elles seraient aussi un éléphant ou plus précisément un troupeau d'éléphants. Comme nous l'avons vu, pour régner sur ce troupeau, il faut une plateforme intégrée prenant en charge tous les types d'information. Bien que sa vision et sa portée soient complètes, cette plateforme existe déjà partiellement ou, plus souvent, en plusieurs morceaux. En fait, il s'agit d'un travail en cours qui a débuté dans de nombreuses organisations avec leur premier entrepôt, probablement dans les années 1990, lorsqu'elles ont commencé à créer des informations utilisables dans toute l'entreprise. L'un des principaux objectifs de l'architecture des premiers entrepôts de données 9 était la cohérence, première condition pour une utilisation globale des informations, quels que soient les volumes concernés. La plupart des méthodes et techniques utilisées dans la création d'un entrepôt s'appliquent au Big Data, comme bon nombre de technologies. L'important, c'est de ne pas croire que les nouvelles technologies sont si différentes qu'elles changent tout. Ce n'est pas le cas. Pour mettre en place une À partir de vos systèmes actuels et, en particulier, de vos entrepôts complets, plateforme intégrée de Big Data, appuyez-vous sur vous pouvez commencer par créer la plateforme d'informations intégrée l'infrastructure existante et les nécessaire pour extraire une valeur métier concrète des Big Data. Et vous outils de la gestion des pouvez dès maintenant profiter de certains avantages de cette plateforme : données, notamment Réutilisation des données et environnements existants dans la mesure l'entrepôt de données du possible d'entreprise. Possibilité d'ajouter de nouvelles technologies en cas de besoin Signification et utilisation cohérentes des informations entre les environnements Réduction du délai de rentabilisation et du retour sur investissement pour la technologie existante Copyright 2012, 9sight Consulting. Tous droits réservés. 12

13 Si vous cherchez à valoriser les informations d'origine humaine provenant du Web (comme les médias sociaux) ou de sources internes (comme les journaux de centres d'appels ou des archives de textes), créer un environnement de type «Sandbox» (littéralement «bac à sable») dans Hadoop est recommandé. Du point de vue technologique, il est primordial que ce nouvel environnement soit lié aussi étroitement que possible à votre système de BI pour permettre un transfert bidirectionnel d'informations : par exemple, envoi de données métier certifiées sur des clients ou des produits vers l'environnement Hadoop à des fins d'analyse, et envoi de données synthétiques issues des tâches d'analyse vers le système de BI pour créer des rapports et prendre des décisions. Du point de vue organisationnel, ce sont les scientifiques des données et leur rareté sur le marché qui ont fait l'objet de toutes les attentions. Véritables experts, ces scientifiques résolvent des problèmes de données complexes grâce à leurs compétences en collecte et nettoyage de données, en analyse statistique, en visualisation et à une connaissance approfondie du domaine. On oublie fréquemment que les utilisateurs expérimentés de systèmes de BI et de tableurs dans les services commerciaux qui utilisent des données à grande échelle, peuvent faire des scientifiques des données très compétents. Au sein du service de marketing, les utilisateurs qui ont le bon état d'esprit et sont habitués à analyser beaucoup de données et à en extraire du sens, constituent souvent d'excellents candidats. Ils peuvent avoir besoin d'une formation plus avancée en statistiques ou en programmation, mais ils connaissent le domaine et ont la bonne tournure d'esprit. Si vous recrutez des scientifiques des données, assurez-vous de l'implication de l'équipe de BI dans le nouvel environnement pour que ces nouvelles compétences s'intègrent bien au sein des équipes existantes. Par exemple, vous pouvez créer une équipe de deux ou trois personnes, avec un commercial qui comprend l'analyse et aime jouer au détective, et un informaticien de l'équipe de BI, capable d'accéder aux données de l'entrepôt et de les intégrer dans les nouvelles technologies de Big Data. Si votre entreprise cherche de nouvelles perspectives ou de nouveaux processus concernant les données collectées par des machines ou des capteurs, les possibilités qui s'offrent à vous sont multiples. Vous pouvez commencer par une base de données d'analyse, comme la nouvelle base IBM PureData System for Analytics, pour stocker et explorer ces données. Si vos besoins en analyse sont plus opérationnels, optez pour la nouvelle base de données IBM PureData System for Operational Analytics. Vous pouvez également utiliser Hadoop et IBM InfoSphere BigInsights si les volumes sont particulièrement massifs ou si les structures sont très variables. Dans l'éventualité où la vitesse de traitement est la priorité, une solution de flux, comme IBM InfoSphere Streams, est à envisager. Dans tous les cas, les impératifs technologiques et organisationnels sont les mêmes que ceux mentionnés ci-dessus : une intégration étroite dans l'environnement et l'équipe de BI. Au fur et à mesure que vous répondrez à d'autres besoins métier et que vous ajouterez des fonctionnalités, l'un des principaux avantages d'une plateforme transparaîtra rapidement : la réutilisation des ressources de l'infrastructure et des données. La même intégration des données et les mêmes métadonnées seront utilisées dans les différentes parties de la plateforme. Le travail de contrôle qualité effectué dans un composant se répercutera sur la qualité globale. Les commerciaux auront un accès élargi à différents types de données si leurs tâches l'exigent grâce à un jeu commun d'outils utilisés de manière cohérente et une meilleure contextualisation. À certains égards, le Big Data pose les mêmes types de problèmes de gestion des données Dans le cas de la BI, que les tableurs. La plupart des équipes en charge de la BI ou de la gouvernance de l'adhésion des données refusent obstinément d'utiliser des tableurs. Comme le dit Wayne Eckerson : commerciaux et le «Les tableurs sont hors de contrôle dans la plupart des organisations. Ils prolifèrent comme soutien de la direction du poison, étranglant lentement [les entreprises]...» 10. Le Big Data, tel qu'il est mis en sont les principaux œuvre aujourd'hui, est conforme à cette image : non contrôlé, non géré et centré autour critères de réussite pour la mise en œuvre Copyright 2012, 9sight Consulting. Tous droits réservés. du Big Data. 13

14 de quelques scientifiques des données, de leurs outils et de leurs jeux de données. La mise en place d'une plateforme intégrée constitue une étape importante pour endiguer cette prolifération. Combinée à une intégration étroite dans l'organisation de BI existante, cette approche peut transformer le Big Data en un puissant outil d'innovation et d'amélioration des processus, et non en une arme de destruction massive de valeur. Mais, l'étape la plus importante de la mise en œuvre consiste peut-être à emporter l'adhésion des commerciaux et le soutien de la direction. Ceci n'est pas nouveau pour les développeurs de BI. Mais attention! Certains fournisseurs de solutions de Big Data sont issus de communautés de programmation, Open Source et de développement Web, où le soutien de la direction est rare. Associer vos initiatives de Big Data à des initiatives d'entrepôt de données et de BI déjà couronnées de succès est certainement la meilleure solution pour emporter la confiance. Compte tenu des avantages métier considérables et très visibles du Big Data, le soutien de la direction au plus haut niveau peut être plus facile et plus rapide à obtenir que pour les initiatives d'entrepôt de données. Un tel enthousiasme peut et doit servir à faciliter la mise en place d'une plateforme d'informations intégrée. Et à tirer les leçons des expériences précédentes, grâce à une approche graduelle qui apporte des avantages métier à chaque étape. Copyright 2012, 9sight Consulting. Tous droits réservés. 14

15 Conclusion L e Big Data offre probablement les opportunités commerciales les plus importantes et les plus novatrices depuis l'apparition du commerce électronique à la fin des années Bien évidemment, le Big Data a fait l'objet d'une surmédiatisation, tout comme le commerce électronique. Mais, nous sommes aujourd'hui à un tournant. On assiste maintenant à un retour à la normale avec des fournisseurs de systèmes de gestion d'informations traditionnels qui s'impliquent davantage dans le marché et un centre de l'attention qui s'est déplacé des start-up Internet vers les entreprises bien établies. La mise en œuvre du Big Data est beaucoup plus efficace si elle s'inscrit dans des processus globaux de gestion des informations globaux, en place depuis longtemps, et si sa finalité reste d'améliorer les résultats de l'entreprise. Pourquoi? Parce que le Big Data, quel que soit son volume, sa vitesse ou sa variété, est composé de données métier qui requièrent une gestion appropriée et une intégration aux sources existantes. Seul, le Big Data peut générer des connaissances métier précieuses, mais pour que l'entreprise en retire un bénéfice durable, il doit être pleinement intégré aux processus traditionnels de gouvernance et de gestion des données. D'un statut de technique expérimentale, le Big Data est en passe de devenir une technologie de pointe. De plus en plus d'entreprises tirent parti des opportunités du Big Data pour repenser leurs principaux processus opérationnels et décisionnels. Le moteur de cette évolution, c'est la création d'une plateforme de Big Data prenant en charge de nombreux types de données dans un environnement professionnel intégré, avec une solution d'analyse métier qui exploite les données dans leur format natif, aussi proche que possible de leurs sources. Les avantages métier d'une telle plateforme intégrée sont les suivants : 1. Fournir des analyses prédictives pour l'avenir en analysant les médias sociaux et le comportement des clients à partir des données réelles et fiables que l'entreprise collecte depuis longtemps pour une utilisation quotidienne 2. Prendre des décisions opérationnelles en temps réel grâce aux informations fournies plus rapidement par des machines et des capteurs situés dans l'environnement externe, et utilisées conjointement avec les données transactionnelles traditionnelles 3. Réinventer les processus métier pour des modèles économiques plus rapides, plus innovants et plus efficaces en unifiant les activités informationnelles et opérationnelles Avec de tels avantages en vue, l'informatique doit et peut créer un système de Big Data rapidement et progressivement à partir de l'infrastructure de gestion des données existante. La plupart du temps, le point de départ est l'entrepôt de données ou l'environnement de BI. Voici quelques exemples, parmi d'autres : mise en œuvre de Hadoop pour prétraiter et analyser le contenu existant, comme des enregistrements de centres d'appels ; ajout d'une technologie de flux pour acheminer les données en temps réel dans l'entrepôt de données ; et modernisation de l'entrepôt de données existant pour que les sources de données des capteurs alimentent directement les bases de données servant à l'analyse. Les stratégies de mise en place de cette nouvelle plateforme ne manquent pas. Moyennant un investissement relativement limité en temps, en travail et en coût, elles permettent d'obtenir rapidement des avantages tangibles et de fournir à l'équipe informatique une base de travail. Copyright 2012, 9sight Consulting. Tous droits réservés. 15

16 Pour tirer parti de ces véritables opportunités, la collaboration entre le service commercial et l'équipe informatique est essentielle. Elle permet de commencer immédiatement à planifier et déployer une stratégie de Big Data complète et incrémentielle. Débuter modestement avec des méthodes de projet agiles permet de valoriser rapidement les données de l'entreprise et d'intégrer l'analyse et les scientifiques des données dans l'entreprise. Aujourd'hui, la technologie du Big Data a atteint une certaine maturité et s'intègre de plus en plus étroitement dans les plateformes de gestion de données actuelles. Le moment est donc idéal pour les entreprises innovantes de sortir du lot pour distancer rapidement et durablement la concurrence. Une plateforme d'informations intégrée constitue la première étape vers une mise en œuvre efficace du Big Data et l'obtention d'avantages métier réels et durables. Le Dr Barry Devlin est l'un des experts les plus reconnus en matière de Business Analytics et l'un des créateurs des entrepôts de données, dont il a décrit l'architecture dans un article publié en Il compte plus de 30 ans d'expérience en informatique, dont 20 chez IBM en tant qu'ingénieur émérite. Brillant analyste, consultant et conférencier, il est aussi l'auteur de l'ouvrage «Data Warehouse from Architecture to Implementation» et de nombreux livres blancs. Barry a créé et dirige 9sight Consulting. Il est spécialiste des implications humaines, organisationnelles et informatiques des solutions de Business Analytics qui combinent des environnements opérationnels, informationnels et collaboratifs. Il contribue régulièrement à BeyeNETWORK, Focus, SmartDataCollective et TDWI. Il vit à Cape Town, en Afrique du Sud, et travaille dans le monde entier. Les appellations et noms de produit mentionnés dans cet article sont des marques commerciales ou déposées d'ibm. Crédits des images : Éléphant africain : Barry Devlin Aveugles : C. M. Stebbins & M. H. Coolidge, «Golden Treasury Readers: Primer», American Book Co. (New York), 1909 [Wikipedia.com] Aigle : [LoonChild / 123RF.com] Castors : Willem Janszoon Blaeu : «Nova Belgica et Anglia Nova» (détail), 1635 [Wikipedia.com] Éléphants origami : Katherine Devlin Peintures de la grotte Chauvet : HTO [Wikipedia.com] 1 «Data, data everywhere A special report on managing information», The Economist, février «Outperforming in a data-rich, hyper-connected world», IBM Center for Applied Insights, mars 2012, 3 «Big data: The next frontier of innovation, competition and productivity», McKinsey Global Institute, mai «Gartner Reveals Top Predictions for IT Organizations and Users for 2012 and Beyond», Gartner, décembre 2011, 5 Extrait du poème «Les aveugles et l'éléphant» de John Godfrey Saxe ( ) 6 «Expanding Digital Universe», International Data Corporation (IDC), , 7 Euripide, dramaturge grec (env av. J.-C.) 8 Joseph S. Nye, Jr. (1937-) 9 Devlin, B. A. et Murphy, P. T., «An architecture for a business and information system», IBM Systems Journal, Volume 27, Numéro 1, Page 60 (1988) 10 Eckerson, W., «The Rise and Fall of Spreadmarts», DM Review, 2003 Copyright 2012, 9sight Consulting. Tous droits réservés. 16

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Guide d'achat sur l'intégration du Big Data

Guide d'achat sur l'intégration du Big Data SEPTEMBRE 2013 Guide d'achat sur l'intégration du Big Data Commandité par Sommaire Introduction 1 Les enjeux de l'intégration du Big Data : hier et aujourd'hui 1 Fonctionnalités nécessaires à l'intégration

Plus en détail

Big Data : une complexité réduite pour un retour sur investissement plus rapide

Big Data : une complexité réduite pour un retour sur investissement plus rapide Big Data : une complexité réduite pour un retour sur investissement plus rapide Copyright 2013 Pentaho Corporation. Redistribution autorisée. Toutes les marques commerciales sont déposées par leur propriétaire

Plus en détail

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise En synthèse HVR pour garantir les échanges sensibles de l'entreprise Le logiciel HVR fournit des solutions pour résoudre les problèmes clés de l'entreprise dans les domaines suivants : Haute Disponibilité

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Concepts de base. du décisionnel. A. Quelques définitions. Décision. Remarque. Comment prendre de bonnes décisions. Le décideur

Concepts de base. du décisionnel. A. Quelques définitions. Décision. Remarque. Comment prendre de bonnes décisions. Le décideur Concepts de base I - du décisionnel I Quelques définitions 7 Les Phases de la Prise de décision 8 Aide à la décision 8 Le système d'information décisionnel 9 Références Bibliographiques 11 A. Quelques

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

Enterprise Intégration

Enterprise Intégration Enterprise Intégration Intégration des données L'intégration de données des grandes entreprises, nationales ou multinationales est un vrai cassetête à gérer. L'approche et l'architecture de HVR est très

Plus en détail

DÉFINITIVEMENT. RÉVOLUTION? ÉVOLUTION? Big Data

DÉFINITIVEMENT. RÉVOLUTION? ÉVOLUTION? Big Data Big Data ÉVOLUTION? RÉVOLUTION? DÉFINITIVEMENT. Le Big Data : une évolution, une révolution, ou les deux? Bill Schmarzo d EMC et le consultant Ben Woo s expriment sur la question. Par Terry Brown EMC+

Plus en détail

PRINCE2 en mille mots

PRINCE2 en mille mots PRINCE2 en mille mots Andy Murray, auteur principal de PRINCE2 (2009) et directeur de Outperform UK Ltd Livre blanc Septembre 2011 Table des matières 1 Qu'est-ce que PRINCE2? 3 2 Les bénéfices de PRINCE2

Plus en détail

Réduire les risques liés à la migration du réseau de data center

Réduire les risques liés à la migration du réseau de data center Réduire les risques liés à la migration du réseau de data center Optimisez votre architecture et votre investissement IT tout en réduisant la complexité et les risques Les services Cisco de migration de

Plus en détail

Avantages économiques de la stratégie de Cisco relative à l'informatique en nuage

Avantages économiques de la stratégie de Cisco relative à l'informatique en nuage Avantages économiques de la stratégie de Cisco relative à l'informatique en nuage Principaux résultats Synthèse L'informatique en nuage permet d'utiliser l'informatique en tant que service, en tout lieu

Plus en détail

Votre laisser-passer pour les. Big Data Guide visuel

Votre laisser-passer pour les. Big Data Guide visuel Votre laisser-passer pour les Big Data Guide visuel Les Big Data ont une immense valeur Apprenez à en libérer tout le potentiel Nul doute aujourd hui que les Big Data entraînent une profonde mutation du

Plus en détail

La solution IBM Rational pour une ALM Agile

La solution IBM Rational pour une ALM Agile La solution IBM pour une ALM Agile Utilisez votre potentiel agile Points clés Adopter l'agilité à votre rythme Supporter une livraison multiplateforme Intégrer la visibilité Démarrer rapidement Que votre

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

IBM BigInsights for Apache Hadoop

IBM BigInsights for Apache Hadoop IBM BigInsights for Apache Hadoop Gérer et explorer efficacement le Big Data pour exploiter tous les signaux Points clés : Plateforme Hadoop prête à l'emploi pour le traitement, le stockage et l'analyse

Plus en détail

Lettre d'annonce ZP09-0108 d'ibm Europe, Moyen-Orient et Afrique datée du 5 mai 2009

Lettre d'annonce ZP09-0108 d'ibm Europe, Moyen-Orient et Afrique datée du 5 mai 2009 datée du 5 mai 2009 De nouveaux produits IBM Tivoli Storage Manager V6.1 offrent une protection des données et une gestion de l'espace optimisées dans les environnements Microsoft Windows Table des matières

Plus en détail

La dernière base de données de Teradata franchit le cap du big data grâce à sa technologie avancée

La dernière base de données de Teradata franchit le cap du big data grâce à sa technologie avancée Communiqué de presse Charles-Yves Baudet Twitter: Les clients de Teradata Teradata Corporation peuvent dan.conway@teradata.com tirer parti de plusieurs + 33 1 64 86 76 14 + 33 (0) 1 55 21 01 48/49 systèmes,

Plus en détail

Partie 2 : Les impératifs de croissance obligent à concentrer l'activité sur le personnel des points de vente/service

Partie 2 : Les impératifs de croissance obligent à concentrer l'activité sur le personnel des points de vente/service Un rapport Thought Leadership Paper élaboré par Forrester Consulting à la demande de Lexmark. Partie 2 : Les impératifs de croissance obligent à concentrer l'activité sur le personnel des points de vente/service

Plus en détail

Transformation IT de l entreprise DU CONCRET POUR TRANSFORMER LES BIG DATA EN VALEUR

Transformation IT de l entreprise DU CONCRET POUR TRANSFORMER LES BIG DATA EN VALEUR Transformation IT de l entreprise DU CONCRET POUR TRANSFORMER LES BIG DATA EN VALEUR S elon IDC, la quantité d informations stockées et traitées continue d augmenter chaque année de plus 50%. Comment extraire

Plus en détail

CA ARCserve Backup r12

CA ARCserve Backup r12 DOSSIER SOLUTION : CA ARCSERVE BACKUP r12 CA ARCserve Backup r12 CA ARCSERVE BACKUP R12 ASSURE UNE PROTECTION EXCEPTIONNELLE DES DONNÉES POUR LES SERVEURS, LES BASES DE DONNÉES, LES APPLICATIONS ET LES

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie

Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie Découvrir les stratégies ayant fait leurs preuves et les meilleures pratiques Points clés : Planifier

Plus en détail

S e r v i r l e s clients actuels de maniè r e e f f ic a ce grâce a u «Co n s u m er Insight»

S e r v i r l e s clients actuels de maniè r e e f f ic a ce grâce a u «Co n s u m er Insight» Siège mondial : 5 Speen Street Framingham, MA 01701 États-Unis P.508.935.4400 F.508.988.7881 www.idc-ri.com S e r v i r l e s clients actuels de maniè r e e f f ic a ce grâce a u «Co n s u m er Insight»

Plus en détail

Tirez plus vite profit du cloud computing avec IBM

Tirez plus vite profit du cloud computing avec IBM Tirez plus vite profit du cloud computing avec IBM Trouvez des solutions de type cloud éprouvées qui répondent à vos priorités principales Points clés Découvrez les avantages de quatre déploiements en

Plus en détail

Positionnement de UP

Positionnement de UP UNIFIED PROCESS Positionnement de UP Unified Process Langage Méthode Outil logiciel UML UP RUP 6 BONNES PRATIQUES développement itératif gestion des exigences architecture basée sur des composants modélisation

Plus en détail

The Deciding Factor : Big Data et l aide à la décision

The Deciding Factor : Big Data et l aide à la décision Business Analytics The way we see it The Deciding Factor : Big Data et l aide à la décision Ecrit par A propos de l'étude À la demande de Capgemini, l'economist Intelligence Unit a rédigé le rapport intitulé

Plus en détail

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats IBM InfoSphere Master Data Management Server 9.0 Des données fiables pour de meilleurs résultats Les entreprises génèrent et collectent chaque jour une multitude de données : informations sur les comptes,

Plus en détail

Leadership et technologie : avantages des communications vidéo pour les entreprises de taille moyenne

Leadership et technologie : avantages des communications vidéo pour les entreprises de taille moyenne LIVRE BLANC Leadership et technologie : avantages des communications vidéo pour les entreprises de taille moyenne Décembre 2012 Résumé Les entreprises de taille moyenne cherchent à réussir dans un environnement

Plus en détail

Définir le contexte stratégique des Ressources Humaines

Définir le contexte stratégique des Ressources Humaines Zoom sur le contexte des ressources humaines Définir le contexte stratégique des Ressources Humaines Au travers de leur management stratégique, les entreprises voient les ressources humaines comme le moyen

Plus en détail

Le Workflow comme moteur des projets de conformité

Le Workflow comme moteur des projets de conformité White Paper Le Workflow comme moteur des projets de conformité Présentation Les entreprises sont aujourd'hui soumises aux nouvelles régulations, lois et standards de gouvernance les obligeant à mettre

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

ManageEngine IT360 : Gestion de l'informatique de l'entreprise

ManageEngine IT360 : Gestion de l'informatique de l'entreprise ManageEngine IT360 Présentation du produit ManageEngine IT360 : Gestion de l'informatique de l'entreprise Améliorer la prestation de service à l'aide d'une approche intégrée de gestion des performances

Plus en détail

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures]

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures] Objectif Utiliser les techniques de gestion de la mise en cache pour contrôler et améliorer les performances des requêtes Définir des mesures simples et des mesures calculées pour une table de faits Créer

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

Suite IBM Tivoli IT Service Management : comment gérer le système d information comme une véritable entreprise

Suite IBM Tivoli IT Service Management : comment gérer le système d information comme une véritable entreprise Suite IBM Tivoli IT Service Management : comment gérer le système d information comme une véritable entreprise Europe Lettre d'annonce du 27 juin 2006 ZP06-0279 En bref Introduction Description Accessibilité

Plus en détail

Architecture d'entreprise : Guide Pratique de l'architecture Logique

Architecture d'entreprise : Guide Pratique de l'architecture Logique Guides Pratiques Objecteering Architecture d'entreprise : Guide Pratique de l'architecture Logique Auteur : Version : 1.0 Copyright : Softeam Equipe Conseil Softeam Supervisée par Philippe Desfray Softeam

Plus en détail

POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW

POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW Livre blanc QlikView Mars 2014 qlik.com Sommaire Libérez la richesse qui sommeille dans votre entrepôt de données 3 Redevenir

Plus en détail

IBM Software Juin 2013 Livre blanc sur le leadership éclairé. Commencer à exploiter le Big Data : 5 cas d utilisation

IBM Software Juin 2013 Livre blanc sur le leadership éclairé. Commencer à exploiter le Big Data : 5 cas d utilisation IBM Software Juin 2013 Livre blanc sur le leadership éclairé Commencer à exploiter le Big Data : 5 cas d utilisation 2 Utilisation d'ibm InfoSphere BigInsights pour accélérer le retour sur investissement

Plus en détail

Intégration du Big Data aux processus métiers et aux systèmes d'entreprise

Intégration du Big Data aux processus métiers et aux systèmes d'entreprise Intégration du Big Data aux processus métiers et aux systèmes d'entreprise BENEFICIEZ DE L EXPERIENCE ET DU SAVOIR-FAIRE DE BMC POUR VOUS ACCOMPAGNER A: Comprendre les enjeux du Big Data. Faciliter l implémentation

Plus en détail

Pour les entreprises de taille moyenne. Descriptif Produit Oracle Oracle Business Intelligence Standard Edition One

Pour les entreprises de taille moyenne. Descriptif Produit Oracle Oracle Business Intelligence Standard Edition One Pour les entreprises de taille moyenne Descriptif Produit Oracle Edition One POURQUOI VOTRE ENTREPRISE A BESOIN D UNE SOLUTION DE BUSINESS INTELLIGENCE (BI) Des quantités toujours plus importantes de données

Plus en détail

Une nouvelle ère de collaboration

Une nouvelle ère de collaboration Une nouvelle ère de collaboration La nature du travail évolue rapidement. Diverses tendances contribuent à transformer considérablement les modes d'interaction et de collaboration professionnelles. Analysons

Plus en détail

Gestion du centre de données et virtualisation

Gestion du centre de données et virtualisation Gestion du centre de données et virtualisation Microsoft Corporation Juin 2010 Les informations contenues dans ce document représentent l'opinion actuelle de Microsoft Corporation sur les points cités

Plus en détail

IBM Software IBM Business Process Manager - Simplicité et performances

IBM Software IBM Business Process Manager - Simplicité et performances IBM Software IBM Business Process Manager - Simplicité et performances Gérer ses processus métier et bénéficier d une visibilité totale avec une plateforme de BPM unique IBM Software 2 IBM Business Process

Plus en détail

Communication sans collaboration

Communication sans collaboration Siège social : Avanade France 125 avenue de Paris 92320 Châtillon www.avanade.com/fr Avanade est le principal intégrateur de solutions pour l entreprise basées sur la plate-forme Microsoft. Sa mission

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Prise en main du BusinessObjects XI R2 Service Pack 2/ Productivity Pack

Prise en main du BusinessObjects XI R2 Service Pack 2/ Productivity Pack Prise en main du BusinessObjects XI R2 Service Pack 2/ Productivity Pack A propos de ce guide A propos de ce guide Ce guide contient des informations de prise en main du BusinessObjects XI R2 Service Pack

Plus en détail

Yphise. Le SAN. Architectures SAN

Yphise. Le SAN. Architectures SAN Architectures SAN Mardi 28 mars 2000 Laurent Ruyssen - 53 Bd de Sébastopol - T 1 45 08 86 70 F 1 45 08 05 51 yphise@yphise.com - http://yphise.fr ABS0003-1 Nous accompagnons les Directions Informatiques

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

CA ARCserve Backup. Avantages. Vue d'ensemble. Pourquoi choisir CA

CA ARCserve Backup. Avantages. Vue d'ensemble. Pourquoi choisir CA DOSSIER SOLUTION : CA ARCSERVE BACKUP R12.5 CA ARCserve Backup CA ARCSERVE BACKUP, LOGICIEL DE PROTECTION DE DONNÉES LEADER DU MARCHÉ, INTÈGRE UNE TECHNOLOGIE DE DÉDUPLICATION DE DONNÉES INNOVANTE, UN

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Business Analytics pour le Big Data

Business Analytics pour le Big Data IBM Software Business Analytics Big Data Business Analytics pour le Big Data Libérer la valeur pour générer la performance 2 Business Analytics pour le Big Data Sommaire 2 Introduction 3 Extraction d éclairages

Plus en détail

Pour des programmes gouvernementaux plus efficaces

Pour des programmes gouvernementaux plus efficaces IBM software Pour des programmes gouvernementaux plus efficaces IBM Initiate Master Data Service pour les services axés sur les citoyens Dans le cadre de la transformation de l Etat, les organismes gouvernementaux

Plus en détail

Concepts et définitions

Concepts et définitions Division des industries de service Enquête annuelle sur le développement de logiciels et les services informatiques, 2002 Concepts et définitions English on reverse Les définitions qui suivent portent

Plus en détail

Collecter les 54 milliards d'euros de bénéfices issus des nouveaux usages de la donnée

Collecter les 54 milliards d'euros de bénéfices issus des nouveaux usages de la donnée Livre Blanc Collecter les 54 milliards d'euros de bénéfices issus des nouveaux usages de la donnée Sponsorisé par : Microsoft Sebastien Lamour mai 2014 QUELS SONT LES NOUVEAUX BENEFICES POTENTIELS ISSUS

Plus en détail

Archivage, sauvegarde et restauration pour une virtualisation réussie Gestion des informations unifiée pour les environnements d'entreprise Windows

Archivage, sauvegarde et restauration pour une virtualisation réussie Gestion des informations unifiée pour les environnements d'entreprise Windows Archivage, sauvegarde et restauration pour une virtualisation réussie Gestion des informations unifiée pour les environnements d'entreprise Windows Croissance exponentielle des informations non structurées

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

IBM Content Analytics Libérer l Information

IBM Content Analytics Libérer l Information IBM Content Analytics Libérer l Information Patrick HOFLEITNER patrick_hofleitner@fr.ibm.com Août 2011 TABLE DES MATIERES RESUME...3 INTRODUCTION...4 LA PROBLEMATIQUE...5 1 L EXPLOSION DU CONTENU NON-STRUCTURE...5

Plus en détail

Big Data et l avenir du décisionnel

Big Data et l avenir du décisionnel Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence

Plus en détail

Microsoft Dynamics Mobile Development Tools

Microsoft Dynamics Mobile Development Tools Microsoft Dynamics Mobile Development Tools Microsoft Dynamics Mobile Development Tools AVANTAGES : Bâtir des solutions complètes avec Microsoft Dynamics. Créer rapidement des applications verticales à

Plus en détail

Siemens Grâce aux documents intelligents, un leader mondial de la haute technologie augmente l efficacité et la précision de ses employés.

Siemens Grâce aux documents intelligents, un leader mondial de la haute technologie augmente l efficacité et la précision de ses employés. Siemens Grâce aux documents intelligents, un leader mondial de la haute technologie augmente l efficacité et la précision de ses employés. Produit phare de l'étude de cas : Microsoft Office Édition Professionnelle

Plus en détail

Cisco Unified Computing Migration and Transition Service (Migration et transition)

Cisco Unified Computing Migration and Transition Service (Migration et transition) Le service Cisco Unified Computing Migration and Transition Service (Migration et transition) vous aide à migrer vos applications de façon fluide vers la plate-forme Cisco Unified Computing System, à les

Plus en détail

Inscriptions : 0800 901 069 - Renseignements : 33 (0)1 44 45 24 35 - education.france@sap.com

Inscriptions : 0800 901 069 - Renseignements : 33 (0)1 44 45 24 35 - education.france@sap.com FORMATION SAP BUSINESSOBJECTS BUSINESS INTELLIGENCE PLATFORM 4.x Du lundi 3 au vendredi 7 juin 2013 http://www.sap.com/france/services/education/newsevents/index.epx 1 Vous êtes clients SAP BusinessObjects

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Transformez vos données en opportunités. avec Microsoft Big Data

Transformez vos données en opportunités. avec Microsoft Big Data Transformez vos données en opportunités avec Microsoft Big Data 1 VOLUME Augmentation du volume de données tous les cinq ans Vélocité x10 4,3 Nombre d appareils connectés par adulte VARIÉTÉ 85% Part des

Plus en détail

Management des SI Informatique Décisionnelle

Management des SI Informatique Décisionnelle 1. Qu'est-ce que la BI? Quels types d'applications et de technologies fait-elle intervenir? Les systèmes dits de business intelligence (ou BI) se composent d'applications et de technologies conçues pour

Plus en détail

White Paper ADVANTYS. Workflow et Gestion de la Performance

White Paper ADVANTYS. Workflow et Gestion de la Performance White Paper Workflow et Gestion de la Performance Présentation L automatisation des process combinée à l informatique décisionnelle (Business Intelligence) offre une nouvelle plateforme de gestion pour

Plus en détail

Faire le grand saut de la virtualisation

Faire le grand saut de la virtualisation LIVRE BLANC : FAIRE LE GRAND SAUT DE LA VIRTUALISATION........................................ Faire le grand saut de la virtualisation Public cible : Directeurs, responsables et administrateurs informatiques

Plus en détail

Utiliser Access ou Excel pour gérer vos données

Utiliser Access ou Excel pour gérer vos données Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Présentation de la solution. HP Storage Essentials : le logiciel de gestion des performances des systèmes de stockage

Présentation de la solution. HP Storage Essentials : le logiciel de gestion des performances des systèmes de stockage Présentation de la solution HP Storage Essentials : le logiciel de gestion des performances des systèmes de stockage Le suivi et la gestion des performances de l'infrastructure de stockage sont la clé

Plus en détail

Livre Blanc. L'utilisation. Transforming Passion into Excellence

Livre Blanc. L'utilisation. Transforming Passion into Excellence Livre Blanc L'utilisation du Chat Une popularité croissante Le développement d'internet a connu une croissance exponentielle ces dix dernières années au point d être aujourd'hui accessible à plus de 3

Plus en détail

Examen professionnel. Informatique, système d information. Réseaux et télécommunications

Examen professionnel. Informatique, système d information. Réseaux et télécommunications CIGpetitecouronne Ingénieurterritorial20132015 Volume2 Sujetdel épreuve Établissementd'unprojetouétude Examenprofessionnel Spécialité Informatique,systèmed information Option Réseauxettélécommunications

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

CA ERwin Modeling Suite Conception de base de données : du concept à la réalité

CA ERwin Modeling Suite Conception de base de données : du concept à la réalité DOSSIER SOLUTIONS : CA ERWIN MODELING SUITE CA ERwin Modeling Suite Conception de base de données : du concept à la réalité CA Database Management CA Database Design & Modeling CA Database Administration

Plus en détail

Extrait du site de l'oseo (ex.anvar) http://www.anvar.fr/projlanc.htm. Reste à déterminer les points incontournables

Extrait du site de l'oseo (ex.anvar) http://www.anvar.fr/projlanc.htm. Reste à déterminer les points incontournables Extrait du site de l'oseo (ex.anvar) http://www.anvar.fr/projlanc.htm Notez que vous trouverez les fiches citées à chaque étape sur le site (Normalement, les liens ont été conservés et fonctionnent) Reste

Plus en détail

Gestion des utilisateurs et Entreprise Etendue

Gestion des utilisateurs et Entreprise Etendue Gestion des utilisateurs et Entreprise Etendue Laurent Ruyssen 6 rue Beaubourg - 75004 PARIS T 1 44 59 93 00 F 1 44 59 93 09 yphise@yphise.com - http://yphise.fr GUEE0009-1 Agenda Entreprise Etendue Mission

Plus en détail

Planification Industrielle & Commerciale. démystifiée. Livre Blanc

Planification Industrielle & Commerciale. démystifiée. Livre Blanc Livre Blanc La Planification industrielle et commerciale (S&OP) démystifiée Intégrer stratégies de vente et efficacité opérationnelle pour une rentabilité maximale Planification Industrielle & Commerciale

Plus en détail

Sybase PowerAMC 16. Guide des nouvelles fonctionnalités générales. www.sybase.fr/poweramc DOCUMENTATION

Sybase PowerAMC 16. Guide des nouvelles fonctionnalités générales. www.sybase.fr/poweramc DOCUMENTATION Sybase PowerAMC 16 Guide des nouvelles fonctionnalités générales DOCUMENTATION 2 2 www.sybase.fr/poweramc A propos de PowerAMC 16 PowerAMC est une solution de modélisation d'entreprise graphique qui prend

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

d e l a s s urance g r â ce a u «C u s t omer

d e l a s s urance g r â ce a u «C u s t omer Siège mondial : 5 Speen Street Framingham, MA 01701 États-Unis P.508.620.5533 F.508.988.6761 www.idc-fi.com Créer de la valeur dans le secteur d e l a s s urance g r â ce a u «C u s t omer Analytics» L

Plus en détail

Norme d'audit suisse: Audit réalisé dans l environnement de la technologie de l information et de la communication (NAS 401)

Norme d'audit suisse: Audit réalisé dans l environnement de la technologie de l information et de la communication (NAS 401) Norme d'audit suisse: Audit réalisé dans l environnement de la technologie de l information et de la communication (NAS 401) "Préface explicative" Chiffre Cette NAS donne des instructions sur un audit

Plus en détail

La gestion des données de référence ou comment exploiter toutes vos informations

La gestion des données de référence ou comment exploiter toutes vos informations La gestion des données de référence ou comment exploiter toutes vos informations La tour de Babel numérique La gestion des données de référence (appelée MDM pour Master Data Management) se veut la réponse

Plus en détail

Les moteurs de progrès

Les moteurs de progrès MANAGEMENT PILOTAGE Les moteurs de progrès Si le management par les processus connaît une certaine réussite, le pilotage et les processus qui lui sont liés restent précaires. Pourtant là aussi, appliquer

Plus en détail

IBM Software Juillet 2013 Livre blanc. DB2 avec BLU Acceleration. Le traitement des requêtes plus vite que jamais grâce à technologie In-memory

IBM Software Juillet 2013 Livre blanc. DB2 avec BLU Acceleration. Le traitement des requêtes plus vite que jamais grâce à technologie In-memory IBM Software Juillet 2013 Livre blanc DB2 avec BLU Acceleration Le traitement des requêtes plus vite que jamais grâce à technologie In-memory 2 Le traitement des requêtes plus vite que jamais grâce à BLU

Plus en détail

plan directeur des systèmes d'information objectif et marche à suivre

plan directeur des systèmes d'information objectif et marche à suivre plan directeur des systèmes d'information objectif et marche à suivre Direction du développement des entreprises et des affaires Préparé par Michel Lapointe Conseiller en gestion Publié par la Direction

Plus en détail

Système de Gestion de Contenus d entreprises

Système de Gestion de Contenus d entreprises Système de Gestion de Contenus d entreprises OUDJOUDI Idir, H.HOCINI Hatem. Centre de développement des technologies avancées Cité 20 Août Baba Hassan Alger Algérie Tél. 0(213)351040, Fax : 0(213)351039

Plus en détail

ERP/PGI : JD EDWARDS ENTERPRISEONE

ERP/PGI : JD EDWARDS ENTERPRISEONE distributeur des solutions ERP/PGI : JD EDWARDS ENTERPRISEONE Module : Comptabilité Générale Les objectifs de la solution : Réagir rapidement au changement. Problème : améliorer la réactivité et la capacité

Plus en détail

données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées

données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées Concevoir une données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées Copyright 2015 Pentaho Corporation. Redistribution autorisée.

Plus en détail

Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP

Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP Microsoft Dynamics AX 2012 n'est pas seulement la dernière version d'un excellent produit. Cette solution représente en fait un véritable

Plus en détail

CONNECTIVITÉ. Options de connectivité de Microsoft Dynamics AX. Microsoft Dynamics AX. Livre blanc

CONNECTIVITÉ. Options de connectivité de Microsoft Dynamics AX. Microsoft Dynamics AX. Livre blanc CONNECTIVITÉ Microsoft Dynamics AX Options de connectivité de Microsoft Dynamics AX Livre blanc Ce document décrit les possibilités offertes par Microsoft Dynamics AX en terme de connectivité et de montée

Plus en détail

Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco

Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco Livre blanc Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco Présentation Ce document examine la prise en charge de la programmabilité sur l'infrastructure axée

Plus en détail

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE L es utilisateurs du décisionnel réclament plus de souplesse. Les approches mixtes, classiques et liées aux Big Data, répondent

Plus en détail

Guide de configuration de SQL Server pour BusinessObjects Planning

Guide de configuration de SQL Server pour BusinessObjects Planning Guide de configuration de SQL Server pour BusinessObjects Planning BusinessObjects Planning XI Release 2 Copyright 2007 Business Objects. Tous droits réservés. Business Objects est propriétaire des brevets

Plus en détail

Instant evolution à l ère du numérique. Faites de la technologie votre atout compétitivité

Instant evolution à l ère du numérique. Faites de la technologie votre atout compétitivité Instant evolution à l ère du numérique Faites de la technologie votre atout compétitivité On sous-estime facilement la distance parcourue en aussi peu de temps, de même que l ampleur des changements qu

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Les dernières tendances IT pour une collaboration mobile sécurisée

Les dernières tendances IT pour une collaboration mobile sécurisée Une étude personnalisée commandée par Cisco Systems Les dernières tendances IT pour une collaboration mobile sécurisée Septembre 2013 Un engouement croissant pour la mobilité au sein des entreprises Le

Plus en détail

L'évolution de VISUAL MESSAGE CENTER Architecture et intégration

L'évolution de VISUAL MESSAGE CENTER Architecture et intégration L'évolution de VISUAL MESSAGE CENTER Architecture et intégration Sommaire Résumé exécutif Base technologique : VISUAL Message Center 2 3 VISUAL Message Center Core Engine VISUAL Message Center Extended

Plus en détail

Cours 10701A - Configuration et gestion de Microsoft SharePoint 2010

Cours 10701A - Configuration et gestion de Microsoft SharePoint 2010 Cours 10701A - Configuration et gestion de Microsoft SharePoint 2010 INTRODUCTION Ce cours apprend aux stagiaires comment installer, configurer et administrer SharePoint, ainsi que gérer et surveiller

Plus en détail