Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop"

Transcription

1 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno Defude Elisabeth Brunet Amin Sakka

2 Sommaire I. Présentation du projet II. Cassandra III. Hadoop IV. Mise en place du prototype V. Difficultés rencontrées 2

3 Présentation du projet Dématérialisation des gestions de documents des entreprises Nécessité de mémoriser les opérations effectuées sur les documents Système de traçabilité Objectif: distribuer le service de traçabilité Technologies envisagées : Cassandra & Hadoop 3

4 Cassandra Base NoSQL Base de données classique: orientée lignes Cassandra: orientée colonnes Adaptée aux évolutions horizontales Elements clés:»keyspace»column»supercolumn»columnfamily 4

5 Cassandra -Column Triplet: Nom, Valeur, Timestamp Exemple avec la notation de JSON: { // this is a column name: " address", value: timestamp:

6 Cassandra - SuperColumn Paire Nom/Valeur Valeur=un ensemble de columns en nombre non limité { // this is a SuperColumn name: "homeaddress", // with an infinite list of Columns value: { // note the keys is the name of the Column street: {name: "street", value: "1234 x street", timestamp: , city: {name: "city", value: "san francisco", timestamp: , zip: {name: "zip", value: "94107", timestamp: , Après simplification: homeaddress: { street: "1234 x street", city: "san francisco", zip: "94107", 6

7 Cassandra - ColumnFamily Contenu des columnfamilies de type standard: infinité de lignes de colomns UserProfile = { // this is a ColumnFamily phatduckk: { // this is the key to this Row inside the CF // now we have an infinite # of columns in this row username: "phatduckk", phone: "(900) ", // end row ieure: { // this is the key to another row in the CF // now we have another infinite # of columns in this row username: "ieure", phone: "(888) " age: "66", gender: "undecided", 7

8 Cassandra En résumé 8

9 { Cassandra Structure de LX Track "Document" (SCF) { RowKey: ApplicationReference { SCKey: OwnerReference { {name:"tuuid" value: TUUID {name: form, value: FingerPrint "Track" (SCF) { RowKey: "Declaration" { SCKey: TUUID { {name: timestamp, value: declarationcontent RowKey: "Document" { SCKey: TUUID { {name: ApplicationReference, value: OwnerReference RowKey: "Fingerprint" { SCKey: TUUID { {name: form, value: FingerPrint "Fingerprint" (SCF) { RowKey: "Document" { SCKey: FingerPrint { {name: ApplicationReference, value: OwnerReference RowKey: "Track" { SCKey: FingePrint { {name: algorithm, value: TUUID 9

10 Hadoop Système de fichiers distribué associé: HDFS Grande tolérance aux fautes Faibles coûts Haut débit d accès aux données Adapté pour les applications qui nécessitent de grands groupes de données Chaque fichier est divisé en bloc de 64 MB par défaut => convient mieux aux fichiers de grande taille Adapté à de grande scalabilité, aux gros clusters 10

11 Hadoop 11

12 Hadoop Gestion des données et des Jobs 12

13 Hadoop Gestion des données et des Jobs 13

14 Hadoop Map Reduce Opération Map: produit une paire clé/valeur intermédiaire pour chaque paire de clé/valeur reçue en entrée la librairie MapReduce groupe toutes les clés intermédiaires associées à la même valeur d entrée et les passe à la fonction Reduce. L'opération Reduce: fusionne les valeurs d'une même clé intermédiaire afin de renvoyer un unique couple clé intermédiaire/valeur en sortie. Exemple classique: WordCount 14

15 Test : insertion dans Cassandra Insertion massive de données dans Cassandra 5 machines : insertions Problème de flush sur le disque 15

16 Mise en place de l architecture Hadoop/Cassandra Cassandra et Hadoop mis en place individuellement Objectif : interroger Cassandra via Hadoop Recherche de traces Récupération massives de méta-données Echec : problème de compatibilité? 16

17 Difficultés rencontrées Technologies nouvelles encore en développement Peu de documentation Encore des problèmes de compatibilité Nécessite un matériel performant Possibilité de s orienter vers Hbase : plus adapté à Hadoop 17

18 Conclusion Des technologies au fort potentiel Des connaissances précieuses Maitriser la configuration est primordiale Un peu de frustration : échec de la mise en place du prototype Majorité du temps passée à configurer Limités par le matériel 18

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants

Plus en détail

Les bases NoSQL et Python. Youenn Boussard

Les bases NoSQL et Python. Youenn Boussard Les bases NoSQL et Python Youenn Boussard Les bases de données Avant 1960 : organisation classique sous forme de fichier 1960 : 1er base de donnée : militaire, hiérarchique, sous forme d'arbre 1970 : Théorie

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

FORMATION HADOOP Administrateur pour Hadoop (Apache)

FORMATION HADOOP Administrateur pour Hadoop (Apache) FORMATION HADOOP Administrateur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

NoSQL La fin du relationnel? Michael Bailly

NoSQL La fin du relationnel? Michael Bailly NoSQL La fin du relationnel? Michael Bailly RMLL 2011 Raison #1 RDBMS don't are hard to scale Mais aussi... Dénormalisation Mise en cache Moteurs d'indexation (Solr, Sphinx) Files d'attentes (Gearman,

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

OBM : The Big Rewrite. Raphaël Rougeron Expert technique rrougeron@linagora.com

OBM : The Big Rewrite. Raphaël Rougeron Expert technique rrougeron@linagora.com OBM : The Big Rewrite Raphaël Rougeron Expert technique rrougeron@linagora.com Qu'est-ce qu'obm? Qu'est-ce qu'obm? Un groupware (agenda, messagerie, contacts) Une solution «mobile» compatible avec de nombreux

Plus en détail

Julien Nauroy - Direction Informatique

Julien Nauroy - Direction Informatique INTRODUCTION À ET Julien Nauroy - Direction Informatique http://www.informatique-scientifique.u-psud.fr Hadoop : Quel usage? J ai un ensemble de données assez grand Disons quelques To J ai des calculs

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData NoSql Principes Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData Les SGBD NoSql partagés ne peuvent satisfaire que 2 critères au plus NoSql Les transactions

Plus en détail

NoSQL Faut-il franchir le pas?

NoSQL Faut-il franchir le pas? NoSQL Faut-il franchir le pas? Guillaume HARRY Journées rbdd Octobre 2015 Sommaire 1. Evolution des bases de données 2. Le mouvement NoSQL 3. Les grandes familles du NoSQL 4. Aller ou non vers le NoSQL?

Plus en détail

Rapport de projet : Interrogation de données hétérogènes.

Rapport de projet : Interrogation de données hétérogènes. Université Montpellier II Sciences et Techniques GMIN332 Gestion de Données Complexes, Master 2 Informatique 2013-2014 Rapport de projet : Interrogation de données hétérogènes. Otmane Nkaira Étudiant en

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Gestion de gros volumes de données RDF

Gestion de gros volumes de données RDF LIPADE Université Paris Descartes June 23, 2014 Sommaire 1 2 3 4 Contexte 1 Augmentation considérable des données du Web, RDF 2 Données provenant de multiple sources autonomes, donc 3 Hétérogènes : sémantique

Plus en détail

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main CODEL : conception et développement d applications d entreprise à large échelle TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main Jonathan Lejeune Contexte Le modèle

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Monitoring du système de stockage de données du CERN

Monitoring du système de stockage de données du CERN Monitoring du système de stockage de données du CERN Stage réalisé de Mars à Août 2013 Université Lille 1 Spécialisation IAGL Ingénierie et Architecture des Grands Logiciels Manuel SERVAIS Superviseurs

Plus en détail

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main PSIA :Plates-formes pour les systèmes informatiques avancés TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main Jonathan Lejeune, Julien Sopena Contexte Le modèle MapReduce

Plus en détail

4. Gestion des données urbaines dans les nuages informatiques

4. Gestion des données urbaines dans les nuages informatiques 4. Gestion des données urbaines dans les nuages informatiques Brève histoire des nuages informatiques Modèles de service et de déploiement Technologie clé : la virtualisation IaaS : les points de vue utilisateur

Plus en détail

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL Module MLBDA Master Informatique Spécialité DAC Cours 10 NoSQL Systèmes NoSQL (not only SQL) Systèmes qui abandonnent certaines propriétés des SGBDR (one size does not fit all): Le langage d interrogation

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Sauvegarde des profils de connexion et des options depuis une installation existante Sauvegarde des profils de connexion

Sauvegarde des profils de connexion et des options depuis une installation existante Sauvegarde des profils de connexion DEPLOYER LES PROFILS DE CONNEXION ET LES OPTIONS LORS D UNE NOUVELLE INSTALLATION DE SAS ENTERPRISE GUIDE 5.1 Inclus dans la plate-forme décisionnelle SAS 9.3, SAS Enterprise Guide 5.1 nécessite de définir

Plus en détail

Certificat Big Data - Master MAthématiques

Certificat Big Data - Master MAthématiques 1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia

Plus en détail

Documentation Talend. Charly Riviere CDG35

Documentation Talend. Charly Riviere CDG35 Documentation Talend Charly Riviere CDG35 1. Présentation générale Talend est un ETL pour "Extract Transform Load". Comme son nom l'indique il permet d'extraire des données pour ensuite les transformer

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Le NoSQL - Cassandra

Le NoSQL - Cassandra Le NoSQL - Cassandra Thèse Professionnelle Xavier MALETRAS 27/05/2012 Ce document présente la technologie NoSQL au travers de l utilisation du projet Cassandra. Il présente des situations ainsi que des

Plus en détail

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives

Plus en détail

Systèmes de fichiers distribués : comparaison de GlusterFS, MooseFS et Ceph avec déploiement sur la grille de calcul Grid 5000.

Systèmes de fichiers distribués : comparaison de GlusterFS, MooseFS et Ceph avec déploiement sur la grille de calcul Grid 5000. : comparaison de, et avec déploiement sur la grille de calcul Grid 5000. JF. Garcia, F. Lévigne, M. Douheret, V. Claudel 30 mars 2011 1/34 Table des Matières 1 2 3 4 5 6 7 1/34 Présentation du sujet Présentation

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Hadoop / Big Data. Benjamin Renaut MBDS 2014-2015

Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015 Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 1 - Correction Méthodologie Map/Reduce - programmation Hadoop. Rappel 1 La première partie du TP consistait à mettre en

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

PHP OO et Pear DB. Olivier Perrin IUT Nancy-Charlemagne Département Informatique Université Nancy 2. Olivier.Perrin@loria.fr

PHP OO et Pear DB. Olivier Perrin IUT Nancy-Charlemagne Département Informatique Université Nancy 2. Olivier.Perrin@loria.fr PHP OO et Pear DB Olivier Perrin IUT Nancy-Charlemagne Département Informatique Université Nancy 2 Olivier.Perrin@loria.fr Classes et objets en PHP Une classe PHP regroupe des variables d instance, représentés

Plus en détail

IFT630 Processus concurrents et parallélisme. Projet final Rapport. Présenté à Gabriel Girard

IFT630 Processus concurrents et parallélisme. Projet final Rapport. Présenté à Gabriel Girard IFT630 Processus concurrents et parallélisme Projet final Rapport Présenté à Gabriel Girard par Alexandre Tremblay (06 805 200) Pierre-François Laquerre (05 729 544) 15 avril 2008 Introduction Après plusieurs

Plus en détail

Introduction aux bases de données NoSQL

Introduction aux bases de données NoSQL Introduction aux bases de données NoSQL Khaled Tannir ets@khaledtannir.net Montréal - 23 Juillet 2015 Qui suis-je? Khaled TANNIR Big Data Architect Lead 20 ans d expérience ets@khaledtannir.net @khaled_tannir

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

Installation de Linux sur une grappe de PC

Installation de Linux sur une grappe de PC Installation de Linux sur une grappe de PC Simon Derr ID-IMAG Équipe Apache Grappes 2001 Plan Problématique Diffusion des données Automatisation de l installation Notes sur les performances Conclusion

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

L optimiser ORACLE. L optimiser ORACLE suit une approche classique:

L optimiser ORACLE. L optimiser ORACLE suit une approche classique: L optimiser ORACLE L optimiser ORACLE suit une approche classique: Génération de plusieurs plans d exécution. Estimation du coût de chaque plan généré. Choix du meilleur et exécution. Tout ceci est automatique,

Plus en détail

Dossier Technique. Détail des modifications apportées à GRR. Détail des modifications apportées à GRR Le 17/07/2008. Page 1/10

Dossier Technique. Détail des modifications apportées à GRR. Détail des modifications apportées à GRR Le 17/07/2008. Page 1/10 Dossier Technique Page 1/10 Sommaire : 1. REPONSE TECHNIQUE A LA DEMANDE 3 1.1. Prise en compte de la dernière version de phpcas 3 1.2. Gestion de la connexion à GRR 3 1.2.1. Récupération des attributs

Plus en détail

Introduction au Massive Data

Introduction au Massive Data Introduction au Massive Data Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

Network Efficiency Monitoring - version 2

Network Efficiency Monitoring - version 2 École Polytechnique de l Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr Département Informatique 5 e année 2012-2013 Projet de fin

Plus en détail

Catalogue des stages Ercom 2013

Catalogue des stages Ercom 2013 Catalogue des stages Ercom 2013 Optimisations sur Modem LTE Poste basé à : Caen (14) Analyse et optimisation des performances des traitements réalisés dans un modem LTE. - Profiling et détermination des

Plus en détail

Big Data, Hadoop, MapReduce,...

Big Data, Hadoop, MapReduce,... Big Data, Hadoop, MapReduce,... J. Bigot - A. Richou 21 septembre 2017 1 Big Data 2 Hadoop 3 TP R Table des matières 1 Big Data 2 Hadoop 3 TP R Qu est-ce que le Big Data? «Le big data, littéralement «grosses

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

KARMA Le système de Revenue Management d'air France KLM avec Hadoop

KARMA Le système de Revenue Management d'air France KLM avec Hadoop KARMA Le système de Revenue Management d'air France KLM avec Hadoop Conférence BIG DATA - Master MBDS Université de Nice Sophia Antipolis 16 Décembre 2014 Martial AYAS maayas@airfrance.fr 2 Agenda 1. Présentation

Plus en détail

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager Photobox Amazon RedShift Maxime Mézin Data Foundation Manager Présentation de Photobox Leader Européen du tirage et du livre photo 25 millions de clients 17 pays, dernière ouverture il y a 6 mois en Australie

Plus en détail

Installation SharePoint Foundation 2013 en mode Stand-Alone

Installation SharePoint Foundation 2013 en mode Stand-Alone Installation SharePoint Foundation 2013 en mode Stand-Alone Nous avons pu voir dans un précédent article comment effectuer l installation de SharePoint sur Windows 2012 en mode Complete : Installation

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Scalable Distributed Reasoning using MapReduce

Scalable Distributed Reasoning using MapReduce Scalable Distributed Reasoning using MapReduce Jacopo Urbani, Spyros Kotoulas, Eyal Oren, et Frank van Harmelen Department of Computer Science, Vrije Universiteit Amsterdam, the Netherlands International

Plus en détail

4 Exemples de problèmes MapReduce incrémentaux

4 Exemples de problèmes MapReduce incrémentaux 4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank

Plus en détail

COMPTE RENDU D ACTIVITE ACTIVITE N 4. Identification (objectif) de l'activité. Contexte dans lequel le projet s'inscrit

COMPTE RENDU D ACTIVITE ACTIVITE N 4. Identification (objectif) de l'activité. Contexte dans lequel le projet s'inscrit BTS INFORMATIQUE DE GESTION Option Administrateur de réseaux Développeur d applications COMPTE RENDU D ACTIVITE ACTIVITE N 4 Nom et Prénom : BUISSON Pierre-Adrien EPSI Lyon 107 rue de Marseille 69 007

Plus en détail

MongoDB. Objectif Découvrir l'aggrégation des requêtes, l'indexation, la réplication et l'autosharding sur MongoDB

MongoDB. Objectif Découvrir l'aggrégation des requêtes, l'indexation, la réplication et l'autosharding sur MongoDB ESIPE IR3 - IG3 Cloud Computing #3 MongoDB Objectif Découvrir l'aggrégation des requêtes, l'indexation, la réplication et l'autosharding sur MongoDB Révisions Téléchargez depuis le site le fichier ex.tgz.

Plus en détail

Soutenance de projet. Mise en place d une solution de reporting

Soutenance de projet. Mise en place d une solution de reporting Soutenance de projet Mise en place d une solution de reporting SOMMAIRE Présentation de l entreprise Présentation du projet Étude préalable Réalisation Difficultés rencontrées Conclusion 2 Présentation

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

De 20 000 à 4 millions. Khanh Tuong Maudoux @jetoile

De 20 000 à 4 millions. Khanh Tuong Maudoux @jetoile De 20 000 à 4 millions Khanh Tuong Maudoux @jetoile 2 Qui suis- Khanh Tuong Maudoux Développeur Java indépendant blog : http://blog.jetoile.fr @jetoile khanh.maudoux@jetoile.fr 3 Contexte Collecteur Stockage

Plus en détail

Guide de commande Commander un certificat d identité numérique PersonalSign

Guide de commande Commander un certificat d identité numérique PersonalSign Guide de commande Commander un certificat d identité numérique PersonalSign 1 SOMMAIRE Commander un certificat PersonalSign 2 Pro (pour individus dans une organisation) Commander un certificat PersonalSign

Plus en détail

Implémentation et Benchmark. d une régression linéaire en RMR2

Implémentation et Benchmark. d une régression linéaire en RMR2 Add intelligence to data Anne Gayet Directrice Datamining Implémentation et Benchmark d une régression linéaire en RMR2 16 janvier 2014 Rendez-vous SFdS: : Méthodes et logiciels Données massives (big data)

Plus en détail

Thème Image - TP1 - Images au format bitmap

Thème Image - TP1 - Images au format bitmap Université Joseph Fourier DLST UE MAP110/120 Année 2013-14 Thème Image - TP1 - Images au format bitmap Compte-ru Il vous est demandé de rédiger un compte-ru pour ce TP. Ouvrez en parallèle un document

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 CONTACTER VOTRE SUPPORT 3 3 ESPACE DE GESTION DES CARTES 4 4 CONFIGURER UNE CARTE 5

SOMMAIRE 1 INTRODUCTION 3 2 CONTACTER VOTRE SUPPORT 3 3 ESPACE DE GESTION DES CARTES 4 4 CONFIGURER UNE CARTE 5 SOMMAIRE 1 INTRODUCTION 3 2 CONTACTER VOTRE SUPPORT 3 3 ESPACE DE GESTION DES CARTES 4 4 CONFIGURER UNE CARTE 5 4.1 Ajouter une carte 5 4.1.1 Détails : nom, taille, marqueur 5 4.1.2 Ajout d un marqueur

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

4D v11 SQL Release 5 (11.5) ADDENDUM

4D v11 SQL Release 5 (11.5) ADDENDUM ADDENDUM Bienvenue dans la release 5 de 4D v11 SQL. Ce document présente les nouveautés et modifications apportées à cette nouvelle version du programme. Prise en charge de nouvelles plates-formes La release

Plus en détail

«Fast And Furious Decision Tree Induction»

«Fast And Furious Decision Tree Induction» «Fast And Furious Decision Tree Induction» Manuel Utilisateur 4 ème année Département Informatique INSA Rennes Sommaire I. INTRODUCTION... 3 II. INSTALLATION... 3 1. Hadoop... 3 2. Fast And Furious Decision

Plus en détail

ULCO-L3Info-Projets-CM3

ULCO-L3Info-Projets-CM3 ULCO-L3Info-Projets-CM3 Arnaud Lewandowski, Eric Ramat, Julien Dehos Université du Littoral Côte d Opale 18 juin 2015 A Lewandowski, E Ramat, J Dehos ULCO-L3Info-Projets-CM3 1/20 Sommaire 1 Dernières étapes

Plus en détail

Une Plateforme ETL parallèle et distribuée pour l intégration de données massives

Une Plateforme ETL parallèle et distribuée pour l intégration de données massives Une Plateforme ETL parallèle et distribuée pour l intégration de données massives Mahfoud Bala, Oussama Mokeddem, Omar Boussaid, Zaia Alimazighi LRDSI, Université Saad Dahleb, Blida 1, Algérie {mahfoud.bala,

Plus en détail

XML et Bases de données. XMLType Oracle XML DB

XML et Bases de données. XMLType Oracle XML DB Oracle XML DB Oracle XML DB Depuis la version 9i et de façon enrichie dans la version 10g, Oracle propose des outils pour gérer des documents XML Depuis la 10g il n'y a plus d'extraction car auparavant

Plus en détail

Détection d'intrusions en environnement haute performance

Détection d'intrusions en environnement haute performance Symposium sur la Sécurité des Technologies de l'information et des Communications '05 Détection d'intrusions en environnement haute performance Clusters HPC Fabrice Gadaud (fabrice.gadaud@cea.fr) 1 Sommaire

Plus en détail

http://blog.khaledtannir.net

http://blog.khaledtannir.net Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net these@khaledtannir.net 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE

Plus en détail

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique Mémoire de fin d études Pour l obtention du diplôme de Master en Informatique

Plus en détail

Architecture des calculateurs

Architecture des calculateurs Chapitre 1 Architecture des calculateurs 1.1 Introduction Ce paragraphe n a pas la prétention de présenter un cours d informatique. D une manière générale, seuls les caractéristiques architecturales qui

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

MapReduce pour les graphes

MapReduce pour les graphes MapReduce pour les graphes Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Spark 2 Spark avec des graphes 3 Composante Connexe 4 PageRank 2/34 Introduction

Plus en détail

Procédure de Mise à Jour du Service Déposant

Procédure de Mise à Jour du Service Déposant Procédure de Mise à Jour du Service Déposant Version 1.4 Dernière mise à jour : 16/08/2013 Bourse de Luxembourg Décembre 2011 Sommaire 1 PROCEDURE DE MISE A JOUR 3 1.1 Mise en garde 3 1.2 Sauvegarde de

Plus en détail

Sécuristation du Cloud

Sécuristation du Cloud Schémas de recherche sur données chiffrées avancés Laboratoire de Cryptologie Thales Communications & Security 9 Avril 215 9/4/215 1 / 75 Contexte Introduction Contexte Objectif Applications Aujourd hui

Plus en détail

Synthèse d étude et projets d'intergiciels. Base NOSQL

Synthèse d étude et projets d'intergiciels. Base NOSQL Synthèse d étude et projets d'intergiciels Base NOSQL octera [AT] octera [DOT] info Résumé Devant le besoin grandissant en performance et en disponibilité des services/sites possédant un fort trafic, un

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Introduction SIO Utilisation Conclusion Cluster au SIO

Introduction SIO Utilisation Conclusion Cluster au SIO Cluster au SIO ALBERT SHIH 1 1 Observatoire de Paris - Meudon 21 février 2008 Type de «machines» de calcul Mémoire partagée Tous les processeurs accèdent à toute la mémoire avec un même espace d adressage.

Plus en détail

ALAIN BENSOUSSAN SELAS

ALAIN BENSOUSSAN SELAS OUTIL CIL MANUEL UTILISATEUR 05 06 2015 V.0.1 Sommaire analytique 1. Installation de l application 3 1.1 Présentation technique de l architecture de l application CIL 3 1.2 Procédure d installation de

Plus en détail