TRAVAUX DE RECHERCHE DANS LE

Dimension: px
Commencer à balayer dès la page:

Download "TRAVAUX DE RECHERCHE DANS LE"

Transcription

1 TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

2 FREMIT: FÉDÉRATION DE RECHERCHE MATHÉMATIQUE & INFORMATIQUE Thèmes fédérateurs Imagerie médicale Fouille de masses de données Mathématiques discrètes Systèmes complexes et calculs haute performance Informatique, Philosophie, Mathématiques 2

3 ACTIVITÉS DE LA FÉDÉRATION Projets collaboratifs Co-encadrement d étudiants (stages / thèses) Recherches communes Rencontres Séminaires Classification Imagerie médicale Visualisation Big data Open data 3

4 BIG DATA 4

5 DIGITAL DATA Digital Analogique 1% 3% 6% 25% 99% 97% 75% 94% Exabytes NOTE: Numbers may not sum to rounding Hilbert and Lopez, «The world s technological capacity to store, communicate, and compute information», Science, 2011 J. Manyika et al., Big data, the next frontier for innovation, competition, and productivity, McKinsey Global Institute,

6 TYPES Insurance Banking Communication and media Construction Education Gouvernement Health care Video Image Audio Texte/ Numbers Pénétration Low Medium High SOURCE: McKinsey Global Institute analysis J. Manyika et al., Big data, the next frontier for innovation, competition, and productivity, McKinsey Global Institute,

7 BIG DATA FROM INTERNET /WEB 2.0 En 60 secondes 70 nouveaux domaines 168 millions de mèls requêtes. R. Kalakota,

8 SOCIAL NETWORK Facebook users: (march 2012) ½ via mobile in France (penetration rate 38%) 8

9 BIG DATA Data which size is too large and complex to be treated (harversted, stored, analysed, spreaded) by usual system VVV : Volume, Velocity, Variety, Veracity Part of every sector, collected or supplied Sensors (cars, engines, meters, ) Traffic information on any network (roads, telecommunication, internet, water ) Internet: web and web 2.0 ( s, social networks, ) Science: medecine, astronomy, physics, Part of the global economy: many social and economic issues Traditional and new techniques and technologies 9

10 MANIPULATION DES BIG DATA TECHNIQUES ET TECHNOLOGIES Agréger, manipuler, analyser, visualiser Multidisciplinaire: informatique, statistique, mathématique appliquées, économie Techniques Analyse exploratoire et visualisation Apprentissage Calcul intensif Technologies Data warehouse / data smart MapReduce /NOSQL Cassandra/Hadoop Cloud computing 10

11 BIG DATA & FOUILLE Mathématiques Equipe ESP: recherches en Statistiques Modélisation aléatoire Biostatistique et Statistique Médicale Statistique fonctionnelle et Probabilités Matrices Aléatoires et Modèles Discrets Calcul stochastique Inégalités fonctionnelles et équations d évolution 11

12 BIG DATA & FOUILLE 12 J.-M. Loubès

13 J.-M. Loubès 13

14 J.-M. Loubès 14

15 BIG DATA & FOUILLE MASSE DE DONNÉES ET CALCUL 15 N. Aussenac

16 MASSE DE DONNÉES ET CALCUL Informatique Equipe APO Optimisation et Algèbre linéaire creuses 16 N. Aussenac

17 MASSE DE DONNÉES ET CALCUL Informatique Equipe VORTEX 17 N. Aussenac

18 MASSE DE DONNÉES ET CALCUL Informatique Equipe SIG Indexation de gros volumes de documents 1996 : 500 Mb 1998 : 2 Gb Puis : 200 Gb 2014 : 25 Tb Extraction d information Elicitation de structure ; granularité de l information Extraction de méta-données 18

19 MASSE DE DONNÉES ET CALCUL Informatique Equipe SIG Exploration d information Entrepôts documentaires et structure de data Warehouse Fouille de données Information sociale, médicale, journaux, web. 19

20 APPLICATIONS DU BIG DATA Veille scientifique et technologique Analyse de la concurrence Analyse des tendances Segmentation des clients et micro-segmentation Préférences des utilisateurs (réseaux sociaux) Analyse d informations multi-sources Réaction rapide aux pannes, à l image, aux effets Analyse d opinion Suivi de l identité numérique Suivi de produits, médicaments Détection de comportements atypiques Signaux faibles 20

21 CHAINE D ANALYSE GÉNÉRALE 5 Résultats d'analyse Sélection Informations Filtrage Informations de d'information sources Extraction brutes Structures brutes d'informations Croisements initiales Première forme Analyse et visualisation Collecte (profil utilisateur collectées d'informations filtrées et Structure / stockées Homogénéisation domaine) d'analyse d'information de connaissances (entrepôts) Filtres (logique) d'extraction Dictionnaires 21

22 CHAINE D ANALYSE GÉNÉRALE Informations pour adapter - les méthodes d'analyse - les filtres d'extraction - les croisements - les requêtes 22

23 CHAINE D ANALYSE GÉNÉRALE Représentation de l information sous forme matricielle (table individus/variables ; table de contingences) 23

24 EXTRACTION D INFORMATION Représentation réduite d ensemble d information Tables avec agrégation CDS CEA contini, t pakull, m neumann, d vigroux, l Star Variable Star Peculiar Star Galaxy Cluster of Galaxy Galaxy Nucleus CDS CEA Star Variable Star 8 7 Peculiar Star 12 5 Galaxy Cluster of Galaxy 7 7 Galaxy Nucleus Hiérarchie (Généricité/Spécificité) Star Variable star Peculiar star 24

25 ANALYSE DE FRÉQUENCE Analyse de fréquence Application: acteurs importants, évolution, relativité [Dousset, 2012] 25

26 ANALYSE DE DONNÉES MULTIDIMENSIONNELLES Classification / catégorisation Regrouper des objets qui se ressemblent Associer des objets à des catégories prédéfinies ou apprises 26 [Baccini et al., 2011]

27 ANALYSE DE DONNÉES MULTIDIMENSIONNELLES Analyse factorielle 27 [Baccini et al., 2011]

28 28 Tétralogie

29 ANALYSE DE DONNÉES MULTIDIMENSIONNELLES Analyse factorielle 29 [Dejean et al., 2013]

30 ANALYSE DE DONNÉES MULTIDIMENSIONNELLES 30 [Dejean et al., 2013]

31 GRAPHES ET RÉSEAUX DE COLLABORATION Réseaux géographique et thématique 31 [Mothe et al., 2005]

32 ENJEUX By 2018, the United States alone could face a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 million managers and analysts with the knowhow to use the analysis of big data to make effective decisions the McKinsey Global Institute, juin 2011, Big data: The next frontier for innovation, competition, and productivity 32

33 FREINS Hétérogénéité des informations Formats (article vs tweet vs vidéo) Fiabilité (objectif, qualité, ) Technique et technologique Matériel (capacité, sécurité) Logiciel Organisationnel Compétences 33

Masses de données et calcul : à l IRIT. 8 octobre 2013

Masses de données et calcul : à l IRIT. 8 octobre 2013 Masses de données et calcul : la recherche en lien avec les Big Data à l IRIT 8 octobre 2013 08/10/2013 1 L IRIT en qq chiffres 700 personnes sur tous les sites toulousains 5 tutelles 7 thèmes et 21 équipes

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d

Plus en détail

Synthèse et visualisation d'informations stratégiques utiles à la gouvernance des entreprises

Synthèse et visualisation d'informations stratégiques utiles à la gouvernance des entreprises Synthèse et visualisation d'informations stratégiques utiles à la gouvernance des entreprises Bernard DOUSSET 02/07/2013 dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse

Plus en détail

De la veille à. économique. l intelligence. le Data Mining et le Text Mining. Bernard DOUSSET. dousset@irit.fr http://atlas.irit.

De la veille à. économique. l intelligence. le Data Mining et le Text Mining. Bernard DOUSSET. dousset@irit.fr http://atlas.irit. De la veille à l intelligence économique : le Data Mining et le Text Mining Bernard DOUSSET dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

Institut français des sciences et technologies des transports, de l aménagement

Institut français des sciences et technologies des transports, de l aménagement Institut français des sciences et technologies des transports, de l aménagement et des réseaux Session 3 Big Data and IT in Transport: Applications, Implications, Limitations Jacques Ehrlich/IFSTTAR h/ifsttar

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

BIG DATA et EDISCOVERY

BIG DATA et EDISCOVERY KROLLONTRACK / ELECTRONIC DISCOVERY & COMPUTER FORENSICS BIG DATA et EDISCOVERY - Etude de cas : le traitement des masses de données de l entreprise dans un contexte économique et judiciaire - Case study:

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Les entreprises de 2020 seront dirigées par les Data Scientists

Les entreprises de 2020 seront dirigées par les Data Scientists Laura Roguet, Meryem Ben Mouaz ESCP Europe 24 ans Les entreprises de 2020 seront dirigées par les Data Scientists I «Sexiest job of the century», «Les nouvelles rock stars de l'it», l engouement récent

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009 Panorama des outils de veille Myriel Brouland I-Expo 17 Juin 2009 1 La veille s est affirmée en tant que discipline : Elle s inscrit dans un démarche d optimisation du management de l information au sein

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

OPTIONS SSSR. Réplication et cohérence de données 1

OPTIONS SSSR. Réplication et cohérence de données 1 OPTIONS SSSR Réplication et cohérence de données 1 Options SSSR Mixtes "Recherche" et "Professionnel" Big Data Réplication de données Malware Systèmes dynamiques Systèmes communicant contraints Plutôt

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac. CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.ma) N.B. : Les étudiants qui ont déposé leurs demandes d'inscription

Plus en détail

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA Ladjel BELLATRECHE bellatreche@ensma.fr http://www.lias lab.fr/members/bellatreche Les déterminants de la motivation selon Rolland Viau Perception

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

La problématique de la formation et du recrutement des analystes. mars 2012

La problématique de la formation et du recrutement des analystes. mars 2012 Congrès Big Data Paris La problématique de la formation et du recrutement des analystes mars 2012 1 Le Big Data au sein du GENES : un ensemble de grandes écoles d ingénieur, de laboratoires de recherche

Plus en détail

SAP Social Media Analytics by NetBase. Dominique Blanc Business Architect SAP Thomas Dutreive Student Diploma / Consulting Sales SAP

SAP Social Media Analytics by NetBase. Dominique Blanc Business Architect SAP Thomas Dutreive Student Diploma / Consulting Sales SAP SAP Social Media Analytics by NetBase Dominique Blanc Business Architect SAP Thomas Dutreive Student Diploma / Consulting Sales SAP 500 millions de tweets par jour 1,184 millions d'utilisateurs 100 millions

Plus en détail

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Gestion collaborative de documents

Gestion collaborative de documents Gestion collaborative de documents ANT box, le logiciel qui simplifie votre GED Les organisations (entreprises, collectivités, associations...) génèrent chaque jour des millions de documents, e-mails,

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business L IT, l Immatérielle Transformation Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business PLUS D INNOVATION, PLUS DE SIMPLICITE ET UN MARCHE IT SOUS TENSION Des

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

UTILISATION DE LA PLATEFORME WEB D ANALYSE DE DONNÉES GALAXY

UTILISATION DE LA PLATEFORME WEB D ANALYSE DE DONNÉES GALAXY UTILISATION DE LA PLATEFORME WEB D ANALYSE DE DONNÉES GALAXY Yvan Le Bras yvan.le_bras@irisa.fr Cyril Monjeaud, Mathieu Bahin, Claudia Hériveau, Olivier Quenez, Olivier Sallou, Aurélien Roult, Olivier

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

PANORAMA DES MENACES ET RISQUES POUR LE SI

PANORAMA DES MENACES ET RISQUES POUR LE SI PANORAMA DES MENACES ET RISQUES POUR LE SI LEXSI > CNIS EVENT CNIS EVENT 05/11/2013 SOMMAIRE Big Data Cloud Computing Virtualisation 2 BIG DATA Définition Chaque jour, 2,5 trillions d octets de données

Plus en détail

Business Intelligence simple et efficace avec Excel et PowerPivot

Business Intelligence simple et efficace avec Excel et PowerPivot Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

ECOLE SUPERIEURE DE COMMERCE D ALGER

ECOLE SUPERIEURE DE COMMERCE D ALGER MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE SUPERIEURE DE COMMERCE D ALGER PROGRAMME DE LICENCE EN SCIENCES COMMERCIALES ET FINANCIERES OPTION : FINANCE ( applicable à partir

Plus en détail

ISTEX, vers des services innovants d accès à la connaissance

ISTEX, vers des services innovants d accès à la connaissance ISTEX, vers des services innovants d accès à la connaissance Synthèse rédigée par Raymond Bérard, directeur de l ABES, à partir du dossier de candidature d ISTEX aux Initiatives d excellence et des réunions

Plus en détail

1 INFORMATION - INFORMATIQUE. 11 Systèmes d'information gestion des connaissances, knowledge management

1 INFORMATION - INFORMATIQUE. 11 Systèmes d'information gestion des connaissances, knowledge management p.1 1 INFORMATION - INFORMATIQUE 10 Sciences cognitives aspects fondamentaux 11 Systèmes d'information gestion des connaissances, knowledge management 110 Intelligence économique veille économique, stratégique,

Plus en détail

Méthode d extraction des signaux faibles

Méthode d extraction des signaux faibles Méthode d extraction des signaux faibles Cristelle ROUX GFI Bénélux, Luxembourg cristelle.roux@gfi.be 1. Introduction Au début d une analyse stratégique, la première question posée est très souvent la

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

OBJECTIFS. Une démarche E-science

OBJECTIFS. Une démarche E-science E-BIOGENOUEST Programme fédérateur Biogenouest co-financé par les Régions Bretagne et Pays de la Loire 24 mois Lancé depuis Mai 2012 Porteur : Olivier Collin (IRISA) Animateur : Yvan Le Bras (IRISA) OBJECTIFS

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Centre d excellence GIS Intégrer la dimension géographique au cœur de votre SI

Centre d excellence GIS Intégrer la dimension géographique au cœur de votre SI Centre d excellence GIS Intégrer la dimension géographique au cœur de votre SI Cantine Numérique, Open coffee Brest le 6 novembre 2013 David Talabardon david.talabardon@capgemini.com 06 83 58 05 51 Les

Plus en détail

La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA Jean-Daniel.Fekete@inria.fr www.aviz.

La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA Jean-Daniel.Fekete@inria.fr www.aviz. La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA Jean-Daniel.Fekete@inria.fr www.aviz.fr Quelques exemples 1 La campagne de Russie de Napoléon

Plus en détail

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD Mo3: Big Data, Web & (Cyber)security Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD 23/04/2013 Dassault Systèmes EXALEAD «Information Intelligence» Search & Discovery Entreprise Web «ii»

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues Maud Ehrmann Joint Research Centre Ispra, Italie. Guillaume Jacquet Xerox

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS

Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS 1er semestre UE1-01 E Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS Introduction au système SAS 25,5

Plus en détail

Poursuite d étude après un IUT STID : l exemple du Cursus de Master en Ingénierie Statistique et Informatique Décisionnelle de Toulouse

Poursuite d étude après un IUT STID : l exemple du Cursus de Master en Ingénierie Statistique et Informatique Décisionnelle de Toulouse Poursuite d étude après un IUT STID : l exemple du Cursus de Master en Ingénierie Statistique et Informatique Décisionnelle de Toulouse Cécile Chouquet 1 & Aurélien Garivier 2 Institut de Mathématiques

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

GISAfrica First phase closure meeting East African Pole. SIGAfrique Réunion de clôture de la première phase Pôle Afrique de l est

GISAfrica First phase closure meeting East African Pole. SIGAfrique Réunion de clôture de la première phase Pôle Afrique de l est GISAfrica First phase closure meeting East African Pole SIGAfrique Réunion de clôture de la première phase Pôle Afrique de l est Ethiopia MAURITANIE MALI Kenya SENEGAL GUINEE Ouagadougou BURKINA FASO NIGER

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Bigdata et Web sémantique. les données + l intelligence= la solution

Bigdata et Web sémantique. les données + l intelligence= la solution Bigdata et Web sémantique les données + l intelligence= la solution 131214 1 big data et Web sémantique deux notions bien différentes et pourtant... (sable et silicium). «bigdata» ce n est pas que des

Plus en détail

CONTEC CO., LTD. Novembre 2010

CONTEC CO., LTD. Novembre 2010 La gamme CONTEC CONTEC CO., LTD. Novembre 2010 1 Agenda Introduction Data acquisition and control Data Communication Expansion chassis and accessory Distributed I/O and media converter Stainless steel

Plus en détail

Journées pédagogiques SIF. 23 juin 2015 au CNAM

Journées pédagogiques SIF. 23 juin 2015 au CNAM Journées pédagogiques SIF 23 juin 2015 au CNAM Apports de l informatique aux SHS et réciproquement Nathalie Denos - Univ. Grenoble Alpes Informatique et SHS : le cas du traitement de données massives données

Plus en détail

XtremWeb-HEP 8.0.0. Interconnecting jobs over DG. Virtualization over DG. Oleg Lodygensky Laboratoire de l Accélérateur Linéaire

XtremWeb-HEP 8.0.0. Interconnecting jobs over DG. Virtualization over DG. Oleg Lodygensky Laboratoire de l Accélérateur Linéaire XtremWeb-HEP 8.0.0 Interconnecting jobs over DG Virtualization over DG Oleg Lodygensky Objectives 1.Deploy Virtual Machines in XtremWeb-HEP desktop grid to: protect volunteer resources generalize «pilot

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10

La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10 La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10 Philippe Saadé psaade@picviz.com 1. Une approche possible au Big Analytics. 1.1 L échec

Plus en détail

Enhancing cybersecurity in LDCs thru multi-stakeholder networking and free software

Enhancing cybersecurity in LDCs thru multi-stakeholder networking and free software WSIS cluster action line C5 22-23 may 2008 Pierre OUEDRAOGO, Institut de la Francophonie Numérique (IFN) pierre.ouedraogo@francophonie.org Enhancing cybersecurity in LDCs thru multi-stakeholder networking

Plus en détail

Projet Datalift : retour d expérience sur les standards

Projet Datalift : retour d expérience sur les standards ign.fr Les outils du web Sémantique comme supports des données et métadonnées géographiques Projet Datalift : retour d expérience sur les standards Forum Décryptagéo Marne La Vallée 8 avril 2014 Bénédicte

Plus en détail