Mastodons. Une Approche Interdisciplinaire des Big Data. Mokrane Bouzeghoub CNRS / INS2I & MI !"#$%&%'()*%+,$-.'."$%%

Dimension: px
Commencer à balayer dès la page:

Download "Mastodons. Une Approche Interdisciplinaire des Big Data. Mokrane Bouzeghoub CNRS / INS2I & MI !"#$%&%'()*%+,$-.'."$%%"

Transcription

1 Mastodons Une Approche Interdisciplinaire des Big Data Mokrane Bouzeghoub CNRS / INS2I & MI!"#$%&%'()*%+,$-.'."$%%

2 PLAN Quelques concepts de base Les ouels du Big Data Le défi Mastodons (CNRS) Conclusion et perspeceves

3 IntroducEon Quelques concepts de Big Data 3

4 Emergence du Big Data Exemple : Linked Open Data IniEée en 2007 avec une dizaine de sources de données interconnectées Accès à plusieurs BD scientifiques et culturelles interconnectées sur le Web Aujourd hui, plusieurs centaines de sources connectées et ouvertes

5 Aucun domaine n échappe à l avalanche des données Commerce et les affaires SI d entreprise, Banques, transactions commerciales, systèmes de réservation, Gouvernements et organisations Loisirs Lois, réglementations, standards, infrastructures,. Musique, vidéo, jeux, réseaux sociaux Sciences fondamentales Santé Astronomie, physique et énergie, génome, Dossier médical, sécurité sociale, Environnement Climat, dév durable, pollution, alimentation, Humanités et Sciences Sociales Numérisation du savoir (littérature, histoire,art, srchitectures), données archéologiques

6 Qu est- ce qu une (très grande) masse de données? VLDB XLDB Massive Data Big Data Very Big Data Data Deluge Grandes Conf du domaine: VLDB, XLDB, ICDE, EDBT,

7 Complexité muledimensionnele des Big Data Nouvelles archi. de stockage Nouvelles archi. d interopérabilité Défi pour les réseaux de communicaeon Nouveaux modèles de calcul sur des flux Ne[oyage et transformaeon Fusion de données Nouveaux modèles de qualité (données & processus de traitement) h6p://www.datasciencecentral.com/profiles/blogs/data- veracity

8 Les grands challenges scienefiques du Big Data Stockage et préservaeon des données Performance des accès, disponibilité des données ProtecGon des données IndexaGon sémangque (ontologies), indexagon pargcipagve (folksonomies) Analyse staeseque et sémaneque, raisonnement Analyse en temps réel de flux congnus de données émanant de différentes sources Requêtes mulgdimensionnelles sur des grands ensembles de données ExtracGon et interprétagon de connaissances Impact sociétal et économique ProtecGon de la vie privée, Droit à l oubli Droits de propriétés, droits d exploitagon Economie d énergie coût du stockage, coût de transfert

9 Exemple 1 : Analyse complexe à grande échelle Analyse en temps réel de flots continus de données émanant de différentes sources Ex: Découvrir et comprendre les patterns caractéristiques du comportement de certains phénomènes ou certaines populations Réaction en temps réel à des événements d alerte Ex: attaques sur le réseau Requêtes multidimensionnelles sur des grands ensembles de données Découvrir des corrélations entre phénomène

10 Exemple 2 : La visualisaeon des données Besoins Problèmes Navigation intuitive/contextuelle Visualisation de phénomènes non perceptibles (durant la simulation) Analyse /Interaction visuelle L approche de visualisation peut-elle aider à la compréhension d un phénomène Ou peut-elle introduire un biais et en altérer l interprétation? Ex: Visualisation post-traitement V.S Visualisation in-situ Évite des zones d ombre par perte de calculs intermédiaires à Coupler la simulation et la visualisation (vars température, pression, ) Ex: Swiss Nat Supercomputing Center visualcomplexity.com/vc

11 Exemple 3 : La préservaeon des données Comment préserver les données à durée de vie illimité? connaissances scientifiques produits culturelles connaissances archéologiques et environnementales connaissances sociales (recensements) Comment préserver les données à durée de vie longue mais limitée patrimoine informationnel des entreprises Données personnelles (stockées dans les disques privés ou publiés sur le Web) Données publiques (fichiers sécu, police, ) Quel coût pour la préservation des données Coût de conversion des données (formats) Coût pour la migration des technologies Coût de maintien des technologies de niche Quelle stratégie pour les données gérées dans le Cloud?

12 Du Big Data à la Science des Données La science est- elle dans les masses de données? La valeur de ces données réside dans les indicateurs, les pa[erns et les règles/lois qui peuvent en être dérivés (connaissance) Ces données sont importantes non seulement en raison de leur quaneté mais aussi en raison des relaeons existantes entre elles (sémaneque) Les données peuvent être source de plus- value scienefique mais aussi source de bruit et de pollueon (qualité, hétérogéneité, manipulaeon) Les masses de données nous parlent- elles de notre société? Nous disent- elles quelque chose que nous ne sachions déjà? Diront- elles quelque chose de nous aux généraeons futures? Ont- elles une objecevité en elles- mêmes ou sont- elles biaisées par des transformaeons subjeceves? Les masses de données génèrent- elles une valeur économique? Quels sont les secteurs privilégiés? Quel retour sur invesessement? Quel rôle pour ces données (maeère première, produits dérivés, capital)? Quel statut pour ces données (propriété privée, domaine publique, objet commercial)?

13 Science des données : un 4 e pilier de la Science La disponibilité de très grandes masses de données et la capacité de les traiter de manière efficace est en train de modifier la manière dont nous faisons de la science 1. Science empirique : observaeons de phénomènes naturels, évaluaeon de faits mesurables, extraceon de lois générales par raisonnement inducef 2. Science théorique : cadre de travail offrant des modèles (mathémaeques) pour comprendre un certain univers 3. Science computaeonnelle : simulaeon de phénomènes complexes pour comprendre ou valider des théories 4. Science des données: collecte massive de données et traitement pour en extraire des connaissances nouvelles

14 OuEls du Big Data NoSQL Hadoop MapReduce. 14

15 IntroducEon Un paysage très riche et hétérogène. OuEls d acquisieon et d enrichissement de données Architectures de stockage et d accès aux données Des ouels de transformaeon et d intégraeon Des modèles de calcul et d agrégaeon de données Des modèles d extraceon de connaissances (fouille) Des ouels d exploraeon et de visualisaeon Des produits très spécialisés Implémentant souvent des idées de recherche les plus récentes Avec des niveaux d abstraceon différents, nécessitant une forte compétence technique pour les ueliser Souvent de très bas niveau, nécessitant un coût de développement supplémentaire élevé 15

16 Une offre pléthore 16 FIGURE 1 Carte de l échosystème du Big Data en juin 2012.

17 Hbase MangoDB CoucheDB SimpleDB Cassandra Voldemort Oracle/NoSQL Caractérisée par la vague NoSQL (Not only SQL) Systèmes de BD ouverts Orienté sur des applicaeons batch Programmable à l aide de pa[erns ad hoc (comme Map/Reduce) Usage de SQL proscrit ou marginal Visant des données Non nécessairement relaeonnelles / Objet Représentées sous forme de couples (Clé, Val) Documents, matrices, graphes, Massivement distribuées (Sur Hadoop par ex.) Avec des exigences fortes sur Le passage à l échelle (montée en charge) Les performances La tolérance aux pannes 17

18 Hadoop/MapReduce: des briques de base Une architecture parallèle mule- cœurs Assurant à la fois le stockage et le calcul Pouvant passer aisément à l échelle Un système de fichiers distribué, HDFS RéparEssant intelligemment les données sur les nœuds du cluster Tolérant aux pannes grâce à un système de réplicaeon et de matérialisaeon des résultats de calculs Un modèle abstrait de calcul, MapReduce Adaptable à chaque type d applicaeon Efficace pour les très grands volumes de données 18

19 HDFS Système de fichiers distribué Données écrites une seule fois à la créaeon Données lues plusieurs fois en accès Fichier décomposé en fragments stockés dans des nœuds différents, avec de la réplicaeon (3 copies) Le nœud Maître maineent les méta- données nécessaires à la localisaeon des fragments et des fichiers MulEples implémentaeons (IBM GPFS, Quantcast QFS, BlobSeer BSFS ) 19

20 MapReduce Modèle de calcul batch Issue de la programmaeon fonceonnelle Prog ( Map ( k, v )*, Reduce ( k, v )* ) ConsEtué de 2 phases : Map(k,v) appliquée à chaque valeur v associée à une clé k Reduce(k,v ) agrégeant les résultats v des Map pour une clé donnée k Et un planificateur de tâches Allouant les paquets de données aux tâches Synchronisant les tâches Reduce sur la terminaison des tâches Map 20

21 ApplicaEons Tout problème dont les données sont Décomposables en fragments indépendants Représentables sous forme de couples (k,v) Et où l uelisateur est capable Exemples D exprimer sa solueon en termes de fonceons Map et Reduce D écrire/comprendre les fonceons de combinaison, tri, shuffle OpéraEon de Jointure de 2 tables Algorithmes de graphes Algorithmes de classificaeon (très coûteux) 21

22 Mise en œuvre : Une ingénierie très complexe À l installaeon: un très grand nombre de paramètres à fixer par le programmeur Le nombre de Maps (selon la taille des données et celle des blocks) Le nombre de Reduces (selon les performances visées) L agrégaeon locale de résultats d un même map (opgmisagon) Le critère de pareeonnement des résultats de map en fonceon du nombre de reduce En programmaeon SpécificaEon de la configuraeon du programme Ecriture des programmes Map et Reduce Maîtrise de tous les pa[erns de données et des API pour les tâches Map, Reduce, Combine, Connaître la localisaeon des fichiers input/output 22

23 Limites Traitement batch Pas de requête interaceve, pas de flux Impossible de contrôler l ordre des Mappers et Reducers (pas de synchronisaeon) Les mapers/reducers ne doivent pas dépendre des résultats d autres mapers/reducers Une tâche Reduce ne peut démarrer que lorsque tous les Map ont terminé (ou abandonné) Un coût très élevé pour certains algorithmes itéraefs Ex: algo des k- means (classif non supervisée) Inadapté pour certains traitements Analyse de flux 23

24 Nouveaux défis de recherche HadoopDB (Yale) ObjecEfs ciblés AgrégaEon en ligne Requêtes conenues Analyse de flux Monitoring d événements Techniques poteneelles Système de cache des données (aneciper les lectures) Connexion pipeline (éviter les séquences écriture- lecture) entre mapers et reducers Livraison prématurée de résultats (avec raffinement progressif) Contraintes MatérialisaEon périodique pour assurer la tolérance aux pannes OpEmisaEon des communicaeons pipeline Un nouveau modèle de synchronisaeon induit par le pipelining 24

25 25 Tendance

26 Le défi Mastodons!"#$%&%'()*%+,$-.'."$%% 26

27 ObjecEfs duire des concepts et des solueons qui n'auraient pu être obtenus sans coopéraeon entre les différentes disciplines Favoriser l émergence d une communauté scienefique interdisciplinaire autour de la science des données, et produire des solueons originales sur le périmètre des données scienefiques.!"#$%&%'()*%+,$-.'."$%%

28 Les critères de séleceon Vision scienefique de l équipe/consoreum sur les thèmes du défi Les verrous scienefiques et les axes de recherche à moyen terme, avec un focus pareculier sur la première année Les acquis scienefiques dans le domaine ou dans un domaine connexe suscepeble de contribuer aux problèmes scienefiques ou sociétaux posés (publicaeons significaeves, projets passés ou en cours, applicaeons réalisées, logiciels, brevets...) Les différentes disciplines impliquées et leurs contribueons respeceves au projet Une liste de 3 à 5 chercheurs seniors impliqués de façon significaeve dans la recherche.!"#$%&%'()*%+,$-.'."$%%

29 Quelques chiffres Défi lancé en 2012, avec un second appel en 2013 Projets de 3 à 5 ans avec un budget de 700 à 885 K /an Nb de soumissions: 58 Nb d UMR impliquées: + 100, Couvrant les 10 insgtuts Nb de projets retenus: Reste 16+1 projets en janvier 2014, cible janvier 2015: 10 projets Degré de pénétraeon dans les labos Nb d UMR impliquées: 69, couvrant les 10 insgtuts Nb de CH/EC impliqués: près de 300 Montant alloué/projet/an 30 à 120 K (projets ayant fusionné) Partenaires hors CNRS INRIA, INRA, IRSTEA, INSERM, CEA, ONERA, Universités, Ecoles!"#$%&%'()*%+,$-.'."$%% 29

30 ThémaEques couvertes et thémaeques orphelines Collecte, stockage et indexation de données massives Hétérogénéité, interopérabilité, intégration, partage des données Calcul intensif sur des grands volumes de données, parallélisme dirigé par les données, optimisation Extraction de connaissances, datamining et apprentissage, agrégation/résumé, sémantique et raisonnement Visualisation de grandes masses de données Qualité des données, protection et sécurité des données Problèmes de propriété, de droit d usage, droit à l oubli Consommation d énergie, environnement, recyclage Préservation/archivage des données (animation)!"#$%&%'()*%+,$-.'."$%%

31 Types de données visés dans les projets retenus Cosmologie, astrophysique Dynamique de la Cartographie céleste Sciences de la terre et de l univers (traitement d images) ModélisaEon, déformaeon de la croute terrestre Environnement, climat, biodiversité SimulaEon, intégraeon, fusion de données Biologie santé Génome, séquençage, phénotypage Données médicales Réseaux sociaux RI, analyse d opinions, santé Crowdsourcing!"#$%&%'()*%+,$-.'."$%%

32 Indicateurs de suivi Pérennité de la coopéraeon PublicaEons communes Co- encadrement de thèses Plateformes de test et d expérimentaeon Montage et soumission de nouveaux projets Dynamique pour faire émerger une communauté interdisciplinaire sur la science des données.!"#$%&%'()*%+,$-.'."$%%

33 Bilan à 3 ans + Une communauté interdisciplinaire en formaeon sur les thèmes de Big Data et Science des Données + Des résultats tangibles même s ils ne sont pas financés à 100% par le défi Mastodons + Levier pour inieer d autre projets ou réseaux de compétences - Risque de dispersion de la communauté - Coût de développement et de mise en œuvre des plateformes: un véritable verrou!!"#$%&%'()*%+,$-.'."$%%!"#$%&%'()*%+,$-.'."$%%

34 PerspecEves 2015 Poursuivre la structuraeon de la communauté Poursuite du soueen à certains projets (9 projets) Via le nouveau GDR MaDICS (animaeon) Via un nouveau défi thémaeque sur l analyse et le traitement d images (Imag In) Année thémaeque pour INS2I Coloriage de postes de CR1/CR2 SouEen aux plateformes (AcEon PlaSciDo)) SouEen aux recherches théoriques (PEPS FaSciDo)!"#$%&%'()*%+,$-.'."$%% Mener une réflexion sur une polieque de sites Faire émerger des sites de référence SouEen des plateformes en ingénierie 34

35 Zoom sur quelques projets Aressos SéPhénoHD PetaSky 35

36 Projet Aresos : Analyse de grands réseaux socio- sémaneques CAMS - INSMI, EHESS, Paris CSI - INSHS, Ecole des Mines, Paris IRIT - INS2I, U. Toulouse 3 LATTICE - INSHS, ENS/ U. Paris 3 LIG - INS2I, UJF, Grenoble LIP6 - INS2I, UPMC, Paris IRISA, INS2I, U. Rennes 1 GIS ISC- PIF, INSHS ObjecGfs : qui parle, de quoi, comment Reconnaissance d acteurs Analyse sociologique Recherche d informagon dans les microblogs IdenGficaGon de thémagques RecommandaGon collaboragve CrowdIndexing, tagging social 36

37 Projet SeqPhénoHD : Séquençage & Phénotypage Haut Débit Info et bio- info LIRMM, LIFL, IRISA Phénotypage INRA Génome France Génomique Biologie- environnement ISEM Etude du comportement des plantes, de différents génomes, Densité végétaeon (nb de feuilles) Croissance (rapidité, hauteur, encombrement, ) selon les évolueons de leur environnement Température, Humidité, Lumière/Ensoleillement Exemple 400 génomes 3 à 10 plants par génome 10 5 informaeons / jour

38 Projet PetaSky : observaeon astronomique grand champ (LSST) LIMOS (Clermont- Fd)=> F. Toumani LIRIS (Lyon) LPC (Clermont- Fd) APC (Paris) LAL (Paris) Centre de Calcul de l IN2P3/CNRS GesEon des données scienefiques dans le domaine de la cosmologie et l astrophysique Des dizaines de milliers de milliards d observaeons photométriques sur des dizaines de milliards d'objets 3 Milliards de sources 1-10 Millions d évènements par nuit 16 TB chaque 8 heures avec un taux de 540 MB/seconde EsGmaGon en fin de projet : Milliards de tuples (différentes versions des données sans prise en compte de la réplicagon), 60 PB 15 CEC, 8 ITA, 2 Doct.

39 Conclusion MathémaGque, InformaGque Traitement du signal Biologie, SHS.. CONCEPTS, MODELES, ALGORITHMES OrganisaGon - IndexaGon Accès - VisualisaGon Ne6oyage - EchanGllonnage ApprenGssage - Datamining ExaScale compugng Cloud CompuGng Réseaux haut débit OS / Middleware.. INFRASTRUCTURES Architectures MulG- cœurs / GPU HPC/ Parallélisme Stockage massif Big Data Data Science Connaissance, décision SémanGque, Qualité Physique, Energie, Cosmologie, Environnement, Biologie, Santé,. DONNEES / CONNAISSANCES Données du Web /rés. sociaux Données de capteurs Données de simulagon Corpus SHS

40 Sur le site du CNRS Big Data, la déferlante des octets CNRS le journal 04/03/14 12:30 Rechercher Partager l'article Donner du sens à la science Rechercher Se connecter / S'inscrire Suivre VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE MES THÈMES Types file:///users/mokrane-cnrs/desktop/big%20data,%20la%20déferlante%20des%20octets%20%7c%20cnrs%20le%20journal.webarchive Page 1 sur 10

41 Et ailleurs 41

Emergence du Big Data Exemple : Linked Open Data

Emergence du Big Data Exemple : Linked Open Data 16/05/2014 Une approche interdisciplinaire des grandes masses de données (Défi Mastodons) Mokrane Bouzeghoub DAS INS2I / MI 1 Emergence du Big Data Exemple : Linked Open Data Accès à plusieurs BD scientifiques

Plus en détail

Emergence du Big Data Exemple : Linked Open Data

Emergence du Big Data Exemple : Linked Open Data 1 CNRS - Misionpour l'interdisciplinarité Mokrane Bouzeghoub 1 Une approche interdisciplinaire des grandes masses de données (Défi Mastodons) Mokrane Bouzeghoub DAS INS2I / MI Ecole de L Innova.on Thérapeu.

Plus en détail

07/11/2014. Emergence du Big Data Exemple : Linked Open Data. Les grandes questions du Big Data

07/11/2014. Emergence du Big Data Exemple : Linked Open Data. Les grandes questions du Big Data 07/11/2014 Le Défi Mastodons Une approche interdisciplinaire des grandes masses de données Mokrane Bouzeghoub DAS INS2I / MI 1 Emergence du Big Data Exemple : Linked Open Data Accès à plusieurs BD scientifiques

Plus en détail

MASTODONS. Un défi CNRS sur les «Big Data» Mokrane Bouzeghoub. Séminaire DUs INSHS - 6/12/2012

MASTODONS. Un défi CNRS sur les «Big Data» Mokrane Bouzeghoub. Séminaire DUs INSHS - 6/12/2012 MASTODONS Un défi CNRS sur les «Big Data» Mokrane Bouzeghoub Séminaire DUs INSHS - 6/12/2012 1 Qu est qu une (très grande) masse de données? VLDB XLDB Massive Data Big Data Very Big Data Data Deluge Grandes

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL Module MLBDA Master Informatique Spécialité DAC Cours 10 NoSQL Systèmes NoSQL (not only SQL) Systèmes qui abandonnent certaines propriétés des SGBDR (one size does not fit all): Le langage d interrogation

Plus en détail

Le Big Data est-il polluant? BILLET. Big Data, la déferlante des octets VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE TERRE (/TERRE)

Le Big Data est-il polluant? BILLET. Big Data, la déferlante des octets VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE TERRE (/TERRE) Donner du sens à la science Rechercher Se connecter / S'inscrire Suivre VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE MES THÈMES Types DOSSIER Paru le 15.11.2012 Mis à jour le 29.01.2014 Big Data, la

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

parée e avec C. Germain, B. Kegl et M. Jouvin CS de l Université Paris Sud

parée e avec C. Germain, B. Kegl et M. Jouvin CS de l Université Paris Sud Présentation prépar parée e avec C. Germain, B. Kegl et M. Jouvin CS de l Université Paris Sud (pré)histoire de la Grille Paris Sudn1 Les besoins de la communauté HEP La collaboration physiciens/informaticiens

Plus en détail

Mastodons Une approche interdisciplinaire des Big Data

Mastodons Une approche interdisciplinaire des Big Data Mastodons Une approche interdisciplinaire des Big Data Méga- données, IRIT Nov 2014 Mokrane Bouzeghoub DAS INS2I / MI CNRS - Mission pour l'interdisciplinarité Mokrane Bouzeghoub 1 1 Introduction 2 CNRS

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009 Panorama des outils de veille Myriel Brouland I-Expo 17 Juin 2009 1 La veille s est affirmée en tant que discipline : Elle s inscrit dans un démarche d optimisation du management de l information au sein

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Les besoins. Le capital existant. Les nouvelles ambitions. Les projets. Conclusions. Compétences et ressources humaines Les ressources

Les besoins. Le capital existant. Les nouvelles ambitions. Les projets. Conclusions. Compétences et ressources humaines Les ressources Les besoins Le capital existant Compétences et ressources humaines Les ressources Les nouvelles ambitions Les projets Conclusions 2 Les thématiques P2IO reposent sur la production et l exploitation de

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Indexmed : Le big data en écologie? Pas encore disent certains. Pas si sûr! Avec IndexMed. Relevons ce challenge!

Indexmed : Le big data en écologie? Pas encore disent certains. Pas si sûr! Avec IndexMed. Relevons ce challenge! Indexmed : Le big data en écologie? Pas encore disent certains Pas si sûr! Avec IndexMed Relevons ce challenge! Origine du consortium L état des lieux (source : séminaire Allenvie, séminaire Indexmed1)

Plus en détail

Cycle de vie, processus de gestion

Cycle de vie, processus de gestion Les données scientifiques au CNES Cycle de vie, processus de gestion Danièle BOUCON Réunion PIN du 4 janvier 2013 Réunion PIN du 22 mars 2012 Outils CNES Contexte des données scientifiques au CNES SOMMAIRE

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Les sections 6 et 7. du ComitéNational de la RechercheScientifique

Les sections 6 et 7. du ComitéNational de la RechercheScientifique Les sections 6 et 7 du ComitéNational de la RechercheScientifique (CoNRS) Frédérique Bassino et Michèle Basseville Plan Le comité national Les missions des sections Les sections 6 et 7 Le comiténational

Plus en détail

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL KEYWORDS : SYSTEMX, Transport, Multimodal, Simulation, Optimisation, Supervision CONTEXTE de l IRT SYSTEMX L IRT SystemX est un institut de

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Découverte et investigation des menaces avancées INFRASTRUCTURE

Découverte et investigation des menaces avancées INFRASTRUCTURE Découverte et investigation des menaces avancées INFRASTRUCTURE AVANTAGES CLÉS Infrastructure RSA Security Analytics Collecte distribuée grâce à une architecture modulaire Solution basée sur les métadonnées

Plus en détail

L essentiel. Coopérative, flexible, très performante : la plateforme Engineering Base. web aucotec.com

L essentiel. Coopérative, flexible, très performante : la plateforme Engineering Base. web aucotec.com L essentiel Coopérative, flexible, très performante : la plateforme Engineering Base web aucotec.com Les défis La globalisation des structures d ingénierie avec le travail en réseau sur des sites dispersés

Plus en détail

Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée

Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée Colloque : Systèmes Complexes d Information et Gestion des Risques pour l Aide à la Décision Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée BELKADI

Plus en détail

La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10

La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10 La visualisation au service du Big Analytics : chimère ou nouvelles frontières? Journée Grandes Dimensions 2012/12/10 Philippe Saadé psaade@picviz.com 1. Une approche possible au Big Analytics. 1.1 L échec

Plus en détail

Comment maximiser le ROI de la chaîne logistique Web

Comment maximiser le ROI de la chaîne logistique Web Comment maximiser le ROI de la chaîne logistique Web Pourquoi une gestion Lean et unifiée du cloud, des performances Web et des analytiques favorise la croissance des entreprises. 1 La chaîne logistique

Plus en détail

HPC-Desk. HPC et SaaS scientifique : l évolution. nécessaire des outils SaaS. Jérémie Bellec Structure Computation

HPC-Desk. HPC et SaaS scientifique : l évolution. nécessaire des outils SaaS. Jérémie Bellec Structure Computation HPC-Desk HPC et SaaS scientifique : l évolution nécessaire des outils SaaS. Jérémie Bellec Structure Computation Structure Computation Plate-forme is-sim (www.is-sim.com) 2 Structure Computation Missions

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Sylvie Dalbin Assistance & Techniques Documentaires DocForum, Le 17 Novembre 2005 Déroulé de l'intervention (1) 1. Définition

Plus en détail

Changement dans les achats de solutions informatiques

Changement dans les achats de solutions informatiques Changement dans les achats de solutions informatiques Ce que cela signifie pour l informatique et les Directions Métiers Mai 2014 Le nouvel acheteur de technologies et la nouvelle mentalité d achat Un

Plus en détail

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre Avant-propos 1. Objectif du livre 17 2. Illustrations des exemples de ce livre 18 2.1 Office 365 comme plateforme technologique pour une digital workplace 18 2.2 SharePoint et Yammer à l honneur 18 3.

Plus en détail

Indexmed : Le big data en écologie? Pas encore disent certains. Pas si sûr! Avec IndexMed. Relevons ce challenge!

Indexmed : Le big data en écologie? Pas encore disent certains. Pas si sûr! Avec IndexMed. Relevons ce challenge! Indexmed : Le big data en écologie? Pas encore disent certains Pas si sûr! Avec IndexMed Relevons ce challenge! Origine du consortium L état des lieux (source : séminaire Allenvie, séminaire Indexmed1)

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Modélisation des dynamiques spatiales et cartographies animée, interactive et dynamiques

Modélisation des dynamiques spatiales et cartographies animée, interactive et dynamiques Modélisation des dynamiques spatiales et cartographies animée, interactive et dynamiques Point de vue géographique UMR 7300 Espace Université d Avignon GDR MoDys École Thématique Modys : Modélisation et

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

neocampus : campus du futur 27 février 2015

neocampus : campus du futur 27 février 2015 neocampus : campus du futur 27 février 2015 Démarrage juin 2013 ECO-CAMPUS TOULOUSE Président B Monthubert Confort au quotidien pour la communauté universitaire Diminution de l empreinte écologique de

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Architecture de réseau de senseurs : monitoring environnemental et écosystèmes forestiers

Architecture de réseau de senseurs : monitoring environnemental et écosystèmes forestiers Architecture de réseau de senseurs : monitoring environnemental et écosystèmes forestiers Présenté par : Ahmed Lakhssassi, Membres du GRMS : Marek Zaremba, Wojtek Bock et Larbi Talbi Département Informatique

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Présentation de m2ocity

Présentation de m2ocity Présentation de m2ocity Télérelevé ouvert et interopérable : solutions et usages innovants pour la ville durable Septembre 2012 Le télérelevé des compteurs et capteurs intelligents peut aider à apporter

Plus en détail

Migration et consolidation de systèmes d archivage de documents électroniques

Migration et consolidation de systèmes d archivage de documents électroniques Migration et consolidation de systèmes d archivage de documents électroniques 26/10/2013 Page 1 sur 8 Sommaire : Pourquoi décider de migrer les documents vers un système d archivage unique?... 3 Une migration

Plus en détail

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,

Plus en détail

Partie I Organisations, management et systèmes d information... 1

Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise............................................................ Liste des figures..................................................................... Liste des tableaux...................................................................

Plus en détail

Open DATA : Comment on y va? UPMC, journée des DU 3 juin 2015

Open DATA : Comment on y va? UPMC, journée des DU 3 juin 2015 Open DATA : Comment on y va? UPMC, journée des DU 3 juin 2015 Ce n est qu un début Science au 21 ème siècle : plus «Numérique» «Collaborative» «Interdisciplinaire» «Réactive» «Citoyenne» «Partagée Vers:

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Retour sur les sessions

Retour sur les sessions Retour sur les sessions Session 1 : Modèles de données dans le cadre de systèmes d informations multi-sources en écologie Session 2 : Enrichissement et représentation de données multi-sources en écologie

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Stratégie projet pour valoriser l'apport des technologies mobiles. Fréderic FADDA. Mobility GBS Leader, IBM

Stratégie projet pour valoriser l'apport des technologies mobiles. Fréderic FADDA. Mobility GBS Leader, IBM Stratégie projet pour valoriser l'apport des technologies mobiles Fréderic FADDA Mobility GBS Leader, IBM L introduction des technologies Mobiles, un accélérateur Business, Opérationnel et IT L introduction

Plus en détail

Déploiement adaptatif des composants dans les sessions collaboratives

Déploiement adaptatif des composants dans les sessions collaboratives NOuvelles TEchnologies de la REpartition NOTERE 2005 Déploiement adaptatif des composants dans les sessions collaboratives Emir HAMMAMI, Thierry VILLEMUR {ehammami, villemur}@laas.fr LAAS-CNRS 7, avenue

Plus en détail

Pl@ntNet Pierre Bonnet, INRA UMR AMAP Raffi Enficiaud, INRIA Équipe IMEDIA

Pl@ntNet Pierre Bonnet, INRA UMR AMAP Raffi Enficiaud, INRIA Équipe IMEDIA Pl@ntNet Un réseau collaboratif et une plate-forme informatique dédiés à la compilation et au partage d outils et de connaissances en Botanique Pierre Bonnet, INRA UMR AMAP Raffi Enficiaud, INRIA Équipe

Plus en détail

EXPLOR: Un Ensemble de Calcul Scientifique Pour la LORraine

EXPLOR: Un Ensemble de Calcul Scientifique Pour la LORraine EXPLOR: Un Ensemble de Calcul Scientifique Pour la LORraine Réunion Groupe de Travail 05 Février 2013 GROUPE DE TRAVAIL, RÉUNION DU 05-02-2013 Ordre du jour état des lieux du projet (historique) EXPLOR

Plus en détail

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

L Internet of Everything Les 10 points clés de l étude sur le potentiel de l IoE dans le secteur public

L Internet of Everything Les 10 points clés de l étude sur le potentiel de l IoE dans le secteur public L Internet of Everything Les 10 points clés de l étude sur le potentiel de l IoE dans le secteur public Joseph Bradley Christopher Reberger Amitabh Dixit Vishal Gupta L Internet of Everything (IoE) permet

Plus en détail

Data Mining et Big Data

Data Mining et Big Data Data Mining et Big Data Eric Rivals LIRMM & Inst. de Biologie Computationnelle CNRS et Univ. Montpellier 14 novembre 2015 E. Rivals (LIRMM & IBC) Big Data 14 novembre 2015 1 / 30 Introduction, contexte

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels

Plus en détail

Ocularis. NOVADIS 14 place Marie Jeanne Bassot 92 300 Levallois Perret Tel : +(33) 1 41 34 03 90 Fax : +(33) 1 41 34 09 91 www.novadis.

Ocularis. NOVADIS 14 place Marie Jeanne Bassot 92 300 Levallois Perret Tel : +(33) 1 41 34 03 90 Fax : +(33) 1 41 34 09 91 www.novadis. Ocularis NOVADIS 14 place Marie Jeanne Bassot 92 300 Levallois Perret Tel : +(33) 1 41 34 03 90 Fax : +(33) 1 41 34 09 91 www.novadis.eu Ocularis La dernière génération de plateforme VMS d OnSSI, Ocularis,

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

Réplication de données de classe entreprise pour environnements distribués et reprise sur sinistre

Réplication de données de classe entreprise pour environnements distribués et reprise sur sinistre Réplication de données de classe entreprise pour environnements distribués et reprise sur sinistre La tendance actuelle vers une conception distribuée de l entreprise, avec des agences, des centres de

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

Monitoring THPE. Soutien au projet. Présentation du projet

Monitoring THPE. Soutien au projet. Présentation du projet Monitoring THPE Le projet Monitoring THPE a donné lieu à l un des premiers systèmes innovants de suivi des performances énergétiques et de confort des bâtiments. Informations générales Localisation : Région

Plus en détail

Gestion de données à large échelle. Anne Doucet LIP6 Université Paris 6

Gestion de données à large échelle. Anne Doucet LIP6 Université Paris 6 Gestion de données à large échelle Anne Doucet LIP6 Université Paris 6 1 Plan Contexte Les réseaux P2P Non structurés Structurés Hybrides Localisation efficace et Interrogation complète et exacte des données.

Plus en détail

Prendre la bonne décision, au bon moment, sur le bon sujet, sur la base des meilleures analyses, pour agir sur le bon indicateur.

Prendre la bonne décision, au bon moment, sur le bon sujet, sur la base des meilleures analyses, pour agir sur le bon indicateur. 2 Toute entreprise dispose d un capital informationnel qui, s il est efficacement géré, contribue à sa valeur et à sa performance. La société RHeport, propose une solution logicielle : RH&View, innovante,

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013 Concours interne de l agrégation du second degré Concours interne d accès à l échelle de rémunération des professeurs agrégés dans les établissements d enseignement privés sous contrat du second degré

Plus en détail

Analyse de données à l'échelle du PetaOctet avec Qserv. Fabrice Jammes Expert en développement logiciel IN2P3/LSST Data-management team.

Analyse de données à l'échelle du PetaOctet avec Qserv. Fabrice Jammes Expert en développement logiciel IN2P3/LSST Data-management team. Analyse de données à l'échelle du PetaOctet avec Qserv Fabrice Jammes Expert en développement logiciel IN2P3/LSST Data-management team Avril 2015 ADASS XXIV CALGARY, CANADA OCTOBER, 2014 Name of Meeting

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web»

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» «La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» Social Computing est spécialisé dans les domaines de l accès à l information, des réseaux

Plus en détail

Nouvelles de l AS fouille d images. Émergence de caractéristiques sémantiques

Nouvelles de l AS fouille d images. Émergence de caractéristiques sémantiques Nouvelles de l AS fouille d images Émergence de caractéristiques sémantiques Patrick GROS Projet TEXMEX IRISA - UMR 6074, CNRS, université de Rennes 1, INSA Rennes, INRIA L AS fouille d images Qu est-ce

Plus en détail

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino avec MailFlow Analyzer TM un produit de l Infrastructure Management Suite TM Copyright COOPERTEAM SOFTWARE 2013 La gestion de

Plus en détail

Applications Mobiles et Internet des Objets Programme du module

Applications Mobiles et Internet des Objets Programme du module Applications Mobiles et Internet des Objets Programme du module Thibault CHOLEZ - thibault.cholez@loria.fr TELECOM Nancy - Université de Lorraine LORIA - INRIA Nancy Grand-Est CC BY-NC-SA 3.0 05/01/2015

Plus en détail

La Publication Scientifique aujourd hui en SHS : Modalités éditoriales et juridiques, évolutions et enjeux actuels

La Publication Scientifique aujourd hui en SHS : Modalités éditoriales et juridiques, évolutions et enjeux actuels Formation des La Publication Scientifique aujourd hui en SHS : Modalités éditoriales et juridiques, évolutions et enjeux actuels Formation n 01 Disciplines concernées Nbr de participants : 16 Annaïg MAHÉ

Plus en détail

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006 Rapport de Stage Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees (15 janvier - 15juillet 2006 15 avril - 15 juillet 2007) Effectué au sein du laboratoire MAP-ARIA

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON L analytique joue un rôle désormais primordial dans la réussite d une entreprise. Les pouvoirs qu elle délivre sont incontestables, cependant

Plus en détail

L ACCROISSEMENT DE L ENTROPIE DES SYSTÈMES D INFORMATION EST-ELLE UNE FATALITÉ?

L ACCROISSEMENT DE L ENTROPIE DES SYSTÈMES D INFORMATION EST-ELLE UNE FATALITÉ? L ACCROISSEMENT DE L ENTROPIE DES SYSTÈMES D INFORMATION EST-ELLE UNE FATALITÉ? Exposé à la Sorbonne René Mandel - 8/4/15 www.value-architecture.com 1 1. Préambule Maîtrise de la complexité Défi scientifique

Plus en détail

Chapitre 7. Approfondir les connaissances

Chapitre 7. Approfondir les connaissances Chapitre 7 Approfondir les connaissances Déroulement du cours 1 : Le rôle du Designer d Univers 2 : Créer un Univers avec l Assistant 3 : Créer un Univers étape par étape 4 : Enrichir un Univers 5 : Création

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Appel à candidature pour une prestation de service en régie de consultant décisionnel expert sous Qlikview.

Appel à candidature pour une prestation de service en régie de consultant décisionnel expert sous Qlikview. Page 1 Appel à candidature pour une prestation de service en régie de consultant décisionnel expert en développement sous Qlikview à l Observatoire des Sciences et des Techniques (OST) 13 décembre 2013

Plus en détail

Bases de données réparties

Bases de données réparties Bases de données réparties J. Akoka - I. Wattiau 1 Contexte Technologique : des solutions de communication efficace entre les machines des SGBD assurent la transparence des données réparties standardisation

Plus en détail