Résumé Math HEC 1ère Math

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Résumé Math HEC 1ère Math"

Transcription

1 Résué Mth HE èr Mth Mthétiqus icirs (chir spécil. Méthod récursiv p.. Equivlc d pits p.4 Vlur cpitlisé : vlur utur d u ott court > Fctur d cpitlistio : ( + i Vlur scopté : vlur court d u ott utur < Fctur d scopt : v ( + i Vlur ctulisé ou vlur ctull scopté ou cpitlisé u tps t.3 Actulistio d u rt crti p.5.4 Pits d réquc t ott costt p.7 3 v ( v + v + v + L + v ou vlur u tps i ( + i s vlur u tps i & ( + i pyt u déut d l périod & s ( + i s pyt u déut d l périod.5 Aortisst d u prêt p. Ppit ott prêt P Nor d pit t Méthod rétrospctiv éthod prospctiv : ( + i P s P.6 u d rdt d u ivstisst p.6 t t t otl Pv + P v + L + P v.7 L pri d u oligtio (! sstrs, ois, és p.8 vlur oil d l oligtio A k + v k ott du coupo A + ( k i k/ tu du coupo (tu cil k ( A i tu d rdt i (r copt i + A vlur ds pits uturs tu i or d coupo rstt.8 L pri vrsus l cours tr du dts d coupos p.3 rctio d l é écoulé k itérêt couru A ( + i ( k + v cours pri k A ( + i ( k + k + v tr du dts d coupo :.9 u oiu p.6 tu oil / réquc d cpitlistio tu cti, ( i j + i t δt tu istté : δ l( + i, ( + i. Itérêt sipl p Boris Fritschr

2 Résué Mth HE èr Foctios d u vril idépdt. Notio d vril. Notio d octio.3 Polyôs t octios pprtés +.4 Foctios potills t logrithiqus log ( log ( log ( c log ( + log ( c log log c ( log ( c log l( c ( c log ( l.5 Applictios écooiqus ( q coût totl ( ( q c q coût oy ( coût i q!! Prdr l équtio sous l o or q(p ( Foctio d dd Foctio dor 4 3 qutité 4 3 qutité pri pri s : Achtur (ouv. dd q + τ p Productur (ouv. or q g τ p t proportioll à p (( (( t pr uité q ( p +τ q g( p τ 3 Dérivtio 3. Suits, liits, cotiuité 3. Dérivé, déiitio ( ( h ( li + h h Boris Fritschr

3 3.3 chiqu d dérivtio Forulirs t tls : p77 l ( ( g g + g 3.4 Dérivés d ordr supériur Résué Mth HE èr!! dérivé itr g g g g 3.5 Dévloppt d ylor (! crré, cu,.. 3 ( ( ( ( ( ( ( ( k ( ( k L + 3! k! 3.6 Diértills 3 ( + d ( + ( d + ( d + ( d 3! ( > : octio croisst ( < : octio décroisst 3.7 Etr ( : coditio d ordr ( < : iu 3.8 Applictios écooiqus ( q coût rgil i coût oy coût rgil : i c ( q ( q q p q q M ééic : B( q R( q ( q ( B ( q ou R ( q p ( q iu si : B ( q < ou ( q > 4 Elsticité 4. Déiitio élsticité d y pr rpport à : ( y y ( l( y E ( y dy d y E pt d l tgt pt du ryo, origi à (, y 4. Propriétés E > : y > : élsticité dirct E < : y < : élsticité opposé E : y : irti E > : réctio ort E : églité E < : réctio il y ( ( > : iiu : rgrdr plus loi E E E ( q ( E( y ( y E( y ( y E ( y y + y E E ( y Boris Fritschr 3

4 Résué Mth HE èr 4.3 Applictios écooiqus évolutio d l dd : volu d échg V p q p ( p V q ( + Ep ( q > E ( q ( q p ( q évolutio ds coût d productio : c ( E ( c q i q q 5 Itégrtio 5. Déiitios c ( d F( F( F( ( d ( d ( + ( d ( d c d 5. chiqu d itégrtio orulirs t tls : p8 l( + c l( pr prti : ( g ( d ( g( ( g( octios rtiolls : ( d α ( α d [ α ( + βg( ] d α ( d β g( + P(, P (, Q ( sio prir divisr Q( ( P( + + K +, ( r r r l( r + l( r + K + l( r + c Q( P Q trouvr, r sot ls zéros d Q( éthod : o ultipli pr ls zéros d Q ( P( ( L + ( L d éthod : o ultipl pr ds zéros t o i à l vlur d c zéro ( sustitutio : g ( ( d g( u u du ( 5.3 Equtios diértills hoogè du prir ordr : y +y hoogè du duiè ordr : + y + cy du r r y y ( r y ( r y + δt ( r( t o hoogè du prir ordr : F ( t δ F( t + r( t F( t 5.4 Applictios écooiqus coût totu coût is + coût vril (rgiu + ( q ( ( q d rt du cosotur : q ( p ( q dq p q!! p(q ps q(p dt + c δt rtr du productur : p q q ( p( q dq d Boris Fritschr 4

5 Résué Mth HE èr 6 lcul tricil (vcturs p Déiitios ; détrits r r r i r r r r cosα y + rltio y + 6. Opértios sur ls trics B ( lig( i colo( j A p p c ij d tric idtité : I tric digol : D d tric syétriqu : A A > vcturs proprs d diérts vlurs proprs sot orthogou 6.3 Algèr ds trics ( B A AB ( A A 6.4 Rg d u tric dt ( A si l rg(a < opértios élétirs rplcr l lig i pr k ois l lig i ultipl l dt pr k rplcr l lig i pr lig i + k ois l lig j ri sur l dt échgr l lig i vc l lig j dt chg d sig + + c + co d + + g h i 3 tric trigulir : dt( A 3 ii Méthod d Srrus : joutr du prièrs colos, puis so +- ds digols dt ( A dt( A dt( AB dt( A dt( B dt( ka k dt( A dt( A dt A + B dt A + dt B dt( A!! ( ( ( 6.5 Ivrsio d tric tric A régulir, B l ivrs d A : AB BA I L tric ivrs st uiqu, ivrsil si : dt( A A A AA I ( A A ( A ( A d : A d c c!! ( A + B A + B ( AB B A : dj ( A co ( A 6.6 Applictios écooiqus Mtièr Mtric Qutité prièr tchologiqu produit Boris Fritschr 5 A dt ( A N M t + dj N t ( A

6 7 Dévloppts thétiqus 7. Fors liéirs r r A Résué Mth HE èr 7. rsortios liéirs Y AX X A Y rrg(a r : u solutio ist toujours r< : u solutio ist sult pour crti y r : si u solutio ist ll st uiqu r< : si u solutio ist ll st ps uiqu 7.3 Résolutio d systès d équtios liéirs c c d 7.4 Fors qudrtiqus cs spécil : idéii 3 dt 3 dt ( K ( K + ( K ,, ( K + L dt déii positiv si tous ls coicits sot > déii égtiv si tous ls coicits sot < idéii sir ls coicits sot > t < si-déii positiv si tous ls coicits sot t u ois u si-déii positiv si tous ls coicits sot t u ois u!! hors ds digol ls vlurs sot divisé pr pour orr l tric A 7.5 Vcturs proprs λ st u vlur propr d A si dt ( A λ I AX λx A : tric 8 Applictios écooiqus 8. Modèl d Lotiv X productio Y iporttio Z porttio A trsortio B lc corcil S [ L ] tlu d rltio : lig d, colo vrs (, viilité : + + d < X : vctur propr ssocié à l vlur λ ( I A Z X Z ( I AX Y DX yij d ij ij B S ( I D( I A Z B porttio iporttio Boris Fritschr 6

7 Résué Mth HE èr 9 Foctios d plusiurs vrils idépdts 9. Ojt d l étud y (,,, K 9. Dérivés prtills grd( 9.3 Diértill totl prir ordr dy (, d + (, d 9.4 Dérivés prtills d ordr supériur 9.5 Diértill totl scod ordr d y (, ( ( ( (,, d + d d + d 9.6 Dévloppt d ylor y (,, 3 poit d réérc : ( &, & &, 3 (, ( &, &, & + grd X + ( X H ( X rst, & X & 3 & 9.7 Etr lirs (ss cotrits r grd (, iluc d l diértil d ordr du si l or qudrtiqu st déii positiv : l poit st u iiu si l or qudrtiqu st déii égtiv : l poit st u iu si l or qudrtiqu st idéii : l poit st u poit d sll si l or qudrtiqu st déii si positiv : il y ps d iu, i possil si l or qudrtiqu st déii si égtiv : il y ps d iiu, possil régrssio liéir (, ( yi i i y y i 9.8 Etr liés (sous cotrit 9.9 Applictios écooiqus Ecrir touts ls étps, ps oulir λ y i Boris Fritschr 7

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I.

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I. Uirsité ohmmd V gdl Fculté ds Scics Juridiqus Ecoomiqus t socils RT http://www.ssr.c.m ا اآال آ ام ا واد وا اا! ط Filièr d Scics Écoomiqus t d Gstio Smstr : S odul : éthods Qutittis III tièr : lgèbr I

Plus en détail

Fonction exponentielle

Fonction exponentielle Foctio potill I. Crctéristios d l foctio potill., Défiitios. Déf : Il ist u uiqu foctio dérivl sur R qui st égl à s dérivé t qui prd l vlur 0 : ctt foctio st oté p t vérifi : pour tout ЄR, p (p( t p(0).

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992)

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992) Sigs t symbols mthémtiqus à mployr ds ls scics physiqus t ds l tchiqu. (trits d l orm itrtiol iso 3- :99) C documt rgroup ds trits choisis pour ls élèvs t ls sigts CGPE d l orm itrtiol iso 3-:99. Pour

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Loi Gamma, loi du 2 et loi de Student

Loi Gamma, loi du 2 et loi de Student Loi Gmm, loi du t loi d Studt A. Foctio Gmm A.. Défiitio L foctio Gmm st défii pour ls réls positifs pr l itégrl : () t t dt pour A. Rltio d récurrc Cosidéros (+) : ( ) t t dt E itégrt pr prti ous otos

Plus en détail

( ) ( x) I) Présentation

( ) ( x) I) Présentation Trmil S Cpitr 3 L foctio potill Pg sur 9 I) Présttio Itroductio : Itrpoltio d Téorèm: (voir TD itro d l foctio potill pr suits géométriqus) L'équtio différtill f ' = f vc l coditio iitil f = dmt u uiqu

Plus en détail

( ) n n n. x x x n n n x

( ) n n n. x x x n n n x Trmil S Cpitr 3 L foctio potill Pg sur 8 I) Présttio Itroductio Itrpoltio d ) Défiitio Téorèm: (voir TD itro d l foctio potill pr suits géométriqus) L'équtio différtill f ' = f vc l coditio iitil f = dmt

Plus en détail

Théorie des Circuits. II Analyse des Réseaux Electriques. Bernard Gosselin Bernard.gosselin@umons.ac.be

Théorie des Circuits. II Analyse des Réseaux Electriques. Bernard Gosselin Bernard.gosselin@umons.ac.be Faculté Polytechique héorie des Circuits II Aalyse des Réseaux lectriques Berard Gosseli Berard.gosseli@uos.ac.e Aalyse des Réseaux lectriques Itroductio Aalyse Méthode des Mailles Méthode des Noeuds Réseaux

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Terminale S Pondichéry, Avril 2009 Sujets de Bac

Terminale S Pondichéry, Avril 2009 Sujets de Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc

Plus en détail

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction :

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction : Bc lc TS : corrcto : E : octo st l somm d octo lér dérl por tot rél t d l octo rs dérl s doc st dérl sr ] ; [ mértr st polôm s scod dgré q por rcs rélls : t sl post st l scod t : s O ott doc l tl st :

Plus en détail

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES I) Dérivés : Propriétés : - Soit I u itervlle et f défiie sur I vec x 0 I : f x f(x f est dérivle sur x 0 : _ Si lim 0 ) x x0 = α, u réel fii.

Plus en détail

Chapitre 0 : Signaux discrets (rappels)

Chapitre 0 : Signaux discrets (rappels) Chapitr : Sigaux discrts rappls Itroductio Ls sigaux physiqus xistat das la atur sot gééral ds sigaux d typ aalogiqu o dit aussi cotiu, au ss où l sigal st u octio cotiu du tps t il sra écssair, lorsqu

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Oscillations forcées

Oscillations forcées Oscillatios forcés I 5 Microscop à forc atoiqu (Ctral PC ) ) Approch d l'origi d la forc atoiqu L'itractio tr dux atos o liés par u liaiso d covalc t distats d r put êtr décrit par u érgi pottill d Lard-Jos

Plus en détail

MAT144 INTRODUCTION AUX MATHÉMATIQUES DU GÉNIE FORMULAIRE DE MATHÉMATIQUES

MAT144 INTRODUCTION AUX MATHÉMATIQUES DU GÉNIE FORMULAIRE DE MATHÉMATIQUES MAT44 INTRODUCTION AUX MATHÉMATIQUES DU GÉNIE FORMULAIRE DE MATHÉMATIQUES Pr Clude Blis Mître d eseigeet, Service des eseigeets gééru École de techologie supérieure Révisé e oût 0 Clude Blis 0-08-3 Pge

Plus en détail

Corrigé de CCP 2015 Math PC

Corrigé de CCP 2015 Math PC Corrigé d CCP 5 Math PC Problèm : Aalys t probabilités Parti I : Aalys..a. Pour N, f st dérivabl sur R + t, pour t, f (t) = t t ( t).! f st doc croissat sur [; ], décroissat sur [; + [ t f () = = lim f

Plus en détail

Calcul matriciel et applications

Calcul matriciel et applications Clcul mtriciel et lictios I Défiitio d ue mtrice, somme de mtrices et roduit r u réel 1 Défiitio d ue mtrice Ue mtrice A de dimesios coloes Pour 1 i m et 1 j lige et de l j-ième coloe m, vec m et deux

Plus en détail

Systèmes linéaires, continus et invariants

Systèmes linéaires, continus et invariants Cours CI-2 : Prévoir les perforaces des systèes liéaires, cotius et ivariats Systèes liéaires, cotius et ivariats MPSI I. Modèle cotiu. Les foctios qui caractériset u systèe cotiu (etrées, sorties, perturbatios)

Plus en détail

ANALYSE. 4 ème année. 1.1 Calcul intégral 1

ANALYSE. 4 ème année. 1.1 Calcul intégral 1 ANALYSE ème ée. Clcul itégrl.. Le smole Σ.. Défiitios.. Propriétés de l itégrle défiie 7.. Le théorème fodmetl de l lse..5 Primitives..6 Méthodes d itégrtio prticulières *..7 Applictios du clcul itégrl

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Soit a un nombre réel strictement positif et différent de 1, c.-à-d. a + , condition valable tout au long de ce chapitre.

Soit a un nombre réel strictement positif et différent de 1, c.-à-d. a + , condition valable tout au long de ce chapitre. LGL Cours de Mthémtiques 26 Foctios epoetielles et foctios logrithmes fiche professeur 5) Défiitio des foctios logrithmes \, coditio vlble tout u log de ce chpitre Nous svos que les foctios ep sot des

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

CHAPITRE 15 : PUISSANCES D EXPOSANTS REELS - FONCTIONS PUISSANCES - CROISSANCES COMPAREES

CHAPITRE 15 : PUISSANCES D EXPOSANTS REELS - FONCTIONS PUISSANCES - CROISSANCES COMPAREES Croisscs comprés Cours CHAPITRE 5 : PUISSANCES D EXPOSANTS REELS - FONCTIONS PUISSANCES - CROISSANCES COMPAREES. Puisscs d posts réls b.. L ottio Défiitio b R, R, o ot l rél + b bl Propriété b R, b' R

Plus en détail

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako Primitives de Foctios Clcul Itégrl Site MthsTICE de Adm Troré Lcée Techique Bmko I Primitives d ue foctio umérique : - Activité : Soit l foctio f : + 3 ; Clculer l dérivée de chcue des foctios F ; G ;

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

Août 2016 (2 heures et 30 minutes)

Août 2016 (2 heures et 30 minutes) 1 a) Soit IN 0 \ {1} Déiir : boul ouvrt d IR sous-smbl compact d Août 016 ( hurs t 0 miuts) IR (1 pt) b) Démotrr qu l produit cartési d smbls rmés d IR st u smbl rmé d IR (15 pt) c) Détrmir t rpréstr avc

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0.

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0. I.A.) ft) = t x e t doc t t x Puisque Corrigé de Cetrle 26 PC mth I Autour de l foctio Gmm d Euler x + tx+ e t =, ft) = t + o t 2 ) doc Le domie de défiitio de Γ est doc D =], + [. ft)dt existe si et seulemet

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE : I) ; ; r t S EXERCICES SR LES SITES NMÉRIQES Sit MathsTICE d Adama Traoré Lycé Tchiqu Bamako désigat rspctivmt l prmir trm, l ièm trm, la raiso t la somm ds prmir trms d u suit arithmétiqu,

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

1. Méthode du simplexe et son analyse

1. Méthode du simplexe et son analyse Méthode du iplee et o lye Prolèe du returteur Dipoiilité du returteur: 30 ouri 4 crevette 8 huître 8 6y Sujet à 5 3y 30 3y 4 3y 8,y 0 Deu type d iette de fruit de er offerte pr le returteur: à $8 copoée

Plus en détail

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0 ère S Objectifs : Dérivées des foctios de référece Du ombre dérivé à l foctio dérivée Poursuivre l objet d étude des deu cpitres précédets : l tgete à ue courbe Psser de l otio de ombre dérivé à l otio

Plus en détail

Chapitre 7: Calculs approchés d intégrale

Chapitre 7: Calculs approchés d intégrale Lycée Mssé Chpitre 7: Clculs pprochés d itégrle 1 Itroductio Les foctios usuelles qu o mipule possèdet souvet des primitives que l o peut exprimer à l ide des foctios usuelles. Cepedt, ce est ps le cs

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Foctios potills I Foctios potills d bas. Foctio :, avc > 0 La suit ( u ) d trm gééral u st u suit géométriu d raiso. La octio potill déii par ( ) st l prologmt d ctt suit géométriu. La courb rpréstativ

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

2. Méthode du simplexe et son analyse

2. Méthode du simplexe et son analyse Méthode du iplee et o lye Trfortio de e i Trfortio de e i Coidéro le prolèe de iitio f(w) Sujet à w X R où f : X R Trfortio de e i Coidéro le prolèe de iitio f(w) Sujet à w X R où f : X R Soit w* u poit

Plus en détail

6.1. Les fonctions exponentielles x q n avec q>0

6.1. Les fonctions exponentielles x q n avec q>0 6. Foctios potills L foctio 6.. Ls foctios potills vc >0. Défiitio : st foctio défii sr. S cor rprésttiv st ot rlit pr li coti t rélièr ls poits d coordoés ( ) foctio st pplé foctio potill d s. Cs > Cs

Plus en détail

Conseil économique et social

Conseil économique et social Na t i ons U ni e s E / C N. 1 7 / 20 0 1 / PC / 1 7 Conseil économique et social D i s t r. gé n é r a l e 2 ma r s 20 0 1 F r a n ç a i s O r ig i n a l: a n gl a i s C o m m i s s io n d u d é v el

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Bouygues Télécom Issy-les-Moulineaux. Hôtel Pullman Aquaboulevard. Mont Valérien. La Ceinture Verte, secteur sud-ouest parisien

Bouygues Télécom Issy-les-Moulineaux. Hôtel Pullman Aquaboulevard. Mont Valérien. La Ceinture Verte, secteur sud-ouest parisien L Citr rt, ctr d-ot pii Boyg Télécom Iy-l-Mx Hôtl llm Aqbolvd pormiq dpi l toit d Hll Mot léri Cité d l ir L Déf Hll L c d xpoitio, d ht x d l coro pii, d jx viromtx mjr Aprè l déclmt d fortifictio d i,

Plus en détail

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

Eléments de correction du BAC Amérique du Nord -30 mai 2013

Eléments de correction du BAC Amérique du Nord -30 mai 2013 Elémts d corrctio du BAC Amériqu du Nord -3 mai 3 Ercic A, B t C sot pas aligés si t sulmt si ls vcturs AB t AC sot pas coliéairs O a AB ; ; t AC ; 5; 3 poits A, B t C sot las aligés or 5 a Comm A, B t

Plus en détail

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE Exercices d orux de l bque CCP 4-5 - Corrigés BANQUE ALGÈBRE EXERCICE 59 extbf Si P, degfp degp P degp et e prticulier, fp Pr cotrpositio, P E, [fp P ] Doc le oyu de l edomorphisme f est {} Pr suite f

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables?

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables? Exercices : Brbr Tumpch Relecture : Frçois Lescure Exo7 Itégrle de Riem Rppel Soiet ue octio borée et = { = < < < = b} ue subdivisio de [,b]. O ote : m k = i{ (x), x ] k, k [} et M k = sup{ (x), x ] k,

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Suites et séries de fonctions.

Suites et séries de fonctions. Suites et séries de foctios Chp 8 : cours complet 1 Suites de foctios : covergece simple et uiforme, cotiuité Défiitio 11 : Défiitio 12 : Défiitio 13 : Défiitio 14 : Théorème 11 : Théorème 12 : Théorème

Plus en détail

Euler. Cette égalité est la relation d Euler.

Euler. Cette égalité est la relation d Euler. Vdoui Trmial S Chapitr 3 Du ouvlls foctios : l potill & l logarithm Rappls L tau d accroissmt d u foctio f tr a t a h st égal à : f ( a h) f ( a) h U foctio st dérivabl a si l tau d accroissmt d ctt foctio

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

7 Fonctions d une variable réelle

7 Fonctions d une variable réelle 7 Foctios d ue vrile réelle 7.1 Cotiuité Pour ce chpitre les référeces clssiques ([Liret Mrtiis, Lelog-Ferrd Arudiès, Moier Alyse, Rmis Deschmps Odou] etc. ) 7.1.1 Défiitios des limites et cotiuité O défiit

Plus en détail

Suites et séries d applications

Suites et séries d applications Chpitre 3 Suites et séries d pplictios Ds tout ce chpitre,, b R vec < b (ou évetuellemet, et/ou b + ). Pour N, : [, b] R ou C sot des octios déiies sur l itervlle [, b] (ou R ou [, b] ou [, + [). 3. Covergece

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Calcul intégral. 1 Aire sous une courbe 2

Calcul intégral. 1 Aire sous une courbe 2 Clcul itégrl Tble des mtières Aire sous ue courbe 2 2 Défiitios 3 2. Foctio cotiue et positive sur u itervlle.............................. 3 2.2 Foctio cotiue de sige quelcoque..................................

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

P2P-MPI : A fault-tolerant Message Passing Interface Implementation for Grids

P2P-MPI : A fault-tolerant Message Passing Interface Implementation for Grids P2P-MPI : A fault-tolerant Message Passing Interface Implementation for Grids Choopan Rattanapoka To cite this version: Choopan Rattanapoka. P2P-MPI : A fault-tolerant Message Passing Interface Implementation

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

des nombres complexes

des nombres complexes Esmbl ds ombrs complxs I. Form algébriqu d u ombr complx. Théorèm Il xist u smbl, oté,d ombrs applés ombrs complxs, tl qu : cotit ; st mui d u additio t d u multiplicatio pour lsqulls ls règls d calcul

Plus en détail

Le problème de Cauchy

Le problème de Cauchy Le problème de Cuchy Deis Vekems Ds cet exposé, [, b] est u segmet de R. Soit f ue foctio de R R ds R et soit y ue foctio de R ds R, différetible. O ppelle équtio différetielle du premier ordre l reltio

Plus en détail

8. Applications des intégrales définies

8. Applications des intégrales définies APPLICATIONS DES INTÉGRALES DÉFINIES 57 8. Applictios des itégrles défiies 8.1. Aire etre deux coures Prolème Soiet f et g deux foctios cotiues ds l'itervlle [, ] telles que f(x) g(x), pour x. Clculer

Plus en détail

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ LES RÈGLES DE PRIORITÉ Règle 1 Ds ue suite de clculs, il fut effectuer d bord les clculs etre prethèses. Exemple 1 + (1-4) 1-9 Règle Si, ds ue suite de clculs figuret plusieurs prethèses imbriquées, il

Plus en détail

Plan de lecture. Pour lire la Bible en 1 an

Plan de lecture. Pour lire la Bible en 1 an Plan de lecture Pour lire la Bible en 1 an Le plan de lecture ci-après permet de lire toute la Bible en 1 an avec une lecture matin et soir, par exemple, ou en 2 ans avec lecture de l Ancien Testament

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

A noter que la SA (Software Assurance) permet de couvrir les Clouds Publics grâce à la Licence Mobility.

A noter que la SA (Software Assurance) permet de couvrir les Clouds Publics grâce à la Licence Mobility. ::: E-NOVATI - Bl ::: http://www.-vti.fr lisi ystm r mm ystm r ffr ds slutis pur l mm ds rssurs ds Dtrs, luds privés t périphériqus lis. U uvu md d lisi st irduit. Tur d'hriz... Vu d'smbl du lisi mm vrsi

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5 Dt : (+ commntirs prof. à prtir d un rédction élèv nvoi n 2 ) BEP MEL / 5 I LOGIGRAMME : Assocition d'opérturs logiqus : L tritmnt logiqu ds informtions put nécssitr l mis n œuvr d'un nomr importnt d'opérturs

Plus en détail

La puissance nième d une matrice 2X2

La puissance nième d une matrice 2X2 L puissce ième d ue mtrice X L puissce ième d ue mtrice (détils)... Le théorème de CLEY-HMILTON (pour les mtrices x)... lgorithme de clcul de l puissce ième...6 Suite umérique ssociée à l puissce ième...7

Plus en détail

Synthèse de filtres. Normalisation du filtre. Choix du type de réponse. Calcul de la transmittance normalisé

Synthèse de filtres. Normalisation du filtre. Choix du type de réponse. Calcul de la transmittance normalisé Sythèse de iltres But : Suivt u grit de iltre doé, vous devez être cple de dimesioer ce iltre soit vec des composts pssis, soit vec des composts ctis ( respectivemet iltres dit pssis et iltres dit ctis

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002 Demri Philippe : mdemi-4@scs-et.org Avt - Propos Ce cours de Termile S s ppuie sur le progrmme de 200 de l eseigemet obligtoire. Il s dresse

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Fiches de Cours. Terminale S

Fiches de Cours. Terminale S Fichs d Cors Trmil S Michll Froligr / J Pirr Djrigi Mi 9 FICHE N : LES REGLES DE SE FICHE : RYCENTRES FICHE N 3 : SUR LES NOMRES COMPLEXES FICHE 4 : LIMITES DERIVTION FICHE 5 : LE TOP DES QUESTIONS SUR

Plus en détail

Cours 8 : Applications pratiques de la programmation linéaire

Cours 8 : Applications pratiques de la programmation linéaire Cours 8 : Applicatios pratiques de la prograatio liéaire Christophe Gozales LIP6 Uiversité Paris 6, Frace Pla du cours Cours 8 : Applicatios pratiques de la prograatio liéaire 2/23 1 Jeux à deux joueurs

Plus en détail

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016.

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016. 2. Matrices Sections 2.4 et 2.5 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016 (v4) MTH1007: algèbre linéaire 1/18 Plan 1. Les règles des opérations matricielles 2.

Plus en détail

Questions les plus fréquentes, Méthodes et Stratégies classiques.

Questions les plus fréquentes, Méthodes et Stratégies classiques. Questios les plus fréquetes, Méthodes et Strtégies clssiques L spect rédctio est u spect importt des Mthémtiques : de mière géérle, u risoemet pourr voir cette forme : je dis ce que je fis et pourquoi

Plus en détail

Moulay El Mehdi Falloul. Une introduction à la recherche opérationnelle et au management des projets

Moulay El Mehdi Falloul. Une introduction à la recherche opérationnelle et au management des projets Mouly El Mehdi Flloul Ue itroductio à l recherche opértioelle et u mgemet des projets Itroductio L Recherche opértioelle (RO) est ue disciplie qui trite de l pplictio des méthodes d lyse vcées pour ider

Plus en détail

Calculs d intégrales

Calculs d intégrales Bibliothèque d eercices Éocés L Feuille 5 Clculs d itégrles Utilistio de l défiitio Eercice Soit f l foctio défiie sur [, 3] pr si = si < < f() = 3 si = si < 4 si < 3 Clculer 3 f(t)dt Soit [, 3], clculer

Plus en détail

Chapitre 7 : Racines carrées

Chapitre 7 : Racines carrées Chpitre : Rcies crrées. Itroductio, défiitios et eemples Scht que les crreu ci-dessous ot comme dimesios cm, costruisez ) u crré A d ire égle à 9 cm ; c) u crré C d ire égle à cm ; ) u crré B d ire égle

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

FUN RACING CARS - 04 MAGNY-COURS

FUN RACING CARS - 04 MAGNY-COURS 1 08:22:09 2:51.748 2 08:24:59 2:50.136 3 08:27:45 2:45.531 4 08:30:39 2:53.368 5 08:33:18 2:40.025 6 08:45:59 12:40.569 7 08:48:29 2:30.506 8 08:51:07 2:37.563 9 08:53:39 2:32.020 10 08:56:06 2:27.819

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Conception et évaluation de performance d un Bus applicatif, massivement parallèle et orienté service.

Conception et évaluation de performance d un Bus applicatif, massivement parallèle et orienté service. Conception et évaluation de performance d un Bus applicatif, massivement parallèle et orienté service. Ridha Mohammed Benosman To cite this version: Ridha Mohammed Benosman. Conception et évaluation de

Plus en détail

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Trigoométrie Exercices de Je-Louis Rouget Retrouver ussi cette fiche sur wwwmths-frcefr * très fcile ** fcile *** difficulté moyee **** difficile ***** très difficile I : Icotourble T : pour trviller

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital.

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital. ETIENNE Sylvi PLC, groupe EXPOSE 73 : FORMULES DE TAYLOR APPLICATIONS Niveu : Complémetire Pré-requis : Itégrle, itégrtio pr prties Théorème de Rolle Règle de L Hôpitl I INTRODUCTION Ett doé u polyôme

Plus en détail