Chapitre 3 : Inte grales Ge ne ralise es

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3 : Inte grales Ge ne ralise es"

Transcription

1 Chpire : Ie grles Ge e rlise es Sommire I) Iégrle sur u iervlle o oré... 9 ) Défiiio... 9 A) Iégrle de Riem... ) Iégrles géérlisées de foios posiives... ) Iégrles géérlisées de foios queloques... II) Iégrle géérlisée d ue foio o orée sur u iervlle oré... 4 ) Défiiio... 4 ) Iégrle géérlisée de foios posiives... 5 ) Iégrle géérlisée de foios queloques... 5 III) Iégrles plusieurs fois impropres

2 Soi f ue foio défiie e oiue pr moreu sur u iervlle oré [; ] de R. O e dédui que f es orée sur [; ]. De plus ous svos que f es iegrle sur [; ], es-à-dire que f() eise. Ds e hpire, o herhe à éedre l oio d iégrle à : Soi sur u iervlle o oré ( [; +[ ou ] ; ]) Soi à ue foio o orée sur [; ] (pr eemple lim f() = ±) I) Iégrle sur u iervlle o oré ) Défiiio Soi f ue foioo défiie sur [; +[ e oiue pr moreu sur ou iervlle [: ] où >. Défiiio : O di que l iégrle géérlisée (ou impropre) f() overge ou es overgee X + si : lim X + f() eise e es fiie. Ds e s, o oer f() ee limie. Sio o di qu elle diverge ou qu elle es divergee. Eudier l ure de l iégrle géérlise es éudier l overgee de l iégrle géérlisée. Deu iégrles géérlisées so de même ure si elles so oues deu overgees ou oues deu divergees. Ierpréio grphique : L vleur de l iégrle géérlisée overgee + f() es l ire lgérique (fiie) omprise ere les droies = e y = e le grph de f. Remrque : Si f dme ue limie o ulle e +, lors l iégrle diverge. (Ce es i ue odiio éessire, i ue odiio suffise). + Eemple : Nure de e L foio e es défiie sur [; +[. Soi [; +[, o : e = [ e ] = e L iégrle géérlisée overge e + + e = + Eemple : Nure de + L foio es défiie e oiue sur [; +[ Soi, o : L iégrle géérlisée diverge do. = [l( + )] = l( + ) l() + + Proposiio : Soi f ue foio défiie sur [; +[, oiue pr moreu sur ou ivervlle [; ] ( > ). + + Soi, lors les iégrles géérlisées f() e f() so de même ures. De + + plus, si elles overge, elles vérifie f() = f() + f() 9

3 Preuve : Relio de hsles f() = f() + f(), e o psse à l limie. A) Iégrle de Riem + Soi α R. Cosidéros l iégrle géérlisée : α Supposos que α. Soi >, O : = α α o Si α >, lim = e α α + overge. α o Si α <, lim = e l iégrle diverge. α Supposos que α =. O : diverge. Colusio : L iégrle de Riem + α = α = α+ α α = [l ] = l l = l, Do l iégrle diverge si e seuleme si α >. Ds e s : + α = α Remrque : Soi f ue foio défiie sur ] ; ], oiue pr moreu sur ou [; ]. O di que l iégrle géérlisée f() overge si lim f() eise e es fiie. Ds e s, f() = lim f(). Sio, elle diverge. O peu se rmeer u s prééde pr le hgeme de vrile u =. ) Iégrles géérlisées de foios posiives Soi f ue foio défiie sur [; [, posiive, oiue pr moreu sur ou [; ]. Puisque f es posiive. L foio f() es roisse. Aisi f() overge si e seuleme si l foio f() es mjorée. Théorème de mjorio : Soie f e g deu foios défiies sur [; [, posiives e oiues pr moreu sur ou iervlle[; ]. Supposos que pour ou, o i f() g(). Alors : + + Si g() overge, lors f() overge. + + Si f() diverge, lors f() diverge. Preuve : f() Eemple : Nure de g() e o uilise l remrque préédee. e L foio e e es oiue, posiive sur [; [. O pour,. Or es ue iégrle de Riem de prmère >, do overgee. D près le héorème de mjorio, e overge.

4 Eemple : Nure de + l L foio + es oiue e posiive sur [; [. Pour : l L iégrle Pr le héorème de mjorio : diverge (iégrle de Riem de prmère ). + l diverge. l = Eemple : Nure de e α L foio e α es oiue, posiive sur [; [ Si α, lors pour ou, e α. Or =, do D près le héorème de mjorio, e α diverge. Si α >, lors pour ou, o e α = e α Do e α overge e e α = α Colusio : e α overge si e seuleme si α >. α + l l = e α α diverge. α Théorème d équivlee : Soie f e g deu foios défiies e posiives sur [; [ e oiues pr moreu sur ou [; ]. Supposos que f() ~ g(), lors les iégrles géérlisées ure. f() e g() so de même Preuve : Pour ssez grd, g() f() /g(). E o pplique le héorème de mjorio. Eemple : Nure de L foio 4 +5 De plus, f() ~ 4 Or = = f() es oiue e posiive sur [; [. = 5 8, overge (Iégrle de Riem de prmère 8 > ). Pr le héorème d équivlee, l iégrle géérlisée overge. Théorème : Règle «α f()» Soi f ue foio défiie sur [; [, posiive e oiue pr moreu : Si il eise α > e >, els que pour ou, o i α f(). Alors f() overge. E priulier si lim α f() = ve α >, lors f() overge. Si il eise α < e >, els que pour ou, α f(), lors f() diverge. E priulier si lim α f() = (α ), lors Preuve : pr le Théorème de mjorio. f() diverge.

5 Eemple : Nure de e β ve β >. L foio e β es oiue e posiive sur [; [. O : lim e β =. D près l règle " α f()", e β overge. (s α = > ) Eemple : Nure de l L foio es oiue e posiive sur [; [. Or : lim l =. l D près l règle " α f()", l Eemple : Iégrles de Berrd diverge. (s α = ) Pour α, β R, o osidère l iégrle géérlisée α (l ) β e posiive sur [; [. Nous pouvos do uiliser le héorème de ompriso : Supposos que α >. Posos γ [, α[. Or : lim γ α γ >. D près l règle " α f()", α (l ) β. L foio α (l ) β es oiue α (l ) β = lim overge. (s α > ). α γ (l ) β = r Supposos que α <. Or : lim = lim α (l ) β =. D près l règle (l ) β "α f()", α (l ) β diverge. (s α = ). Supposos que α =. Soi >. O : du u β α u=l =e u =e u du = (l ) β l l que overge si e seuleme si β >, o e dédui que seuleme si β >. du u β. Comme l e α (l ) β overge si e Colusio : L iégrle de Berrd β > ). α (l ) β overge si e seuleme si α > ou (α = e Théorème : Compriso Séries / Iégrles Soi ue foio f défiie, oiue pr moreu, posiive e déroisse sur [; [. Alors f() e f() so de mêmes ures. Remrque : O rerouve les mêmes rières de overgees pour les séries e les iégrles de Riem (e de Berrd). Preuve : Comme f es déroisse, [; + ], f( + ) f() f() f( + ) = f( + ) f() f() = f() = f() + O somme pour vri de à : = f( + ) = f() f() C es-à-dire : + = f() = S + S f() S. =,

6 ) Iégrles géérlisées de foios queloques Défiiio : Soi f ue foio défeie sur[; [ e oiue sur ou iervlle [; ]. O di que l iégrle géérlisée f() overge solume ou es solume overgee si l iégrle f() overge. Théorème : Ue iégrle géérlisée solume overgee es overgee. Remrque : L réiproque es fusse! Core-Eemple : Nure de ei L iégrle ei e overge ps solume r (Iégrle de Riem de prmère α = ). L iégrle ei ei E ei i u= u = v =e i v= ei i = ei,. Ave ei i i ed vers ue limie fiie r ei ei = es divergee. es overgee : Soi >, o : + ei = ei ei i i i i = i ei, r ei = i i overge. (Iégrle de Riem de prmère ). C es-à-dire ei overge solume. Aisi lim ei es fiie e ei overge. si os Eemple : Nure de e si os si e so solume overgees. Cr ue iégrle de Riem overgee. (Théorème de mjorio). e os, où es Eemple : Nure de osh e O : i = = ~ osh osh e +e e. Or : e le héorème d équivlee, i overge. e i osh e overge (voir eemple prééde). Pr Règle d Ael : Soi f e g deu foios défiies sur [; [ e oiues pr moreu sur ou [; ]. Supposos : L foio f es posiive, déroisse e ed vers e. Il eise M > el que g() M,. Alors, l iégrle géérlisée f()g() overge. Eemple : Nure de si L foio es posiive, déroisse e ed vers e. Pour, si = [ os ] = os os os + os = M si D près le héorème d Ael, overge.

7 Remrque : Il eise uu lie ere :. lim f() =. f() overge II) Iégrle géérlisée d ue foio o orée sur u iervlle oré ) Défiiio Soi f ue foio défiie sur ]; ], oiue pr moreu sur ou iervelle [; ] ( < < ), elle que lim + f() = ±. Défiiio : O di que l iégrle géérlisée (ou impropre) f() eise e es fiie. Ds e s f() = lim + f() overge si lim + f(). Sio o di qu elle diverge. Eemple : Nure de l L foio l es oiue sur ]; ]. C es ue iégrle géérlisée à use de l ore. (lim o + l = ). Soi ]; ], o : l u=l v = u = v= = [ l ] Aisi l overge e l =. = l +. Proposiio : Soi, R e f ue foio défiie e oiue pr moreu sur ]; ]. Si lim + f() eise e es fiie, lors f() overge. Eemple de référee : Iégrle de Riem Cosidéros l iégrle où α R. Soi ]; ] : Si α : o α α = α = α+ α α Si α <, lim α+ = α = e l iégrle overge. α o Si α >, lim = e l iégrle diverge. Si α =, = [l ] = l l e l iégrle diverge. α Colusio : L iégrle géérlisée de Riem overge si e seuleme si α <. De l même mière : ( ) α e ( ) α overge si e seuleme si α <. 4

8 ) Iégrle géérlisée de foios posiives Théorème de mjorio : Soi f e g deu foios défiies e posiives sur ]; ] e oiues pr moreu sur ou [; ] ( < < ). Supposos que f() g() pour ou ]; ], lors : Si g() overge, lors f() overge. Si f() diverge, lors g() diverge. Théorème : Règle de «α f()» Soi f ue foio défiie e posiive sur ]; ], oiue pr moreu sur ou [; ] ( < < ). S il eise α < e > el que pour ou u voisige de, α f(), lors f() overge. E priulier si lim + α f() = (α < ), lors f() overge. S il eise α e > el que pour ou u voisige de, α f(), lors f() diverge. E priulier si lim + α f() = (α ), lors f() diverge. π Eemple : Nure de si L foio es oiue e posiive sur ]; π ]. C es ue iégrle géérlisée à use de l si ore. Sur ]; π ], si e do. Or es ue iégrle de Riem de prmère si π do divergee. Pr le héorème de mjorio, diverge. si Eemple : Nure de α L foio α es oiue e posiive sur ]; ]. C es ue iégrle géérlisée à use de l ore. O si que α ~ α. Or α = es ue iégrle de Riem qui overge α si e seuleme si α <, es-à-dire α >. Pr le héorème d équivlee, α overge si e seuleme si α >. Eemple : Nure de e L foio e es oiue e posiive sur ]; ]. C es ue iégrle géérlisée à use de l ore. O lim e =. D près l règle «α f()», l iégrle e diverge. Eemple : Iégrle de Berrd Les iégrles de Berrd α l β overge si e seuleme si (α < ) ou (α = e β > ). ) Iégrle géérlisée de foios queloques Défiiio : Soi f ue foio défiie sur ]; ] e oiue pr moreu sur ou [; ] ( < < ). O di que l iégrle f() es solume overgee ou overge solume si f() overge. Théorème : Ue iégrle solume overgee es overgee. L réiproque es fusse. 5

9 Eemple : Nure de si L foio si es défiie sur ]; ]. Cee foio es de sige queloque (r < > ). O v éudier l overgee solue de ee iégrle. Soi ]; ], o : u= = u = si udu = si u du = u (Mjorio e Riem). si u u si u u du. Or si u u du es solume overgee. Do l limie de du qud + eise e es fiie. O e dédui que lim si eise e es fiie e isi si es solume overgee e do overgee. III) Iégrles plusieurs fois impropres Ceries iégrles géérlisées relève des deu s préédes. Soi f ue foio défiie sur ]; [, oiue pr moreu sur ou iervlle de l forme [; d] ( < < d < ). O di que l iégrle géérlisée f() overge si il eise ]; [ el que les iégrles géérlisées f() e f() overge oues les deu. Ds e s, f() = f() + f(). E priulier f() overge si f() e f() overge. Eemple : Nure de e L foio e es oiue e posiive sur ]; [. C es ue iégrle géérlisée à use des deu ores : e. Cosidéros d ord e. O e ~ e (où ). Or es ue iégrle de Riem overgee. D près le héorème d équivlee (ou mjorio) e overge. Cosidéros mie e. O lim e = lim e =. D près l règle Colusio : «α f()», e overge. e overge. Plus géérleme : Soi f ue foio défiie sur ]; [ privée d u omre fii de poi { i } i=,, ve = < < < < + =. Si pour ou i {; ; }, f es oiue sur ] i ; i+ [ e si les iégrles i+ f() overge, lors f() overge, e i f() = f() i= i i+ 6

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Développement en Série de Fourier

Développement en Série de Fourier F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

AVEC LE HORS NORMES, vous assurez... ... nous aussi! E U R S. G i 2 A A H O R S E U R S. G i 2 A CGCA H O R S N O R M E N O R M E SOCIÉTÉS APRIL GROUP

AVEC LE HORS NORMES, vous assurez... ... nous aussi! E U R S. G i 2 A A H O R S E U R S. G i 2 A CGCA H O R S N O R M E N O R M E SOCIÉTÉS APRIL GROUP L, vous assurez... www.gi2a.com / www.cgca.fr ÉÉ L G... nous aussi! G i 2 G G i 2 G ÉD L assurance hors normes : notre vocation hers partenaires, pécialistes du «hors normes» depuis plus de 20 ans, nous

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010 Lot 4: Validation industrielle Youness LEMRABET Pascal YIM, 19/11/2010 Partenaires Lot 1 Modèle du processus métier L4.1 Modèles PSM Lot 2 Guide d implantation L4.2 Développement & Recette prototype Lot

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR SYSTÈME DE SÉCURITÉ INCENDIE www.marque-nf.com ADR > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL TSM EVOLUTION LA SOLUTION ÉVOLU > 3 versions pré-équipées d ECS (Equipement de Contrôle et

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

La santé de votre entreprise mérite notre protection.

La santé de votre entreprise mérite notre protection. mutuelle mclr La santé de votre entreprise mérite notre protection. www.mclr.fr Qui sommes-nous? En tant que mutuelle régionale, nous partageons avec vous un certain nombre de valeurs liées à la taille

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Un exemple d étude de cas

Un exemple d étude de cas Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui

Plus en détail

Si la vie vous intéresse

Si la vie vous intéresse Si la ie ous intéresse paroles: J Pauze musique: J Pauze / M A Lépine ã 160 c c öguiõt aõcous fr ÛÛ ÛÛÛÛÛ ÛÛÛ ÛÛ ÛÛÛÛÛ ÛÛÛ öõbõasse G 3fr fr fr Û Û ÛÛÛ Û Û Û ( ) 3 ~~ ÿ % % J'ais dans ouer un la monde

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

ANNEXE (article 10) ANNEXE (articles 38 a41) FORMULE 1 CERTIFICATION CONCERNANT UN RETRAIT FONDE SUR DES DIFFICULTES FINANCIERES

ANNEXE (article 10) ANNEXE (articles 38 a41) FORMULE 1 CERTIFICATION CONCERNANT UN RETRAIT FONDE SUR DES DIFFICULTES FINANCIERES ANNEXE (article 10) ANNEXE (articles 38 a41) FORMULE 1 CERTIFICATION CONCERNANT UN RETRAIT FONDE SUR DES DIFFICULTES FINANCIERES 1. Institution financiere concernee : (inscrire Ie nom de I 'institution

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

RECAPITULATIF PLANS Pour quelle école?

RECAPITULATIF PLANS Pour quelle école? V vz - 90 éèv, v ê céré cmm "p éc" V vz + 90 éèv, v ê céré cmm "gr éc" V ê éc prmr, z vr p : A D V ê éc cr, z vr p : F D V ê éc prmr, z vr p : B, C E V ê éc cr, z vr p : G, H I P gb, z vr p A P gb, z vr

Plus en détail

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com Dreo Aeropor Mrselle Provee D 9 SADY s TRADING WOOD TRADING Déoro, équpeme de l Mso www.sdys-rd.om Jver 2013 ss prx Premps / Éé ZI Les Bols Dreo Mrselle - Ax ZI Les Esroubls SADY s TRADING Les ouveués

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

SEPTEMBRE 2014 OCTOBRE 2014

SEPTEMBRE 2014 OCTOBRE 2014 1 1 SA 13 DI 14 DI 21 HALTEROPHILIE - CALENDRIER SAISON 2014 / 2015 Benjamins : U 11 = 10-11 ans / Minimes : U13 = 12-13 ans / Cadets : U15 et U17 = 14-15 & 16-17 / Juniors : U20 = 18-19-20 ans. SEPTEMBRE

Plus en détail

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

DOCUMENT D OUVERTURE DE COMPTE POUR PERSONNES MORALES

DOCUMENT D OUVERTURE DE COMPTE POUR PERSONNES MORALES EJ: DOCUMENT D OUVERTURE DE COMPTE POUR PERSONNES MORALES 1. TITULAIRE(S) TITULAIRE 1 Langue Français Allemand Anglais Néerlandais Raison sociale Forme juridique Date de constitution Lieu d incorporation

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Inscription en ligne FQSC. Guide d utilisation

Inscription en ligne FQSC. Guide d utilisation Inscription en ligne FQSC Guide d utilisation Ce Guide est rédigé comme aide-mémoire pour l achat de votre licence sur le site internet de la FQSC. Dans un prem ier temps, vous devrez vous rendre sur le

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Nos partenaires d aujourd hui sont les leaders de demain

Nos partenaires d aujourd hui sont les leaders de demain Nos partenaires d aujourd hui sont les leaders de demain SECURITY SOLUTIONS Godrej & Boyce Mfg. Co. Ltd. Pirojshanagar, Vikhroli, Mumbai 400 079. INDIA. Website: www.godrej-security.de - www.godrejsecure.com

Plus en détail

Groslay - ERP catégories 1 à 5 avec sommeil

Groslay - ERP catégories 1 à 5 avec sommeil Groslay - EP catégories 1 à 5 avec sommeil 1ère Catégorie DECAHO avenue de la épublique AGASI BOAGE avenue de la épublique 2ème Catégorie JADIEIE JADIAD IED rue de Sarcelles 3ème Catégorie EGISE rue du

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Elargissez l horizon de votre gestion. www.mercator.eu

Elargissez l horizon de votre gestion. www.mercator.eu www.mercator.eu Elargissez l horizon de votre gestion Mercator se profile comme la solution de gestion commerciale et de comptabilité alliant simultanément les avantages de la solution informatique standard

Plus en détail

Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+

Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+ 01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes!

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes! Lyon City Card 1 jour 2 jours 3 jours Ta xis et M inibus - Tarifs forfaitaires Jour : 7h - 19h Nuit : 19h - 7h Lyon/ Villeurbanne - Aéroport St Exupéry 59 81 Lyon 5ème et 9ème excentrés - Aéroport St Exupéry

Plus en détail

Pression de fonctionnement maxi Température C Débit à 6 bar avec p=1 (Nl/min) 10-5 +50 1500 9 10-5 +50 1500 9 10-5 +50 1500 9

Pression de fonctionnement maxi Température C Débit à 6 bar avec p=1 (Nl/min) 10-5 +50 1500 9 10-5 +50 1500 9 10-5 +50 1500 9 Disribueur 5/ Tille 6 mm LINE Série 600 Pneumique - ressor 61.5.00.19 Poids gr.35 Pression minimum de piloge br Pour l coe "A" oir l réérence de commnde Tille Serie Disribueur Pneumique 600_FR_01 mm 5/

Plus en détail

Bloc 1 U. E. Automobile H/an CR Quadrimestres

Bloc 1 U. E. Automobile H/an CR Quadrimestres Bloc 1 U. E. Automobile H/an CR Quadrimestres Dessin technique 0 2 Electricité 1 Electricité électronique appliquée - laboratoire 15 Mécanique 1 Mécanique et mécanismes - applications 22,5 Technologie

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

L'important C'est la rose

L'important C'est la rose L'important 'est la rose Gilbert ecaud rr: M. de Leon opista: Felix Vela 200 Xiulit c / m F m m 7 9. /. m...... J 1 F m.... m7 ro - se. rois - ro - se. rois - ro - se. rois - ro - se. rois - oi qui oi

Plus en détail

Coûts, avantages et inconvénients des différents moyens de paiement

Coûts, avantages et inconvénients des différents moyens de paiement Coûts, avantages et inconvénients des différents moyens de paiement Présentation de l'étude de la Banque nationale de Belgique à la conférence de l'esta (Valence, le 15 mai 2006) Historique de l'étude

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Chapitre VI. Méthodes d identification

Chapitre VI. Méthodes d identification hpre VI éhdes d def Vers /..00 I.D. Ld, mmde des ssèmes, hpre 6 hpre 6. éhdes d'def 6. éhdes d'def sées sr le lhsseme de l'errer de préd pe I 6.. dres rrés rérsfs..r. 6.. dres rrés éeds..e. 6..3 xmm de

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Etude du potentiel de développement aux abords des gares du Boulonnais

Etude du potentiel de développement aux abords des gares du Boulonnais Etude du potentiel de développement aux abords des gares du Boulonnais 6 octobre 2011 Atelier des Méthodologies du Foncier EPF Sommaire I. Contexte de l étude et objectifs II. La méthodologie III. Présentation

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

TRIBUNAL DE POLICE ET SANCTIONS PENALES : PEINES PRINCIPALES, SUBSIDIAIRES & ACCESSOIRES

TRIBUNAL DE POLICE ET SANCTIONS PENALES : PEINES PRINCIPALES, SUBSIDIAIRES & ACCESSOIRES TRIBUNAL DE POLICE ET SANCTIONS PENALES : PEINES PRINCIPALES, SUBSIDIAIRES & ACCESSOIRES Adrien MASSET Avocat Professeur U.Lg Le 26.01.2012 Jeune Barreau de Verviers Voir notre étude in Chronique de droit

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

1.1 Codage de source et test d hypothèse

1.1 Codage de source et test d hypothèse Théorie de l information et codage 200/20 Cours 8février20 Enseignant: Marc Lelarge Scribe: Marc Lelarge Pour information Page webdu cours http://www.di.ens.fr/~lelarge/info.html Notations Pour des variables

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

MANAGEMENT SPÉCIALISTE DE LA CONDUITE D'UN GROUPE ET CERTIFICATS EN LEADERSHIP & MANAGEMENT

MANAGEMENT SPÉCIALISTE DE LA CONDUITE D'UN GROUPE ET CERTIFICATS EN LEADERSHIP & MANAGEMENT Secteur Tertiaire MANAGEMENT SPÉCIALISTE DE LA CONDUITE D'UN GROUPE ET CERTIFICATS EN LEADERSHIP & MANAGEMENT Brevet fédéral Préparation aux examens 1 Situation de la formation Domaines Bilans de compétences

Plus en détail

F. Barthélemy. 17 mai 2005

F. Barthélemy. 17 mai 2005 Typage de la généricité en Java F. Barthélemy 17 mai 2005 1 Le shéma général La g én éricit é en Java est un ajout r éalis é sur un langage existant depuis d éjà une dizaine d ann ées, avec des contraintes

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

centre de congres Niveau inférieur CENTRE DE CONGRES + SALLES MULTIFONCTIONNELLES U T S X Q V P Contact: vente@palexpo.

centre de congres Niveau inférieur CENTRE DE CONGRES + SALLES MULTIFONCTIONNELLES U T S X Q V P Contact: vente@palexpo. centre de congres 5 5 0 0 m D P Ô T iveau inférieur 3 U T U V D P I IP T FO Y ) B T s m 50 P od 0 p É ula ers ble on IÈ s - nes sty le thé âtr e lle D O G T T sa O T G D (3 V P X 5 0 0 m 3 Q 0 3 VI I T

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail