3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

Dimension: px
Commencer à balayer dès la page:

Download "3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton"

Transcription

1 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1

2 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité d arbitrage cénarii sur les prix futurs

3 Un exemple simple du modèle Binomial Deux titres : 1 action, 1 option d achat européen Taux sans risque 1% Marché complet : constituer un portefeuille sans risque Le cours d une action est actuellement de $0 Dans 3 mois, le prix pourra être de $ ou $18 Call : K 1 Problème : valeur de cette option aujourd hui? 0 $0 Prix de l option? 3 $ Valeur de l option $1 max ( 1 ; 0) 3 $18 Valeur de l option $0 Max (18 1 ; 0) 3

4 résolution Plaçons nous à l échéance (3 mois). oit le portefeuille sans risque composé de actions achetés et d un call vendu,? i le portefeuille est sans risque > la valeur est constante quelque soit l issue ($ ou 18$) > ¼ Alors la valeur du portefeuille est ¼ - 1 4,5$ 4

5 Résolution fin Plaçons nous en date 0 En l absence d opportunité d arbitrage, la valeur actuelle du portefeuille est 4,5 e 0,1 0,5 4,3670 Or ce portefeuille correspond aujourd hui à la détention de ¼ d action à 0 et d une option d achat 4, ¼ - f f 0,633$ 5

6 Généralisation à 1 période Nombre d actions ƒ u 0u f d 0 ƒ 0 d 0 u ƒ u 0 d ƒ d u, d 1 + taux de variation ƒ 0 ( 0 u ƒ u )e rt Valeur de l option en remplaçant par sa valeur : ƒ [ pƒ u + (1 p)ƒ d ]e rt avec Remarque : la distribution de probabilités n intervient pas dans le calcul p e u rt d d 6

7 Évaluation risque neutre Pour évaluer une option, il est possible en choisissant la bonne probabilité de faire comme si les agents étaient neutres face au risque. La valeur ainsi calculée est correcte, non seulement dans l univers risque-neutre, mais aussi dans l univers réel (avec aversion au risque) oit p la probabilité de hausse, p assure un rendement du portefeuille égal au taux sans risque. 0 u ƒ u 1 p 0 ƒ 1 p 0 d 18 ƒ d 0 7

8 Détermination de p : p + 18 (1 p ) 0 e 0.1 1/4 > p 0,653 rt e d p u d e ,1 0,9 0,9 0,653 La valeur de l option est dans ces conditions égale à e 0,1 1/4 (0, ,3477 0) 0,633 Rem. : valeur d un portefeuille sans risque (d arbitrage) évaluation risque-neutre 8

9 9 Les arbres binomiaux en pratique 30 périodes ( t), l évolution du cours de l action est binomiale à chaque période. À 30 périodes, 31 valeurs finales sont possibles et 30 trajectoires possibles. Les taux de variations sont constants t t e u d e u σ σ 1 pour un future 1 risque étranger le taux sans monnaie avec pour la le dividende pour un indice avec pour une action sans dividende ) ( ) ( a r e a q e a e a f t r r t q r t r f d u d a p

10 résolution La résolution se fait par backward induction en calculant à partir du dernier la valeur du portefeuille ƒ e r T [ pƒ u + (1 p)ƒ d ] Pour les options américaines, la valeur de l option est le maximum entre : - La valeur actuelle de l option du nœud qui suit - La rémunération induite par l exercice anticipé de l option 10

11 Le modèle de Black, choles et Merton 1. Les hypothèses : processus de Wiener, log-normalité. Le modèle 11

12 1. Les hypothèses du modèle Le cours de l action suit un processus de Wiener Il n y a aucune restriction sur les ventes à découvert. Aucun coût de transaction ni impôt. Les actifs financiers sont parfaitement divisibles. Pas de distribution de dividendes sur le sousjacent pendant la durée de vie de l actif dérivé. Aucune opportunité d arbitrage Le marché fonctionne en continu Le taux sans risque est constant et fixe, quelle que soit la maturité du produit dérivé. 1

13 Retour sur le processus d évolution du cours de l action Le cours des actions évolue selon un mouvement brownien géométrique : La rentabilité attendue du détenteur d une action, dans un court intervalle de temps est distribuée selon la loi normale. Les rentabilités de deux périodes ne se chevauchant pas sont indépendantes. Dans ces conditions la valeur de l action à une date future suit une distribution log-normale. 13

14 Processus de Wiener général dx a dt + b dz Valeur de la variable x Mouvement brownien Tendance «drift» a dt temps 14

15 Processus aléatoire du cours des actions La tendance : : La rentabilité d une action suit une tendance constante : µ oit la valeur de l action à l instant t, µ sera le drift d µ dt + σ dz La volatilité : Les variations de cours dans un petit intervalle de temps suivent la même loi que le cours de l action. L écart-type de la variation de cours pendant t est proportionnel au cours de l action. d µ dt + σ dz En temps discret µ t + σ ε ε suit une loi normale N (0,1) t 15

16 Exemple upposons que µ 0,15, σ 0,30, et t 1 semaine (1/5 an 0,019), 100 Le processus s écrit alors : En temps discret, soit d 0,15dt + 0,3dz 0,15 t + 0,3ε t 100(0,15 0, ,3 0,019ε ) 0,88 + 4,16 ε 16

17 imulation de Monte-Carlo Week tock Price at tart of Period Random ample for ε Change in tock Price,

18 Le lemme d Itô La valeur d une option sur action est une fonction du cours aléatoire de l action sous-jacente et du temps. i le cours d une action suit un processus de Wiener, d µ dt + σ dz dg alors il existe une fonction G de et de t dont le processus s écrit : G µ + G t + ½ G σ dt + G σ dz 18

19 Propriété de la loi log-normale G ln Dérivées premières et secondes G G t 1 0 G 1 Application du Lemme d Itô dg σ µ dt + σ dz Drift constant Écart type constant 19

20 La distribution log-normale Distribution dissymétrique, légèrement décalée par rapport à la moyenne. 0

21 Propriétés de la loi log-normale suite (ln T ln 0 ) suit une loi normale µ espérance de rentabilité requise par l investisseur σ volatilité du cours de l action Ln T suit une loi normale N N ln µ 0 σ T, σ T σ + µ T, σ T Espérance de rentabilité et variance de T E( ) T e µ T µ T σ T var ( ) e ( e 1) T 0 0 1

22 Exemple Une action cotée 40, espérance de rentabilité annuelle 16%, volatilité 0% par an. Le cours probable dans 6 mois suit une loi log normale. Ln suit une loi normale 0, N ln ,16 *0,5; 0,* 0, 5 N (3,759;0,141) Une variable normalement distribuée se situe entre +/- 1,96 fois son écart-type autour de sa moyenne. Avec un intervalle de confiance à 95% 3,759 1,96 0,141 < e 3,4864 3,55 < < T T < < e ,56 ln T < 3, ,96 0,141

23 Problèmes σ? Estimation de la volatilité : 0 50% pour une action Ecart-type des rentabilités à partir des données historiques σ ˆ s τ Estimation des écartstypes des ln ( i / i-1 ) Durée des intervalles de temps en années (jours de bourses, 5) Volatilité implicite, perçue par les traders à travers les prix des options des différentes échéances futures 3

24 . Le modèle idée générale Raisonnement identique à celui des arbres binomiaux : construction d un portefeuille sans risque dérivé + action, dont l espérance de rentabilité taux sans risque (absence d opportunité d arbitrage). ur un temps très court, la valeur du produit dérivé parfaitement corrélée avec le prix de l action sousjacente > valeur globale du portefeuille connue avec certitude. Réajustement de portefeuilles après chaque intervalle très court de temps 4

25 L équation aux dérivées partielles de Black-choles-Merton ƒ ƒ ƒ + r + ½ σ rƒ t f est une fonction du sous-jacent et du temps. Dans le cas d un call européen, la condition aux bornes est f max ( K ; 0) quand t T 5

26 Les formules d évaluation de Black et choles À la date 0, la valeur d un call européen (c) et d un put européen (p) c p avec 0 K e N( d d d 1 rt 1 ) N( ln( ln( K e d 0 0 ) rt N( d / K) + σ / K) + σ 0 ( r N( T ( r T + ) σ σ d 1 ) / ) T / ) T d 1 N(.) loi normale cumulée centrée réduite (0,1) Evaluation indépendante des préférences individuelles (aversion au risque) et à µ σ T 6

27 La normale cumulée d 1 7

28 Propriétés des formules de Black et choles Impact du cours initial Quand 0 >, c > 0 Ke -rt et p >0 En effet : d 1 et d >, donc N(d 1 ) et N(d ) > 1 et N(-d 1 ) et N(-d ) > 0 Quand 0 décroît, c > 0 et p > Ke -rt 0 Impact de la volatilité : σ > 0 action est sans risque, sa valeur dépend du taux sans risque r c max ( 0 Ke -rt ; 0) ; p max (Ke -rt - 0 ; 0) 8

29 d d 1 Exemple À 6 mois de l échéance d une option, le cours de l action sous-jacente est 4, K 40, r 10%, σ 0% 4 ln( ) , 0,1 + 0, 0,5 4 0, ln( ) + 0,1 40 0, 0,5 c p ,049N ( 0,7693 0,678 4N(0,7693) 0,678) Ke rt 4N( 40e 38,049N(0,678) 0,05 0,7693) 4,76 38,049 0,81 Achat d un call si augmentation anticipée des cours au moins de (K + c ) 0,76 Achat d un put si baisse anticipée au moins de ( 0 + c) K,81 9

30 Les lettres grecques, Θ, Γ, υ, ρ delta, thêta, gamma, véga, rhô Chaque lettre mesure une dimension différente du risque de positions en options. L objectif du trader gérer afin de rendre les risques pris acceptables. Options européennes sans versement de dividendes (approfondissement Hull, chap. 15) 30

31 La couverture par le (delta) Taux de variation de la valeur de l option par rapport à celle du sous-jacent. Dérivée partielle de c et de p par rapport à Valeur de l option B pente A Cours de l action 31

32 Le delta d une option européenne sur action sans dividende Pour un Call européen N (d 1 ) Delta compris entre [0 ; 1] Couverture en delta-neutre conserver une position longue sur N (d 1 ) actions à tout instant > insensible à une petite variation de cours Pour un Put européen N (d 1 ) 1 1 Delta compris entre [-1 ; 0] du call du put K - 1 K 3

33 Θ Thêta, Θ Le taux de variation de la valeur du portefeuille par rapport à la durée de vie de l option, toutes choses égales par ailleurs. Dérivée partielle de la valeur d une option par rapport au temps. Les options ont en général un thêta < 0 ; le sous-jacent à un thêta 0 0 N ( d1) σ call rke rtn ( d T ( ) ) N ( x) 1 π Θ e ( put ) x 0 N ( d T 1 ) σ + rke rtn ( d 33 )

34 Gamma Γ Dérivée du delta, dérivée seconde de la valeur de l option par apport au cours du support ensibilité du delta aux variations du prix du support. i le gamma est faible, le delta varie lentement et il n est pas nécessaire d ajuster fréquemment le portefeuille pour maintenir un portefeuille delta-neutre. Portefeuille gamma-neutre : protection contre des variations de cours de grande amplitude entre deux réajustements de couverture Γ ( call) Γ ( put) N 0σ ( d ) 1 T 34

35 Le véga υ Contrairement à l une des hypothèses du modèle, la volatilité du sous-jacent n est pas constante. ensibilité de la valeur des options à un changement de σ. Dérivée partielle / σ Le véga d une option standard (call ou put) est > 0 Il augmente avec sa maturité et diminue avec le passage du temps. Une position véga-neutre protège contre les variations de σ. ν ( call ) ν ( put) T N ( d )

36 Le rhô ρ Mesure l influence d une variation du taux d intérêt sur la valeur des options. Dérivée partielle / r Risque de taux ρ ρ ( call ) KTe rt N ( d ) ( put ) KTe rt N ( d ) 36

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

3- Valorisation d'options

3- Valorisation d'options 3- Valorisation d'options Valorisation des options classiques : options d'achat (call) options de vente (put) Une pierre angulaire de la finance moderne : décisions d'investissement (options réelles) conditions

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

2- Comment les traders gèrent les risques

2- Comment les traders gèrent les risques 2- Comment les traders gèrent les risques front office middle office back office trading échange d'actifs financiers contrôle des risques, calcul du capital requis enregistrement des opérations traitement

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape CALCULATEUR D OPTIONS GUIDE PRATIQUE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table des matières Introduction 3 Évaluation des options 4 Exemples 6 Évaluation d une option de style américain

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Stratégies sur options et Pricer d'options

Stratégies sur options et Pricer d'options Stratégies sur options et Pricer d'options Définition Une option (ou Warrant) est un contrat qui confère à son porteur le droit d acheter ou de vendre un sous-jacent (action, obligation, indice synthétique,

Plus en détail

Année 2009/2010. Rapport de projet de dernière année ISIMA F4

Année 2009/2010. Rapport de projet de dernière année ISIMA F4 Année 2009/2010 Rapport de projet de dernière année ISIMA F4 «Evaluation d options Européenne Vanille, Américaine Vanille et Asiatique» Elaboré par : Encadré par : Monsieur Mehdi Fhima Résumé Les options

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.

Plus en détail

Couverture et calcul de Malliavin

Couverture et calcul de Malliavin Couverture et calcul de Malliavin L. Decreusefond TPT L. Decreusefond (TPT) Couverture et calcul de Malliavin 1 / 1 Modèle binomial L. Decreusefond (TPT) Couverture et calcul de Malliavin 2 / 1 Modèle

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Les Variable Annuities sous la directive Solvabilité II

Les Variable Annuities sous la directive Solvabilité II Les Variable Annuities sous la directive Solvabilité II Mémoire présenté le vendredi 10 juin 2011 par Clément Schmitt clement.schmitt@fixage.com Introduction Solvabilité II impose des fonds propres réglementaires

Plus en détail

L évaluation des options sur devise

L évaluation des options sur devise Université IBN ZOHR Faculté des sciences juridiques économiques et sociales Agadir Agadir Master Recherche économie appliquée Matière : finance international L évaluation des options sur devise Préparé

Plus en détail

Chapitre 5 : Théorie et Gestion de Portefeuille

Chapitre 5 : Théorie et Gestion de Portefeuille Chapitre 5 : Théorie et Gestion de Portefeuille I. Notions de rentabilité et de risque II. Diversification de portefeuille III. Optimisation de Markowitz III.1. Portefeuilles composés d actifs risqués

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

Dérivés Financiers Caractéristiques des contrats d options

Dérivés Financiers Caractéristiques des contrats d options Dérivés Financiers Caractéristiques des contrats d options Owen Williams Grenoble Ecole de Management Accréditations > 2 Introduction Une option donne au détenteur le droit de faire quelque chose dans

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE Avec le développement des produits dérivés, le marché des options de change exerce une influence croissante sur le marché du change au comptant. Cette étude,

Plus en détail

Marchés Financiers. Cours appliqué de finance de marché. Options

Marchés Financiers. Cours appliqué de finance de marché. Options Marchés Financiers appliqué de finance de marché Options 1 Options Généralités Instruments permettant de prendre position sur l évolution d un actif. On peut parier à la hausse d une valeur (achat de Call),

Plus en détail

INTRODUCTION INTRODUCTION

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Les options sont des actifs financiers conditionnels qui donnent le droit mais pas l'obligation d'effectuer des transactions sur des actifs supports. Leur intérêt réside dans

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Chapitre 9 Le modèle Cox-Ross-Rubinstein

Chapitre 9 Le modèle Cox-Ross-Rubinstein Chapitre 9 Le modèle Cox-Ross-Rubinstein Considérons un actif valant S 0 à la période initiale et qui, à chaque période, peut être haussier (et avoir un rendement u) avec une probabilité p ou baissier

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Le CVG (certificat de valeur garantie) comme actif patrimonial : une étude de cas Professeur Didier MAILLARD Janvier 2003

Le CVG (certificat de valeur garantie) comme actif patrimonial : une étude de cas Professeur Didier MAILLARD Janvier 2003 Conservatoire National des Arts et Métiers Chaire de BANQUE Document de recherche n 4 (GP) Le CVG (certificat de valeur garantie) comme actif patrimonial : une étude de cas Professeur Didier MAILLARD Janvier

Plus en détail

I - MODEL 1 PAR ARBRE

I - MODEL 1 PAR ARBRE Obligation convertible (Vernimmen) L'obligation convertible est une obligation qui onne à son étenteur, penant la périoe e conversion, la possibilité e l'échanger contre une ou plusieurs actions e la société

Plus en détail

Chapitre 4 : construction de portefeuille (I)

Chapitre 4 : construction de portefeuille (I) Chapitre 4 : construction de portefeuille (I) 25.10.2013 Plan du cours Risque et rentabilité : un premier aperçu Mesures traditionnelles du risque et rentabilité Rentabilité historique des actifs financiers

Plus en détail

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version Ce document rassemble de brèves notes de cours. Les résultats sont proposés sans démonstration, les preuves ayant été données en

Plus en détail

Qu'est-ce qu'un fonds à formule? Document non contractuel

Qu'est-ce qu'un fonds à formule? Document non contractuel Qu'est-ce qu'un fonds à formule? THESAURUS 2013 Tous droits de CONFIDENTIEL reproduction réservés Obligation Options 100% Capital garanti Performance 1- Qu est-ce qu un fonds à formule «Un fonds à formule

Plus en détail

Finance des matières premières (2) Les options, marchés complets, AOA

Finance des matières premières (2) Les options, marchés complets, AOA Finance des matières premières (2) Les options, marchés complets, AOA Joël Priolon - 12 mars 2014 Définition générale Une option est un contrat financier qui lie : l émetteur de l option et le détenteur

Plus en détail

Impact du calibrage d un GSE sur le Best Estimate

Impact du calibrage d un GSE sur le Best Estimate Impact du calibrage d un GSE sur le Best Estimate Journée d études de l Institut des Actuaires et du SACEI 25 Septembre 2015 Michael Donio Directeur Tel: : +33(0) 7 63 30 22 70 Mail: michael.donio@sia-partners.com

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Contrat didactique Finance stochastique

Contrat didactique Finance stochastique Contrat didactique Finance stochastique Les compétences de ce cours sont à placer dans le contexte général de l appropriation de la notion de modèle mathématique et de son utilisation pratique en gestion

Plus en détail

Calibration des modèles

Calibration des modèles Calibration des modèles Rapport de projet de fin d études Auteur : Professeurs responsables : LEFEVERE Laurent FINTZ Nesim LONGEVIALLE Antoine TAFLIN Erik MANOLESSOU Marietta Table des matières Introduction

Plus en détail

Norme IFRS 2 Paiement fondé sur des actions

Norme IFRS 2 Paiement fondé sur des actions Norme IFRS 2 Paiement fondé sur des actions **** FONDACT 11 janvier 2007 Xavier Paper et Patrick Grinspan Paper Audit & Conseil 1 Sommaire 1. Le contexte 2. Un exemple 3. Le cadre juridique et fiscal 4.

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Sfev. Matinales de la SFEV. Bsar, stock options, management package les modèles d évaluation d options dans la pratique

Sfev. Matinales de la SFEV. Bsar, stock options, management package les modèles d évaluation d options dans la pratique Sfev Matinales de la SFEV Bsar, stock options, management package les modèles d évaluation d options dans la pratique Thomas Bouvet, Directeur Général délégué d Europe Offering Frédéric Dubuisson, Director

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude.

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Le Cadre Etats de la nature : s = 1,.S,.. p(1),, p(s), Actifs a : m+1 actifs de base {a(0), a(m)} Matrices

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS CHAPITRE LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS TESTEZ VOS CONNAISSANCES Comment définir un contrat à terme? Comment se dénoue un contrat à terme? Quelle est la définition d'une option

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

Manuel de référence Options sur actions

Manuel de référence Options sur actions Manuel de référence Options sur actions Groupe TMX Actions Bourse de Toronto Bourse de croissance TSX Equicom Produits dérivés Bourse de Montréal CDCC Marché climatique de Montréal Titres à revenu fixe

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Options exotiques complexes

Options exotiques complexes Options exotiques complexes Cette série d exercices porte sur les options exotiques (chapitre 14 ) avec éventuellement des taux d intérêt stochastiques (chapitres 16 et 17). Les exercices les plus difficiles

Plus en détail

Modèle de Black-Scholes

Modèle de Black-Scholes Modèle de Black-Scholes R. WARLOP Maîtres de stages : Laurent DESVILLETTES et Francesco SALVARANI École Normale Supérieure de Cachan 29 juin 2011 R. WARLOP [1em] Maîtres Modèle de stages de Black-Scholes

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Produits Structurés. Construction & Gestion du risque. Travail de Bachelor réalisé en vue de l obtention du Bachelor HES. par : Olivier BOUZO

Produits Structurés. Construction & Gestion du risque. Travail de Bachelor réalisé en vue de l obtention du Bachelor HES. par : Olivier BOUZO Produits Structurés Construction & Gestion du risque Travail de Bachelor réalisé en vue de l obtention du Bachelor HES par : Olivier BOUZO Conseiller au travail de Bachelor : Jean-Michel SAHUT, Professeur

Plus en détail

Options. Brochure destinée aux investisseurs particuliers BASIC. Société du groupe KBC. Publié par KBC Securities en collaboration avec Euronext

Options. Brochure destinée aux investisseurs particuliers BASIC. Société du groupe KBC. Publié par KBC Securities en collaboration avec Euronext Brochure destinée aux investisseurs particuliers Publié par KBC Securities en collaboration avec Euronext p. 2 Index 1. Options call et put 3 2. Acheteur et vendeur 4 3. Standardisation 5 Valeur sous-jacente

Plus en détail

2- Instruments de gestion des risques de marché

2- Instruments de gestion des risques de marché 2- Instruments de gestion des risques de marché Objectif : présenter les produits dérivés utilisés dans la gestion des risques de marché. 1- CONTRATS À TERME 2- SWAPS 3- OPTIONS CLASSIQUES Jean-Baptiste

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Les produits structurés après la crise. Commerzbank Partners, vos solutions d investissement

Les produits structurés après la crise. Commerzbank Partners, vos solutions d investissement Les produits structurés après la crise Commerzbank Partners, vos solutions d investissement Sommaire Introduction Besoins en placement: un peu d histoire Les produits structurés Fonctionnement Le zéro

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

Chapitre 5 : produits dérivés

Chapitre 5 : produits dérivés Chapitre 5 : produits dérivés 11.11.2015 Plan du cours Options définition profil de gain à l échéance d une option déterminants du prix d une option Contrats à terme définition utilisation Bibliographie:

Plus en détail

Question 1: Analyse et évaluation des obligations

Question 1: Analyse et évaluation des obligations Question 1: Analyse et évaluation des obligations (48 points) M. Smith, responsable des investissements obligataires dans une société de conseil en investissements, a analysé la courbe des taux des obligations

Plus en détail

COMPRENDRE LA BOURSE

COMPRENDRE LA BOURSE COMPRENDRE LA BOURSE Les options Ce document pédagogique n est pas un document de conseils pour investir en bourse. Les informations données dans ce document sont à titre informatif. Vous êtes seul responsable

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail