CH.1 Automates finis

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CH.1 Automates finis"

Transcription

1 CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch Les utomtes finis déterministes M = (Q, Σ, δ, q 0, F) est un AFD Q ensemle fini d étts Σ lphet fini q 0 étt initil F ensemle des étts terminux δfonction de trnsition Q x Σ Q Fonction de trnsition étendue ux mots : 1 δ'(q, ) = q 2 δ'(q, w) = δ(δ'(q, w), ) Les deux coïncident sur les lettres Automtes ch1 2

2 Mot x ccepté ou reconnu si δ'(q 0, x) est terminl. Reconnissnce de x en temps O(n). Lngge ccepté L(M) = ensemle des mots cceptés. Lngge reconnissle = lngge ccepté pr un AFD Exemple L(M) = mots se terminnt pr Automtes ch1 1.2 Les utomtes finis non déterministes A priori plus générl. Utilité théorique, mis ussi plus fcile à construire. Mis plus coûteux à utiliser. M = (Q, Σ, δ, q 0, F) est un AFN Seule différence : δfonction de trnsition Q x Σ 2 Q Fonction de trnsition étendue ux mots : 1 δ'(q, ) = {q} 2 δ'(q, w) = {p : r δ'(q, w) et p δ(r, )} Les deux coïncident sur les lettres δ'(p, w) = δ'(q, w) Automtes ch1 4

3 Exemple L(N) = mots se terminnt pr, Mot x ccepté ou reconnu si δ'(q 0, x) contient un étt terminl = il existe un chemin de q 0 vers un étt terminl dont l suite des étiquettes vut x. Reconnissnce de x en temps O(2 n ). Lngge ccepté L(N) = ensemle des mots cceptés. Théorème : Si L est ccepté pr un AFN, lors il est ccepté pr un AFD. Automtes ch Les utomtes vec e-trnsitions Comme les AFN, mis il peut ussi y voir des trnsitions sur le mot vide. Exemple L(N) = mots se terminnt pr Automtes ch1 6

4 Mot x ccepté ou reconnu s'il existe un chemin de q 0 vers un étt terminl dont l suite des étiquettes vut x. Le mot vide est neutre pour l concténtion, donc tous les chemins ne sont ps de longueur n. Reconnissnce de x en temps O(2 n ). Lngge ccepté L(N) = ensemle des mots cceptés. Notion importnte : l e-clôture. clot(q) = {p : il existe un chemin étiqueté de q à p} L détermintion de l -clôture se fit pr un lgorithme d'explortion du grphe otenu en ne conservnt que les trnsitions vides. Automtes ch1 7 Théorème : Si L est ccepté pr un AFN vec -trnsitions, lors il est ccepté pr un AFN sns -trnsitions. Corollire : Les lngges cceptés pr les AFD, les AFN sns -trnsitions et les AFN vec -trnsitions coïncident. Automtes ch1 8

5 1.4 Les expressions régulières Elles permettent de spécifier priori un lngge, lors que les utomtes permettent de tester l'pprtennce d'un mot à un lngge déjà spécifié. Opértions régulières sur les lngges : - réunion ensemliste ou + - produit de concténtion - fermeture trnsitive * Les expressions régulières sont des chînes de crctères contituées de lettres et de, de prenthèses et de symoles opértoires +,. ou <rien>, *. Cette chîne peut être vide, notée. Automtes ch1 9 Expressions régulières : i) L expression régulière représente{}; ii) Si est une lettre, lors c est une expression régulière qui représente{} ; iii) Si r et s sont des expressions régulières qui représentent L(r) et L(s), lors : r + s représente L(r) L(s) (ou r s) rs représente L(r)L(s) r* représente L(r)*. Lngge régulier = lngge représenté pr expression régulière. Tous les lngges finis sont réguliers. Automtes ch1 10

6 Exemples : ( + )* représente tous les mots sur {, } *(*)* représente le même lngge ( + )* représente les mots se terminnt pr. Théorème : Tout lngge régulier est reconnissle pr un AFN vec -trnsitions. Corollire : Tout lngge régulier est reconnissle. Démonstrtion : Algorithme de Thompson Décrit l'ssemlge des utomtes correspondnt ux opértions sur les expressions régulières. Exemple : on retrouve l'afn vec -trnsitions de l p.6 à prtir de r = ( + )*. Automtes ch1 11 pour : N() pour : N() pour r + s : N(r + s ) N(r) N(s) pour rs : N(rs) N(r) N(s) pour r* : N(r*) N(r) Automtes ch1 12

7 1.5 L'équivlence des modèles Démonstrtions des théorèmes des prgrphes 2 et. Théorème : Si L est ccepté pr un AFN, lors il est ccepté pr un AFD. Démonstrtion : Donnée : un AFN sns -trnsition N. Résultt : un AFD M cceptnt le même lngge. Les étts de M sont des ensemles d'étts de N. L'étt initil de M est [q 0 ]. Si P est un ensemle d'étts de N, on définit δ'(p, ) = p P {q : q δ(p, )}. Ceci définit récursivement un l'ensemle des étts de M. Un étt P de M est terminl s'il contient un étt terminl de N. Automtes ch1 1 Remrques : Si P =, c'est un étt "pouelle" de M. Si δ'(p, ) = Q, lors tout étt de N qui pprît dns Q peut être tteint à prtir d'un étt qui pprît dns P pr une flèche étiquetée. Cette dernière remrque permet d'étlir que δ'([q 0 ], w) est finl dns M si et seulement si il existe dns N un chemin étiqueté w de q 0 à un étt terminl de N. Ceci étlit le théorème. Exemple : utomte du prgrphe 2. Automtes ch1 14

8 , ,1 0,1,2 0, On retrouve l'afd du prgrphe 1. Automtes ch1 15 Théorème : Si L est ccepté pr un AFN vec -trnsitions, lors il est ccepté pr un AFD. Démonstrtion : Donnée : un AFN vec -trnsition N. Résultt : un AFD M cceptnt le même lngge. Les étts de M sont des ensemles d'étts de N. Il fut fire ttention ux -clôtures. L'étt initil de M est Clot([q 0 ]). Si P est un ensemle d'étts de N, on définit δ'(p, ) = p P Clot({q : q δ(p, )}). Ceci définit récursivement un l'ensemle des étts de M. Un étt P de M est terminl s'il contient un étt terminl de N. Automtes ch1 16

9 Remrques : Si δ'(p, ) = Q, lors tout étt de N qui pprît dns Q peut être tteint à prtir d'un étt qui pprît dns P pr une flèche étiquetée ou pr un chemin étiqueté Cette dernière remrque permet d'étlir que δ'(clot([q 0 ]), w) est finl dns M si et seulement si il existe dns N un chemin étiqueté w de q 0 à un étt terminl de N. Ceci étlit le théorème. Exemple : utomte du prgrphe, construit pr l'lgorithme de Thompson à prtir de l'expression ( + )*. Automtes ch Les étts sont constitués des étts de N tteints et de leur -clôture. L'AFD insi otenu est un peu plus compliqué que précédemment Automtes ch1 18

10 On insi étli que pour tout lngge représenté pr une expression régulière on peut trouver un AFD qui le reconnît. On v mintennt montrer l réciproque. On ur insi étli le Théorème de Kleene : Les lngges réguliers coïncident vec les lngges reconnissles. Démonstrtion : Il reste à montrer que tout lngge reconnissle pr un utomte fini peut être décrit pr une expression régulière. Ceci est étli pr un lgorithme. Donnée : Un utomte fini M. Résultt : Une expression régulière décrivnt L(M). L'lgorithme ne suppose ps que l'utomte soit déterministe. Automtes ch1 19 On définit un utomte générlisé comme un grphe vec un seul étt initil α et un seul étt terminl ω, dont les flèches sont étiquetées pr des expressions régulières. Un mot w est reconnu pr un utomte générlisé s'il existe un chemin llnt de α à ω tel que w pprtient u lngge décrit pr le produit des expressions régulières pprissnt comme étiquettes de ce chemin. Le lngge reconnu est l'ensemle des mots reconnus. Deux utomtes sont équivlents lorsqu'ils reconnissent le même lngge. On peut fcilement trnsformer un utomte M ordinire en utomte générlisé : il suffit d'jouter les étts α et ω et des -trnsitions de α vers l'étt initl de M et des étts terminux de M vers ω. Le lngge reconnu est ien le même selon les deux définitions. Automtes ch1 20

11 Etnt donné un utomte générlisé, on v trouver un utomte équivlent ynt moins de flèches ou d'étts, en ppliqunt les trnsformtions ci-dessous. Réduction des flèches : Avnt Après r s r + s Réduction des étts : on enlève k ; pour chque couple d'un prédécesseur de k et d'un successeur de k, fire : Avnt s Après r t i k j i rs*t j Automtes ch1 21 Le lngge reconnu n'est ps modifié. En prtnt d'un utomte ordinire, les étts joutés α et ω restent toujours respectivement sns prédécesseur ni sns successeur. A l fin on otient donc un utomte vec deux étts α et ω et une seule flèche. Cette flèche est constituée d'une expression régulière. Comme l'utomte est équivlent à M, c'est une expression régulière décrivnt le lngge L(M). Ceci termine l démonstrtion du théorème de Kleene. Remrques : L'expression régulière otenue dépend du choix des étts à réduire. Les expressions otenues à prtir d'afn sont souvent plus simples surtout s'il y moins de flèches. Automtes ch1 22

12 Exemple : L(M) = nomre impir de 0 1 Adjonction de α et ω α 0 1 ω + * Suppression 0 de l'étt 1 α * ω Suppression de l'étt 0 α ( +*)** ω Donc L(M) peut être représenté pr ( + *)**. Automtes ch1 2

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

Automates à états fnis Damien Nouvel

Automates à états fnis Damien Nouvel Automtes Automtes à étts fnis Automtes à étts fnis Pln Représenttion des utomtes (FSA) Défnition formelle (DFA) Équivlence DFA / NFA / ε-nfa Licence Informtique L1 Automtes 2 / 30 Automtes à étts fnis

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Travaux Dirigés de Langages & XML - TD 2

Travaux Dirigés de Langages & XML - TD 2 TD Lngges - XML Exercices Corrigés TD 2 Trvux Dirigés de Lngges & XML - TD 2 Automtes deterministes Exercice Dns chcun des cs suivnts, donner un utomte déterministe reconnissnt le lngge sur l lphet {,

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

Solution - TD Feuille 2 - Automates finis et expressions rationnelles

Solution - TD Feuille 2 - Automates finis et expressions rationnelles Solution - TD Feuille 2 - Automtes finis et expressions rtionnelles Informtique Théorique 2 - Unité JINPW Licence 3 - Université Bordeux Solution de l exercice : Pour tout l exercice, on note A = {, }.

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes 1/2 Théorie des Lngges Formels Chpitre 4 : Automtes complets déterministes Florence Levé Florence.Leve@u-picrdie.fr Année 2015-2016 2/2 Introduction 4 5 6 7 8 9 10 11 12 Recherche de :, /2 Automte déterministe

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Notes de cours sur les automates (NFP108)

Notes de cours sur les automates (NFP108) Notes de cours sur les utomtes (NFP18) F. Brthélemy 8 décemre 215 Avertissement : ce document est en cours d élortion et susceptile d évoluer. Il est dns un étt provisoire. 1 Introduction Les utomtes finis

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

Rappel : Définition définitive du problème de la recherche

Rappel : Définition définitive du problème de la recherche Rppel : Définition définitive du prolème de l recherche On dispose d une prt d un mot (un texte) et d utre prt d un lngge régulier défini pr une expression régulière. On demnde de rechercher dns le texte

Plus en détail

Automates hyper-minimaux

Automates hyper-minimaux Université derouen UFR des sciences et techniques Projet nnuel de mster 1 Encdrnts : Pscl Cron et Ludovic Mignot Automtes hyper-minimux Jen-Bptiste PRIEZ Rouen, le 20 mi 2011 Résumé Deux lngges sont f-équivlents

Plus en détail

Théorie des automates et langages formels

Théorie des automates et langages formels Fculté des sciences Déprtement de mthémtiques Théorie des utomtes et lngges formels 1 4 7, d c d 2 c c d 5 c d c d, 8 c d 3 6 9,c,d,c,d,,c,d Année cdémique 2009 2010 Michel Rigo Tle des mtières Chpitre

Plus en détail

Cours Mathématiques Discrètes IUT Belfort Montbéliard. Pierre-Cyrille HEAM

Cours Mathématiques Discrètes IUT Belfort Montbéliard. Pierre-Cyrille HEAM Cours Mthémtiques Discrètes IUT Belfort Montélird Pierre-Cyrille HEAM 23 septemre 2014 Chpitre 1 Grphes finis orientés 1.1 Premières définitions Un grphe fini orienté est un couple (V, E) où V est un ensemle

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Algorithmique et Programmation. Automates finis. Chap. I/9

Algorithmique et Programmation. Automates finis. Chap. I/9 Algorithmique et Progrmmtion. Automtes finis. Chp. I/9 Jen-Eric Pin To cite this version: Jen-Eric Pin. Algorithmique et Progrmmtion. Automtes finis. Chp. I/9. J. Akok et I. Comyn-Wttiu. Encyclopédie de

Plus en détail

Les langages de programmations.

Les langages de programmations. Communiction technique: L utomte progrmmle industriel (les lngges) Leçon Les lngges de progrmmtions. Introduction : L écriture d un progrmme consiste à créer une liste d instructions permettnt l exécution

Plus en détail

Automates d arbres avec visibilité : rapport de stage de licence (L3)

Automates d arbres avec visibilité : rapport de stage de licence (L3) Automtes d rbres vec visibilité : rpport de stge de licence (L3) Nicols Perrin ENS de Lyon Mître de stge : Hubert Comon-Lundh - LSV, ENS Cchn Autre encdrnt : Florent Jcquemrd - LSV, ENS Cchn Résumé Mon

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Exemple. 4 Grammaires régulières. The quick brown fox jumps over the lazy dog. Réécriture. Application : image de synthèse. Phrase

Exemple. 4 Grammaires régulières. The quick brown fox jumps over the lazy dog. Réécriture. Application : image de synthèse. Phrase Phrse 4 Grmmires régulières Sujet Vere Complément Groupe Nominl Complément Ojet Indirect rticle Liste djectifs Nom Préposition Groupe Nominl djectif djectif rticle Liste djectifs Nom djectif The quick

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

Exercice 1. Université Paris 7-Denis Diderot Examen du 21 mai 2012 L2 Automates finis AF4. a 1. 2 b. Voici le déterminisé : a 3. a 1.

Exercice 1. Université Paris 7-Denis Diderot Examen du 21 mai 2012 L2 Automates finis AF4. a 1. 2 b. Voici le déterminisé : a 3. a 1. Université Pris 7-Denis Diderot Exmen du 21 mi 2012 L2 Automtes finis AF4 Corrigé Exercice 1 1 3 On considère l utomte fini : 2 4 Question 1 : Déterminiser cet utomte. 1 1, 3 1, 3, 4 Voici le déterminisé

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Modélisation linguistique pour l analyse automatique de textes

Modélisation linguistique pour l analyse automatique de textes Modélistion linguistique pour l nlyse utomtique de textes Pln du cours (seconde prtie) : 1. Automte suite et fin 2. Conceptulistion de connissnces temporelles 3. Anlyse morpho-syntxique d un texte 4. Formlistion

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures! SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

Analyse statique et domaines abstraits symboliques

Analyse statique et domaines abstraits symboliques Anlyse sttique et domines strits symoliques Mémoire d hilittion à diriger des recherches Lurent Muorgne Hilittion soutenue le 12 février 2007 à l Université Pris-Duphine Jury : Ptrick Cousot (rpporteur)

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Mesure de résistances

Mesure de résistances GEL 1002 Trvux prtiques Lortoire 2 1 Trvux prtiques Lortoire 2 (1 sénce) Mesure de résistnces Ojectifs Les ojectifs de cette phse des trvux prtiques sont : ) d utiliser déqutement l plquette de montge

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Contrôle sur le Cours d'algorithme et de langage C

Contrôle sur le Cours d'algorithme et de langage C Déprtement Génie Electrique Automtique NOM: Prénom: Contrôle sur le Cours d'algorithme et de lngge C G.Gteu et J.Régnier Le 15 Jnvier 2008- Durée 2h Documents de cours utorisé. Le contrôle est constitué

Plus en détail

Automates. Notions de base Notes de cours, IR1, 2009 Sylvain Lombardy

Automates. Notions de base Notes de cours, IR1, 2009 Sylvain Lombardy 1 Alphet, mot, lngge Automte Notion de e Note de cou, IR1, 2009 Sylvin Lomdy Un lphet A et un enemle fini de ymole ppelé lette. Un mot et une uite finie de lette. On note A l enemle de mot que l on peut

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Exercices reliés au chapitre 3

Exercices reliés au chapitre 3 Université Lvl Fculté des sciences et de génie Déprtement d informtique et de génie logiciel IFT-3101 Dnny Dué Version: Hiver 2013 Exercices reliés u chpitre 3 Exercices Voici les exercices que je recommnde

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Analyse ascendante. Analyseur ascendant. Exemple. Exemple de reconnaissance. Exemple. Analyse ascendante : défis. Exemple de reconnaissance

Analyse ascendante. Analyseur ascendant. Exemple. Exemple de reconnaissance. Exemple. Analyse ascendante : défis. Exemple de reconnaissance Bureu 203 - etension M3 mirelle.neut t lifl.fr 2012-2013 2/93 nlyseur scendnt Eemple Effectue des lectures et des réductions ; construit un rre en ordre postfie ; en prtnt du mot à reconnître ; construction

Plus en détail

La logique combinatoire est une technique dédiée à la représentation de diverses

La logique combinatoire est une technique dédiée à la représentation de diverses Chpitre I Logique comintoire 1 L logique comintoire est une technique dédiée à l représenttion de diverses fonctions. Elle permet de synthétiser des systèmes comportnt des étts finis. Les circuits logiques

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Cours 9: Automates finis

Cours 9: Automates finis Cours 9: Automates finis Olivier Bournez ournez@lix.polytechnique.fr LIX, Ecole Polytechnique INF421-a Bases de la programmation et de l algorithmique Aujourd hui Rappels Déterminisation Automates et expressions

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

MVA004 Automates, codes, graphes et matrices Cours n 6

MVA004 Automates, codes, graphes et matrices Cours n 6 MVA004 Automates, codes, graphes et matrices Cours n 6 cours n 5 1 Mots-clés Automate fini déterministe AFD Automate fini non déterministe AFN Déterminisation mots-clés 2 MVA004 Chapitre 22 Construction

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Automates temporisés

Automates temporisés Automtes temporisés introdution pr un néophyte Prtie I / II Mots et utomtes temporisés Merredi 30 otore 20002 ÉNS Lyon Jérôme DURAND-LOSE jerome.durnd-lose@ens-lyon.fr MC2 LIP - ÉNS Lyon Automtes temporisés

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY)

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY) www.coe.int/tcy Strsourg, 12 novemre 2013 (projet) T-CY (2013) 26 Comité de l Convention Cyercriminlité (T-CY) Note d orienttion n 8 du T-CY Otention, dns le cdre d une enquête pénle, de données reltives

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

4. Logique séquentielle asynchrone

4. Logique séquentielle asynchrone Liene d Informtique MARSEILLELUMINY. Logique séquentielle synhrone. Introdution.. Représenttion de fontionnement : les étts.. Équivlene et pseudoéquivlene d étts.. Rédution du système.. Attriution de vriles

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Calculabilité. F. Sur - ENSMN. Motivation. 1 Motivation. 2 Que signifie calculer? 4 Classes de complexité. P et NP. d optimisation et.

Calculabilité. F. Sur - ENSMN. Motivation. 1 Motivation. 2 Que signifie calculer? 4 Classes de complexité. P et NP. d optimisation et. Cours de Tronc Commun Scientifique Recherche Opértionnelle Introduction à l clculilité Introduction à l clculilité 2 3 Frédéric Sur École des Mines de Nncy www.lori.fr/ sur/enseignement/ro/ 4 5 6 /34 2/34

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Corrigé de l examen de compilation

Corrigé de l examen de compilation Corrigé de l exmen de compiltion Énsiie, semestre 3 8 jnvier 20 Exercice : Anlyse syntxique (8 points) F irst() F ollow(a) donc l grm- w F irst(w) A w F ollow(w). A A mire G n est ps dns LL(). Automte

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

distance parcourue temps mis pour la parcourir

distance parcourue temps mis pour la parcourir CH IV VITESSE - DEBIT - MASSE VOLUMIQUE - DENSITE RAPPELS DE COURS QUESTION 26 Conversion de m/s en km/h : il fut à l fois onvertir les mètres en kilomètres et les seondes en heures. On : 1 m = 0, 001

Plus en détail

devant l Université de Rennes 1

devant l Université de Rennes 1 N o d ordre: 3708 THÈSE Présentée devnt devnt l Université de Rennes 1 pour otenir le grde de : Docteur de l Université de Rennes 1 Mention Informtique pr Thoms Gzgnire Équipe d ccueil : DistriCom - IRISA

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2002/2003 Sénce 7 21 novmre 2002 Stéreo et l Géometrie Epipolire Pln de l Sénce: L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Formation et Analyse d'images. La Vision Stéréoscopique

Formation et Analyse d'images. La Vision Stéréoscopique Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2007/2008 Sénce 11 21 décemre 2007 Pln de l Sénce : L Vision Stéréoscopique L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

CHAPITRE 5 : ANALYSE LEXICALE

CHAPITRE 5 : ANALYSE LEXICALE CHAPITRE 5 : ANALYSE LEXICALE L analyse lexicale est un autre domaine fondamental d application des automates finis. Dans la plupart des langages de programmation, les unités lexicales (identificateurs,

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

IFT 615 : Devoir 4 Travail individuel

IFT 615 : Devoir 4 Travail individuel IFT 615 : Devoir 4 Trvil individuel Remise : 1 vril 01, 16h0 (u plus trd) 1. [ points] Dns le cours, nous vons vu différents types de problèmes d intelligence rtificielle insi que plusieurs solutions possibles

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail