Théorie des Langages Formels Chapitre 5 : Automates minimaux

Dimension: px
Commencer à balayer dès la page:

Download "Théorie des Langages Formels Chapitre 5 : Automates minimaux"

Transcription

1 Théorie des Langages Formels Chapitre 5 : Automates minimaux Florence Levé Année /29

2 Introduction Les algorithmes vus précédemment peuvent mener à des automates relativement gros. On souhaite obtenir des automates les plus petits possible, en gardant l avantage des automates déterministes. Nous nous intéressons donc ici à l automate déterministe ayant le moins d états possible : I Nous allons voir qu il est unique. I Nous verrons deux méthodes pour l obtenir : une directement à partir d une expression rationnelle ; l autre à partir d un automate déjà connu. 2/29

3 Automate minimal Théorème : Tout langage reconnaissable est reconnu par un unique (au renommage près des états) automate déterministe complet tel que tout autre automate déterministe complet a au moins autant d états que lui. L automate décrit ci-dessus est appelé automate minimal complet ou plus simplement automate minimal reconnaissant le langage. 3/29

4 Résiduel Soient A un alphabet, L A un langage et u 2 A un mot. Le résiduel (à gauche ou quotient à gauche)de L par rapport à u est le langage u 1 L = {v 2 A uv 2 L}. Exemple : L = {ab, ba, aab} I a 1 L = {b, ab}, I b 1 L = {a}, I c 1 L = ; Méthode : I u 1 L est l ensemble X tel que L \ ua = ux I Pour calculer un résiduel u 1 L sur un exemple simple : 1. Trouver les mots de L commençant par u : L \ ua ; 2. Enlever les préfixes u! u 1 L. 4/29

5 Lemme Soit L A un langage reconnu par un automate déterministe complet Aut = <A, Q, {d}, F, >. Soit u un mot. Il existe un unique chemin dans Aut partant de d et étiqueté par u :soitp l état dans lequel aboutit ce chemin. Alors : u 1 L = L p Preuve : ul p L implique L p u 1 L Pour v appartenant à u 1 L, uv 2 L. Puisque l automate est déterministe, l unique chemin reconnaissant uv dans Aut est un chemin qui après avoir reconnu u arrive en p et donc v 2 L p.ainsiu 1 L L p. Corollaire : Tout langage reconnaissable a un nombre fini de résiduels. 5/29

6 Lemme Pour tous mots u et v et pour tout langage L, (uv) 1 L = v 1 (u 1 L) Preuve : (uv) 1 L = {w uvw 2 L} = {w vw 2 u 1 L} = v 1 (u 1 L) 6/29

7 Approche On peut calculer les résiduels u 1 L pour les longueurs de u successives : 0, 1, 2,... Comme il y a un nombre fini de résiduels, le calcul ne peut que s arrêter. 7/29

8 Calcul des résiduels Donnée :unlangagel ; Hypothèse :lelangagel aunnombrefiniderésiduels; Résultats :lesrésiduelsdel (notés L 0,...,L k 1 où k est le nombre de résiduels de L). Premier résiduel : " 1 L = L (le noter L 0 ) tant que de nouveaux ensembles apparaissent : I calculer les résiduels par rapport aux lettres de l alphabet en partant des ensembles précédemment obtenus ; I numéroter au fur et à mesure les langages distincts rencontrés. 8/29

9 Formules utiles Dans le formulaire suivant a est une lettre, L, L 1 et L 2 sont des ensembles. 1. a 1 (L 1 [ L 2 )=a 1 L 1 [ a 1 L 2 2. a 1 (L 1 L 2 )=(a 1 L 1 )L 2 si " 62 L 1 3. a 1 (L 1 L 2 )=(a 1 L 1 )L 2 [ a 1 L 2 si " 2 L 1 4. a 1 (L )=(a 1 L)L 5. a 1 (L 1 \ L 2 )=a 1 L 1 \ a 1 L 2 6. a 1 (A \ L) =A \ (a 1 L) 7. a 1 (L 1 \ L 2 )=(a 1 L 1 ) \ (a 1 L 2 ) 9/29

10 Exemple Résiduels du langage A ab sur alphabet {a, b}. L 0 = " 1 L = L a 1 L 0 = a 1 (A ab) =(a 1 A )ab [ a 1 {ab} = (a 1 A)A ab [{b} = "A ab [{b} = A ab + b := L 1 b 1 L 0 = L 0 a 1 L 1 = L 1 b 1 L 1 = " + A ab := L 2 a 1 L 2 = L 1 b 1 L 2 = L 0 10/29

11 Remarques La méthode de calcul précédente n est pas implémentable dans tous les cas : problème 1. Comment est donné le langage L?Pas nécessairement par le biais d une expression rationnelle? problème 2. Comment tester l égalité d un langage par rapport aux précédents déjà calculés, en particulier si le langage n est pas reconnaissable... et même quand il l est. L hypothèse nombre de résiduels fini n est pas toujours évaluable et, sans elle, le calcul précédent ne finit pas. Par contre, quand elle est implémentable, elle donne directement un automate déterministe (avec le moins d états possibles). 11/29

12 Construction de l automate minimal Proposition : 1. Un langage L est reconnaissable si et seulement si le nombre de ses résiduels est fini. 2. L automate déterministe minimal complet reconnaissant L est l automate tel que : I les états sont numérotés de 0 à n 1oùn est le nombre de résiduels de L ; I chaque résiduel Li correspond à un état noté i ; I l état de départ 0 correspond au résiduel de L par rapport à ", c est-à-dire L lui-même (L 0 = " 1 L = L); I il existe une transition (i, a, j) si et seulement si L j = a 1 L i ; I i est un état d acceptation si et seulement si " 2 L i. L automate défini ainsi est appelé automate des résiduels. 12/29

13 L 0 = L = A ab a 1 L 0 = L 1 = A ab + b b 1 L 0 = L 0 a 1 L 1 = L 1 b 1 L 1 = L 2 = " + A ab a 1 L 2 = L 1 b 1 L 2 = L 0 Exemple (" 2 L 2 ) L 2 état d acceptation) b a L0 a L1 b L2 a b 13/29

14 Preuve de la proposition 1. Un langage L est reconnaissable si et seulement si le nombre de ses résiduels est fini. ( on donne une construction de l automate résiduel. ) Le premier lemme du chapitre implique que le nombre de résiduels d un langage reconnu par un automate fini est fini puisqu il est majoré par le nombre d états de cet automate. 2. L automate déterministe minimal complet reconnaissant L est l automate des résiduels. Remarquons également que le même lemme associe à chaque résiduel au moins un état. Ainsi, le nombre d états d un automate déterministe complet reconnaissant un langage est minoré par le nombre de résiduels (de ce fait, à un état n est associé qu un seul résiduel). Donc l automate des résiduels a un nombre minimal d état. 14/29

15 Preuve de la proposition 2. L automate déterministe minimal complet reconnaissant L est l automate des résiduels. L automate des résiduels est déterministe et complet : par construction, pour chaque état (un résiduel) on calcule une transition et une seule par chaque lettre. L automate des résiduels reconnaît le langage L. Idée : Si u = a 1...a n est un mot, il existe un chemin (L 0, a 1, a1 1 L), (a1 1 L, a 2, a2 1 (a 1 1 L)=(a 1a 2 ) 1 L), ((a 1 a 2 ) 1 L, a 3, (a 1 a 2 a 3 ) 1 L),..., (a 1 a 2 a 3...a n 1 ) 1 L, a n, (a 1 a 2 a 3...a n 1 a n ) 1 L dans l automate des résiduels. On a : a 1...a n 2 L si et seulement si " 2 (a 1 a 2 a 3...a n 1 a n ) 1 L. 15/29

16 Preuve de la proposition Il reste à vérifier que tout automate minimal déterministe complet est isomorphe à l automate des résiduels i.e. à un renommage des états est l automate des résiduels. Soit donc un automate Aut ayant le même nombre d états que l automate des résiduels. I On a vu que chaque résiduel est associé à un unique état I Le résiduel par " est nécessairement l état initial. I Les états terminaux correspondent nécessairement aux résiduels qui contiennent le mot vide. I Considérons à présent une transition (Li, a, L j ). Cette transition existe puisque l automate est complet et est unique puisque l automate est déterministe. Par association des langages aux état, al j L i et donc a 1 L i L j.soitv un mot dans L j, av est alors l étiquette d un chemin partant de L i allant dans un état final : av 2 L i.ainsil j a 1 L i. Donc les transitions de l automate Aut sont les mêmes que celles de l automate des résiduels. 16/29

17 Une manière de tester la minimalité Idée : nous avons vu que, pour tout automate déterministe, tout état était associé à un unique résiduel. Mais la réciproque n est pas vraie : deux états peuvent être associés à un même résiduel. Si c est le cas l automate n est pas minimal. 17/29

18 États séparés Soit Aut = <A, Q, {d}, F, > un automate fini déterministe complet. Deux états s, t 2 Q sont séparés par le mot u 2 A si l une des deux conditions suivantes est vérifiée : I u 2 Ls=init et u 62 L t=init ; I u 62 L s=init et u 2 L t=init. Autrement dit, deux états sont séparés par un mot si le chemin étiqueté par ce mot et partant de l un des deux états aboutit dans un état d acceptation, tandis que le chemin étiqueté par ce mot et partant de l autre état aboutit dans un état qui n est pas d acceptation. Exemple : < {a, b}, {1, 2, 3}, {1}, {2}, {(1, a, 2), (1, b, 1), (2, a, 3), (2, b, 2), (3, a, 3), (3, b, 1)} >. Le mot vide sépare les états 1 et 2. Le mot aab ne les sépare pas. 18/29

19 Test de minimalité Proposition : Un automate déterministe complet est minimal si et seulement si pour tout couple d états (p, q) il existe un mot qui sépare p et q. Conséquence : Le résultat précédent donne un moyen de montrer qu un automate est minimal. Il suffit d exhiber pour chaque couple d état (p, q) un mot qui les sépare. Par exemple, l automate précédent est minimal : le mot vide sépare les états 1 et 2 ; il sépare aussi les états 2 et 3 ; le mot ab sépare les états 1 et 3. 19/29

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

L2: cours I4c Langages et automates

L2: cours I4c Langages et automates L2: cours I4c Langages et automates Olivier Togni, LE2I (038039)3887 olivier.togni@u-bourgogne.fr Modifié le 31 mai 2007 Sommaire Utiles pour compilation, interprétation,... 1. Langages rationnels 2. Langages

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

Polytechnique. Épreuve d Informatique 1998

Polytechnique. Épreuve d Informatique 1998 Polytechnique Épreuve d Informatique 1998 Corrigé rédigé par Martine Lannaud, Lycée Chaptal, Paris Pour toute remarque ou correction martine.lannaud@prepas.org Motifs et automates Question 1. Quelques

Plus en détail

Cours 9: Automates finis

Cours 9: Automates finis Cours 9: Automates finis Olivier Bournez ournez@lix.polytechnique.fr LIX, Ecole Polytechnique INF421-a Bases de la programmation et de l algorithmique Aujourd hui Rappels Déterminisation Automates et expressions

Plus en détail

Formulaire Automates Sylvain Lombardy

Formulaire Automates Sylvain Lombardy Formulaire Automates Sylvain Lombardy Définition 1 Alphabet, mot, langage Un alphabet est un ensemble fini de symboles; chacun de ces symboles est appelé lettre. Un mot est une suite fini de lettres pris

Plus en détail

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes. Automates à pile Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 62 Automates à pile Introduction Rappels sur les piles Automates à pile : définition Automates

Plus en détail

CHAPITRE 5 : ANALYSE LEXICALE

CHAPITRE 5 : ANALYSE LEXICALE CHAPITRE 5 : ANALYSE LEXICALE L analyse lexicale est un autre domaine fondamental d application des automates finis. Dans la plupart des langages de programmation, les unités lexicales (identificateurs,

Plus en détail

5. Equivalences d automates

5. Equivalences d automates 5. Equivalences d automates 5.1. Le problème du déterminisme 5.2. Différentes sortes d AEF 5.3. Déterminisation d un AEF 5.4. Déterminisation d un AEF avec ɛ-transitions 5.5. Minimisation d un AEF déterministe

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Arbres. Alphabet Σ = Σ 0 Σ k. Exemples

Arbres. Alphabet Σ = Σ 0 Σ k. Exemples Arbres Alphabet Σ = Σ 0 Σ k Σ i : alphabet fini de symboles de rang i (Σ i Σ j possible). Un arbre t de rang k est défini par un ensemble (fini) dom(t) {1,..., k} clos par préfixe (domaine de t) : si v,

Plus en détail

Les mots de Sturm. Fathi BEN ARIBI 20 décembre 2008

Les mots de Sturm. Fathi BEN ARIBI 20 décembre 2008 Les mots de Sturm Fathi BEN ARIBI 20 décembre 2008 1 Objectifs Dans cette présentation, nous donnerons quelques résultats de combinatoire des mots. Avant tout, il est nécessaire d introduire quelques notations

Plus en détail

Validation et génération de tableaux de Knuth-Morris-Pratt

Validation et génération de tableaux de Knuth-Morris-Pratt Validation et génération de tableaux de Knuth-Morris-Pratt Jean-Pierre Duval, Thierry Lecroq et Arnaud Lefebvre {Jean-Pierre.Duval,Thierry.Lecroq,Arnaud.Lefebvre}@univ-rouen.fr Laboratoire d Informatique,

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Automates. Lycée Louis-le-Grand Année 2003 2004. Automates. option informatique 1/74

Automates. Lycée Louis-le-Grand Année 2003 2004. Automates. option informatique 1/74 Lycée Louis-le-Grand Année 2003 2004 Automates option informatique 1/74 1 Sommaire notion d automate, leur intérêt et leurs usages ; calculs d un automate et langage reconnu ; déterminisme, comment s en

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

MVA004 Automates, codes, graphes et matrices Cours n 6

MVA004 Automates, codes, graphes et matrices Cours n 6 MVA004 Automates, codes, graphes et matrices Cours n 6 cours n 5 1 Mots-clés Automate fini déterministe AFD Automate fini non déterministe AFN Déterminisation mots-clés 2 MVA004 Chapitre 22 Construction

Plus en détail

Plus courts et plus longs chemins

Plus courts et plus longs chemins Plus courts et plus longs chemins Complément au chapitre 8 «Une voiture nous attend» Soit I={1,2,,n} un ensemble de tâches à ordonnancer. La durée d exécution de chaque tâche i est connue et égale à p

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Un automate à états fini

Un automate à états fini Automates à états et langages Notion d automate Langage reconnu par un automate Automates non déterministes Expressions régulières et automates Limites des automates Notion d automate Objectif : définir

Plus en détail

Algèbre de Boole. Chapitre. 2.1 Notions théoriques

Algèbre de Boole. Chapitre. 2.1 Notions théoriques Chapitre 2 Algèbre de Boole G oerge Boole (1815-1864), mathématicien autodidacte anglais, a développé une algèbre permettant de manipuler les propositions logiques au moyen d équations mathématiques où

Plus en détail

Automates & Langages

Automates & Langages Automates & Langages Frédéric Olive 1 2010 / 2011 1. LIF/CMI, 39 rue joliot Curie, 13453 Marseille - 04 13 55 13 16 - frederic.olive@lif.univ-mrs.fr Table des matières Introduction 5 1 Langages réguliers

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique Notes de cours Cours introductif sur la théorie des domaines Paul-André Melliès Modèles des langages de programmation Master Parisien de Recherche en Informatique 1 Ensembles ordonnés Definition 1.1 (ensemble

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Automate Fini Non-déterministe

Automate Fini Non-déterministe Automate Fini Non-déterministe Théorème de Kleene Systèmes Formels Master 1 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Information Quantique DM- à rendre avant le 7 Avril 2015, à midi

Information Quantique DM- à rendre avant le 7 Avril 2015, à midi ENSEIRB-MATMECA- Section Informatique, 2ième année Option second semestre, 2014/2015 Information Quantique DM- à rendre avant le 7 Avril 2015, à midi Indications : Chaque partie dépend des parties précédentes.

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Marc Chemillier Master Atiam (Ircam), 2009-2010

Marc Chemillier Master Atiam (Ircam), 2009-2010 MMIM Modèles mathématiques en informatique musicale Marc Chemillier Master Atiam (Ircam), 2009-2010 Notions théoriques sur les langages formels (Partie I) - Définitions générales o Mots, langages o Monoïdes

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Chap. 2. Langages et automates

Chap. 2. Langages et automates Chapitre 2. Langages et automates 1. Quelques définitions et description d un langage. 2. Les expressions régulières. 3. Les automates fini déterministes et non-déterministes. 4. Construction automatique

Plus en détail

Un alphabet Un ensemble fini non vide s'appelle un alphabet. Langages réguliers et automates. Un mot. Un langage. {a,b} non. A.

Un alphabet Un ensemble fini non vide s'appelle un alphabet. Langages réguliers et automates. Un mot. Un langage. {a,b} non. A. Langages réguliers et automates finis A. Maurer Mars 09 Un alphabet Un ensemble fini non vide s'appelle un alphabet Ensemble Σ {a,b} {a,b,a,b} L'ensembledes nombres naturels pairs Alphabet? oui non oui

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Automate à états finis. Faculté I&C, André Maurer, Claude Petitpierre

Automate à états finis. Faculté I&C, André Maurer, Claude Petitpierre Automate à états finis Faculté I&C, André Maurer, Claude Petitpierre Exemple introductif: reconnaître un numéro de plaque Numéros valides Numéros non valides Un problème de décision Un mot OUI, si le mot

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que Test n 5 (1 octobre 1 Question 1. Soit n N \ {}. Prouvez par récurrence que ( n x 1 x ( x n x (x n x n. Voir Test 5, 17 octobre 11, question. Question. (a On dit que A R n n est une matrice antisymétrique

Plus en détail

Mathématiques pour l'informatique? Au programme. Objectif du semestre

Mathématiques pour l'informatique? Au programme. Objectif du semestre Mathématiques pour l'informatique? Calcul des Ensembles David Teller 09/02/2007 Q L'informatique, au juste, c'est quoi? A L'informatique, c'est : de l'électronique de la théorie des processus de la linguistique

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

λ-calcul et typage Qu est-ce qu une fonction?

λ-calcul et typage Qu est-ce qu une fonction? λ-calcul et typage Nicolas Barnier, Pascal Brisset ENAC Avril 2009 Nicolas Barnier, Pascal Brisset (ENAC) λ-calcul et typage Avril 2009 1 / 1 Qu est-ce qu une fonction? Classiquement Pas de notation uniforme/standard

Plus en détail

Chapitre 4 Automates à pile et langages hors-contexte

Chapitre 4 Automates à pile et langages hors-contexte Chapitre 4 Automates à pile et langages hors-contexte 87 Introduction Langage a n b n n est pas accepté par un automate fini. Par contre L k = {a n b n n k} est accepté. Mémoire finie, mémoire infinie,

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

CH.6 Propriétés des langages non contextuels

CH.6 Propriétés des langages non contextuels CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur

Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Université Paris-Sud Licence d Informatique Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Adresse de l auteur : LIX École Polytechnique

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Démonstrations. Chapitre 4. 4.1 Introduction

Démonstrations. Chapitre 4. 4.1 Introduction Chapitre 4 Démonstrations L objectif de ce chapitre est de commencer à aborder la question fondamentale suivante : qu est-ce qu une démonstration? Pour cela, plus précisément, on va se focaliser dans ce

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Débuter en algorithmique

Débuter en algorithmique Isabelle Morel 1 1 Qu est-ce qu un algorithme? Débuter en algorithmique Définition Un alogorithme est une suite d opérations élémentaires, à appliquer dans un ordre déterminé à des données. Un algorithme

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

CHAPITRE 4 : BASES DE LEX

CHAPITRE 4 : BASES DE LEX CHAPITRE 4 : BASES DE LEX Analyse lexicale (rappel) L analyse lexicale consiste à déterminer le, «statut» de chaque mot, c est-à-dire l unité lexicale (ou token) qui lui correspond. Les unités lexicales

Plus en détail

Épreuve orale d Informatique Fondamentale

Épreuve orale d Informatique Fondamentale Épreuve orale d Informatique Fondamentale Patrick Baillot, Nicolas Ollinger, Alexis Saurin ULC MPI 2013 Résumé Ce document consiste en une sélection, à titre d exemples, de 3 sujets proposés à l épreuve

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail