GPU, processeurs multi-coeurs et bio-informatique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "GPU, processeurs multi-coeurs et bio-informatique"

Transcription

1 GPU, processeurs multi-coeurs et bio-informatique Jean-Stéphane Varré Equipe BONSAI Université Lille 1 - LIFL -INRIA

2 Qu est-ce que c est?

3

4 Le processeur (CPU)

5 La carte graphique Le processeur (CPU)

6 GPU = Graphics Processing Unit architecture dessinnée pour traiter des pixels en parallèle amélioré au fur et à mesure des années sous l impulsion de l industrie du jeu vidéo

7 GPU = Graphics Processing Unit un processeur dédié au traitement des images : architecture dessinnée pour traiter des pixels en parallèle amélioré au fur et à mesure des années sous l impulsion de l industrie du jeu vidéo

8 Particularités du GPU vis-à-vis du CPU très nombreux coeurs 240 plusieurs coeurs 2,4,8 "le GPU est au CPU ce que le supertanker est au hors-bord" Jen-Hsun Huang, Nvidia

9

10 Mais quel est le rapport entre calculer une image et ma problématique de traitement de données?

11 Mais quel est le rapport entre calculer une image et ma problématique de traitement de données? le point commun : exécuter le même traitement sur des données différentes

12 Mais quel est le rapport entre calculer une image et ma problématique de traitement de données? le point commun : exécuter le même traitement sur des données différentes GPGPU : le calcul par le GPU General Purpose GPU utiliser le processeur graphique (GPU) pour exécuter des tâches de calcul polyvalentes de science et d ingénierie

13 Une carte graphique sans sortie graphique!!!

14

15 T1 T2 T3 T4 T5 T6 T7 T

16

17 T1 T1 T1 T1 T2 T2 T2 T

18

19

20 Vers une uniformisation des processeurs projet Intel Larabee : un CPU avec un grand nombre de coeurs a single-chip cloud computer

21 Que puis-je en attendre?

22 Evolution de la puissance GFLOPS = nombre de milliards d opérations à la seconde

23 chaque processeur va moins vite qu un CPU dispose de moins de mémoire mais accélération grâce au traitement en parallèle

24 chaque processeur va moins vite qu un CPU dispose de moins de mémoire mais accélération grâce au traitement en parallèle on peut espérer accélérer jusqu à 100 fois les traitements

25 avantages du GPU : la carte peut être insérée dans une machine de bureau pas besoin d infrastructure particulière coût faible désavantages du GPU : nécessite un programme adapté nécessite une machine capable de recevoir la carte

26 Programmer un GPU, c est facile?

27 Programmer un GPU, c est facile? CUDA (2006) NVidia basé sur le langage C plus aisé qu avant! OpenCL (2009) tout processeur à plusieurs coeurs nécessite un compilateur spécifique au matériel

28 Programmer un GPU, c est facile? plus aisé qu avant! CUDA (2006) NVidia basé sur le langage C PyCUDA/PyOpenCL OpenCL (2009) tout processeur à plusieurs coeurs nécessite un compilateur spécifique au matériel

29 En CUDA En OpenCL

30 En CUDA En OpenCL

31 En réalité, pas si facile... nécessite une bonne expertise en programmation nécessite une programmation proche du matériel nécessite de revisiter l algorithme difficile d obtenir un gain important

32 En réalité, pas si facile... nécessite une bonne expertise en programmation nécessite une programmation proche du matériel nécessite de revisiter l algorithme difficile d obtenir un gain important mais ce ne sont que les prémisses

33 Grille un programme déjà existant que je distribue sur différentes machines des instances du programme sont exécutées en parallèle

34 GPU les opérations d un programme que je distribue sur les différents coeurs du processeur Grille un programme déjà existant que je distribue sur différentes machines les instructions du programme sont exécutées en parallèle des instances du programme sont exécutées en parallèle

35 Grille + GPU : un mariage d avenir un programme utilisant la puissance d un GPU + distribution du programme sur différentes données sur les noeuds d une grille de GPU = doublement gagnant sur le parallélisme gain maximal

36 Et la bio-informatique?

37 GPU et bio-informatique 2005 : première application, phylogénie aujourd hui : une vingtaine d applications dans différents domaines des applications phares déjà portées : GPU-HMMER CUDA-Blast MummerGPU GPU-ClustalW Manycore high-performance computing in bioinformatics. J.-S. Varré, B. Schmidt, S. Janot and M. Giraud

38 GPU-ClustalW Liu W, Schmidt B, Voss G, and Mu ller-wittig W GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment. Pages of: IEEE International Conference on High Performance Computing (HiPC 2006)

39 GPU-ClustalW Liu W, Schmidt B, Voss G, and Mu ller-wittig W GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment. Pages of: IEEE International Conference on High Performance Computing (HiPC 2006)

40 GPU-ClustalW Liu W, Schmidt B, Voss G, and Mu ller-wittig W GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment. Pages of: IEEE International Conference on High Performance Computing (HiPC 2006)

41 GPU-ClustalW Liu W, Schmidt B, Voss G, and Mu ller-wittig W GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment. Pages of: IEEE International Conference on High Performance Computing (HiPC 2006)

42 TFM-CUDA Giraud M, and Varré JS Parallel Position Weight Matrices Algorithms. In: International Symposium on Parallel and Distributed Computing (ISPDC 2009). recherche des occurrences de sites de fixation de facteurs de transcriptions

43 TFM-CUDA Giraud M, and Varré JS Parallel Position Weight Matrices Algorithms. In: International Symposium on Parallel and Distributed Computing (ISPDC 2009). recherche des occurrences de sites de fixation de facteurs de transcriptions

44 "CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units, Y. Liu, D. Maskell, B. Schmidt: BMC Research Notes 2009, 2:73

45 Je suis convaincu, j en veux un!

46

47

48

49 BQR Université Lille 1 - Calcul intensif sur GPU Laboratoires LIFL et Painlevé a permis l achat de GPUs : des cartes dans des machines de bureau (ATI et NVidia disponibles) des GPU dans Grid5000 envie de faire un essai? venez nous voir!

50 plutôt bio-informaticien une formation OpenCL? plutôt bio-informaticien installation d un outil GPU? intégration dans un pipeline d analyse? plutôt bio-informaticien un logiciel à paralléliser?

51 plutôt bio-informaticien une formation OpenCL? plutôt bio-informaticien installation d un outil GPU? intégration dans un pipeline d analyse? plutôt bio-informaticien un logiciel à paralléliser?

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012 NVIDIA CUDA Compute Unified Device Architecture Sylvain Jubertie Laboratoire d Informatique Fondamentale d Orléans 2011-2012 Sylvain Jubertie (LIFO) NVIDIA CUDA 2011-2012 1 / 58 1 Introduction 2 Architecture

Plus en détail

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,...

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,... Rappels, SISD, SIMD Calculateurs hybrides (GPU-OpenCL) Rappels... SISD,... SIMD Formation d Ingénieurs de l Institut Galiléee MACS 3 Philippe d Anfray Philippe.d-Anfray@cea.fr CEA DSM 2013-2014 SISD :

Plus en détail

Introduction à la programmation GPU. P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010

Introduction à la programmation GPU. P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010 Introduction à la programmation GPU P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010 Les processeurs graphiques (GPU) GPU : Graphics Processing Unit GPGPU : General Purpose computation on Graphics Processing

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

Programmation multigpu OpenMP versus MPI

Programmation multigpu OpenMP versus MPI 17 février 2011 Gabriel Noaje Programmation multigpu OpenMP versus OpenMP 1 Programmation multigpu OpenMP versus MPI Gabriel Noaje, Michaël Krajecki, Christophe Jaillet gabriel.noaje@univ-reims.fr Équipe

Plus en détail

RAPPORT DE STAGE Calcul parallèle sur GPU

RAPPORT DE STAGE Calcul parallèle sur GPU Université Joseph Fourier Département Licence Sciences & Technologie RAPPORT DE STAGE Calcul parallèle sur GPU D Aguanno Carlotta Laboratoire d accueil : INRIA Directeur du laboratoire : GROS Patrick Responsable

Plus en détail

Demande d attribution de ressources informatiques. Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis

Demande d attribution de ressources informatiques. Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis Demande d attribution de ressources informatiques Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis Titre du projet : Nom du laboratoire : Nom de l établissement hébergeur :

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

MATÉRIEL GRAPHIQUE POUR LE CALCUL SCIENTIFIQUE. François Rousselle LISIC Image et Apprentissage OASIS

MATÉRIEL GRAPHIQUE POUR LE CALCUL SCIENTIFIQUE. François Rousselle LISIC Image et Apprentissage OASIS MATÉRIEL GRAPHIQUE POUR LE CALCUL SCIENTIFIQUE François Rousselle LISIC Image et Apprentissage OASIS Cadre BQR 2010 CGR LISIC LMPA : Réalisation d'une plateforme générique de calcul intensif pour cartes

Plus en détail

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline Algorithmes évolutionnaires et GPU Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline graphique Introduction au parallélisme de données Exemple de simulation Les langages de haut-niveau

Plus en détail

Génomique et GPU. Jean Michel Batto jean-michel.batto@jouy.inra.fr

Génomique et GPU. Jean Michel Batto jean-michel.batto@jouy.inra.fr Génomique et GPU Jean Michel Batto jean-michel.batto@jouy.inra.fr INRA, Laboratoire de Génétique Microbienne Centre de Recherche de Jouy en Josas (78) Forum TER@TEC, Ecole Supélec (91), 1 er Juillet 2009

Plus en détail

Plan : Master IM2P2 - Calcul Scientifique

Plan : Master IM2P2 - Calcul Scientifique Plan : Les systèmes HPC Typologie des systèmes : Machines Mémoire partagée Machines à Mémoire Distribuées Machine NUMA Exemples Architectures Processeurs HPC Processeurs scalaires, superscalaires, vectoriels

Plus en détail

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Université de Bretagne-Sud Lab-STICC, Lorient, France ROADeF Troyes, France 13-15 Février 2013 1/22 Objectifs Après

Plus en détail

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Mohieddine MISSAOUI * Rapport de Recherche LIMOS/RR-06-10 20 novembre 2006 * Contact : missaoui@isima.fr

Plus en détail

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Gabriel Antoine Louis Paillard Ce travail a eu le soutien de la CAPES, agence brésilienne pour

Plus en détail

Cours architectures des ordinateurs

Cours architectures des ordinateurs Université KASDI MERBAH Ouargla Faculté des Nouvelles Technologies de l Information et de la Communication Département d Informatique et Technologie de l information Cours architectures des ordinateurs

Plus en détail

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS Journée Utiliateurs 2015 Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS 1 Pôle ID, Grid'5000 Ciment Une proximité des platesformes Autres sites G5K Grenoble + CIMENT Pôle ID = «Digitalis»

Plus en détail

Initiation au HPC - Généralités

Initiation au HPC - Généralités Initiation au HPC - Généralités Éric Ramat et Julien Dehos Université du Littoral Côte d Opale M2 Informatique 2 septembre 2015 Éric Ramat et Julien Dehos Initiation au HPC - Généralités 1/49 Plan du cours

Plus en détail

Parallélisme. Cours 1

Parallélisme. Cours 1 Parallélisme Cours 1 TD : 20% - TP : 30% - Examen : 50% Feuille A4 manuscrite (pas de photocopie) Fabrice.Huet@etu.unice.fr (prendre rdv par mail pr le contacter) A quoi sert le parallélisme? Augmenter

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU

Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU Moulay Akhloufi, MScA, MBA (moulay.akhloufi@crvi.ca ) Gilles Champagne (gilles.champagne@crvi.ca) Mario Jr Laframboise

Plus en détail

Détection optimale des coins et contours dans des bases d images volumineuses sur architectures multicoeurs hétérogènes

Détection optimale des coins et contours dans des bases d images volumineuses sur architectures multicoeurs hétérogènes RenPar 20 / SympA 14 / CFSE 8 Saint-Malo, France, du 10 au 13 mai 2011 Détection optimale des coins et contours dans des bases d images volumineuses sur architectures multicoeurs hétérogènes Sidi Ahmed

Plus en détail

Clusters for Application Service Providers. T. Monteil, J.M. Garcia P. Pascal, S. Richard

Clusters for Application Service Providers. T. Monteil, J.M. Garcia P. Pascal, S. Richard Clusters for Application Service Providers (www.laas.fr/casp) T. Monteil, J.M. Garcia P. Pascal, S. Richard 1 Généralités Le monde du calcul dans un environnement ASP Les ASP : Application Service Provider

Plus en détail

Architecture des GPU (GPU=Graphics Processing Unit) gael.guennebaud@inria.fr

Architecture des GPU (GPU=Graphics Processing Unit) gael.guennebaud@inria.fr Architecture des GPU (GPU=Graphics Processing Unit) gael.guennebaud@inria.fr Plan du cours 2 Motivations pour les GPUs single core multi-core many-core Architecture des GPUs CPU versus GPU Programmation

Plus en détail

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA contact : patrick.hède@cea.fr Commissariat à l'energie Atomique GdR isis : Passage à l'échelle dans la recherche

Plus en détail

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES Trois types de formation LES FORMATEURS Les experts techniques AS+ Groupe EOLEN disposent d une réelle expérience pratique

Plus en détail

Le GPU dans les sciences du vivant et de la santé

Le GPU dans les sciences du vivant et de la santé Le GPU dans les sciences du vivant et de la santé étude de cas en cryomicroscopie électronique Julien Bert Laboratory of Medical Information Processing LaTIM - INSERM U650 CHU Brest, France 1 Le plan Introduction

Plus en détail

Les médaillés et lauréats de la Recherche Université Nice Sophia Antipolis

Les médaillés et lauréats de la Recherche Université Nice Sophia Antipolis 2014 Les médaillés et lauréats de la Recherche Université Nice Sophia Antipolis Andrew COMPORT Chargé de recherche CNRS Maxime MEILLAND Post-doctorant Laboratoire d Informatique, Signaux et Systèmes de

Plus en détail

Cours Master 2, 2013, Introduction

Cours Master 2, 2013, Introduction Mobilité, Cours Master 2, 2013, Michel Habib habib@liafa.univ-paris-diderot.fr http://www.liafa.univ-paris-diderot.fr/~habib Janvier 2013 Plan Pour ou contre le parallélisme Organisation du cours : Mobilité

Plus en détail

CRIHAN Centre de Ressources Informatiques de HAute-Normandie

CRIHAN Centre de Ressources Informatiques de HAute-Normandie ACT-MG-v2 CRIHAN Centre de Ressources Informatiques de HAute-Normandie Journée Entreprises & HPC-PME au CRIHAN - 11 avril 2013 CRIHAN Missions Concept : mutualisation de services et d équipements Réseau

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Informatique générale - processeurs

Informatique générale - processeurs Université de Nice Sophia Antipolis Licence 1 Sciences Fondamentales Informatique Générale Processeurs Jacques Farré (d'après Fabrice Huet, Wikipedia... et bien d'autres) Jacques.Farre@unice.fr http://deptinfo.unice.fr/~jf/infogene

Plus en détail

Infrastructures Parallèles de Calcul

Infrastructures Parallèles de Calcul Infrastructures Parallèles de Calcul Clusters Grids Clouds Stéphane Genaud 11/02/2011 Stéphane Genaud () 11/02/2011 1 / 8 Clusters - Grids - Clouds Clusters : assemblage de PCs + interconnexion rapide

Plus en détail

Calcul intensif pour la biologie

Calcul intensif pour la biologie Calcul intensif pour la biologie PPF Bio-informatique et PPF Calcul intensif 14 juin 2011 Calcul intensif... Cluster : ensemble de machines homogènes et localisées, organisées en grappe Grille : infrastructure

Plus en détail

Rapport d activité. Mathieu Souchaud Juin 2007

Rapport d activité. Mathieu Souchaud Juin 2007 Rapport d activité Mathieu Souchaud Juin 2007 Ce document fait la synthèse des réalisations accomplies durant les sept premiers mois de ma mission (de novembre 2006 à juin 2007) au sein de l équipe ScAlApplix

Plus en détail

Historique. Évolution des systèmes d exploitation (à travers les âges)

Historique. Évolution des systèmes d exploitation (à travers les âges) Historique Évolution des systèmes d exploitation (à travers les âges) Historique L histoire des systèmes d exploitation permet de dégager des concepts de base que l on retrouve dans les systèmes actuels

Plus en détail

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Les Clusters Les Mainframes Les Terminal Services Server La virtualisation De point de vue naturelle, c est le fait de regrouper

Plus en détail

AMS-TA01 Calcul scientifique parallèle

AMS-TA01 Calcul scientifique parallèle AMS-TA01 Calcul scientifique parallèle Edouard AUDIT Ingénieur-Chercheur Maison de la Simulation Patrick CIARLET Enseignant-Chercheur UMA Erell JAMELOT Ingénieur-Chercheur CEA Pierre KESTENER Ingénieur-Chercheur

Plus en détail

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX?

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? LABORATOIRE DE VISION ET INGÉNIERIE DES CONTENUS (LVIC) Fusion multimedia : extraction multimodale d

Plus en détail

Chap. 2 - Structure d un ordinateur

Chap. 2 - Structure d un ordinateur Architecture des ordinateurs Michèle Courant S2-27 octobre 2004 Chap. 2 - Structure d un ordinateur 2.1 Processeur ou unité centrale (CPU) 2.1.1 Organisation du CPU 2.1.2 Exécution d une instruction 2.1.3

Plus en détail

Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU

Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU Université de Liège Faculté des Sciences Appliquées Institut Montefiore Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU Marsic Nicolas Mémoire de fin d études réalisé

Plus en détail

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Serveurs DELL PowerEdge Tour Rack standard R310 T110II Rack de calcul Lames R815 M610 R410 R910 M620 R415 R510 T620 R620 R720/R720xd

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Mathias Bourgoin, Chailloux Emmanuel, Jean-Luc Lamotte To cite this version: Mathias Bourgoin, Chailloux

Plus en détail

Délégation GPU des perceptions agents : application aux boids de Reynolds

Délégation GPU des perceptions agents : application aux boids de Reynolds Délégation GPU des perceptions agents : application aux boids de Reynolds JFSMA 2015 LIRMM - Université de Montpellier - CNRS Emmanuel Hermellin, Fabien Michel {hermellin, fmichel}@lirmm.fr Mercredi 1

Plus en détail

Calcul parallèle sur processeurs GPU

Calcul parallèle sur processeurs GPU Calcul parallèle sur processeurs GPU Nicolas GAC Maitre de Conférence - Université Paris Sud 11 Laboratoire des Signaux et Systèmes (L2S) Cours à l ESIEE Paris 5ième année - Majeure Informatique 19 septembre

Plus en détail

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI , portage de code Promes dans le cadre de l appel à projets CAPS-GENCI PROMES (UPR 8521 CNRS) Université de Perpignan France 29 juin 2011 1 Contexte 2 3 4 Sommaire Contexte 1 Contexte 2 3 4 Laboratoire

Plus en détail

Architecture des ordinateurs

Architecture des ordinateurs Décoder la relation entre l architecture et les applications Violaine Louvet, Institut Camille Jordan CNRS & Université Lyon 1 Ecole «Découverte du Calcul» 2013 1 / 61 Simulation numérique... Physique

Plus en détail

Abstractions Performantes Pour Cartes Graphiques

Abstractions Performantes Pour Cartes Graphiques UNIVERSITÉ PIERRE ET MARIE CURIE ÉCOLE DOCTORALE INFORMATIQUE, TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE Abstractions Performantes Pour Cartes. Graphiques MATHIAS BOURGOIN sous la direction d Emmanuel Chailloux

Plus en détail

Les Microprocesseurs partie2

Les Microprocesseurs partie2 Université Constantine 2 Abdelhamid Mehri Faculté des NTIC Département MI Electronique des Composants & Systèmes Les Microprocesseurs partie2 Cours de L1 - TRONC COMMUN DOMAINE MATHEMATIQUES INFORMATIQUE

Plus en détail

Dossier de Presse CALCUL HAUTE PERFORMANCE SCILAB ENTERPRISES INNOVE POUR PLUS DE PERFORMANCE. Contact Presse : 01 80 77 04 79

Dossier de Presse CALCUL HAUTE PERFORMANCE SCILAB ENTERPRISES INNOVE POUR PLUS DE PERFORMANCE. Contact Presse : 01 80 77 04 79 Dossier de Presse CALCUL HAUTE PERFORMANCE SCILAB ENTERPRISES INNOVE POUR PLUS DE PERFORMANCE Contact Presse : 01 80 77 04 79 Julie Paul julie.paul@scilab-enterprises.com 01 Sommaire En bref En bref scigpgpu,

Plus en détail

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle 1 CEA R & D for Nuclear Energy 5 000 people Nuclear systems

Plus en détail

Outils d analyse de performance pour le HPC

Outils d analyse de performance pour le HPC Outils d analyse de performance pour le HPC François Trahay Master MOPS Décembre 2013 Plan 1 Introduction.................................................................... 3 2 Outils de profiling..............................................................10

Plus en détail

Quantification d incertitude et Tendances en HPC

Quantification d incertitude et Tendances en HPC Quantification d incertitude et Tendances en HPC Laurence Viry E cole de Physique des Houches 7 Mai 2014 Laurence Viry Tendances en HPC 7 Mai 2014 1 / 47 Contents 1 Mode lisation, simulation et quantification

Plus en détail

GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com

GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com Plan Génèse du projet OpenGPU Misères et grandeurs des GPUs Quelle place pour OpenCL? Les avancées de l'architecture Kepler

Plus en détail

CIMENT-MaiMoSiNE. Animation scientifique et formation. CIMENT - MaiMoSiNE. 16 Avril 2013. Laurence Viry

CIMENT-MaiMoSiNE. Animation scientifique et formation. CIMENT - MaiMoSiNE. 16 Avril 2013. Laurence Viry CIMENT-MaiMoSiNE Animation scientifique et formation Laurence Viry CIMENT - MaiMoSiNE 16 Avril 2013 Laurence Viry Animation scientifique et formation 16 Avril 2013 1/9 Pôle animation scientifique MaiMoSiNE

Plus en détail

Evolution des technologies de calcul intensif vers les systèmes multi-cœurs et accélérateurs

Evolution des technologies de calcul intensif vers les systèmes multi-cœurs et accélérateurs Evolution des technologies de calcul intensif vers les systèmes multi-cœurs et accélérateurs Marc Mendez-Bermond Expert solutions HPC Programme Contexte Technologies Evolutions 2 Confidentiel Research

Plus en détail

MICROPROCESSEUR. Nous prendrons comme exemple les processeurs Intel (qui sont le plus souvent utilisés dans les machines actuelles).

MICROPROCESSEUR. Nous prendrons comme exemple les processeurs Intel (qui sont le plus souvent utilisés dans les machines actuelles). MICROPROCESSEUR Le cerveau d un ordinateur est le microprocesseur, parfois appelé CPU ou tout simplement processeur. Le processeur effectue les calculs nécessaires au fonctionnement de l ordinateur et

Plus en détail

Introduction à la programmation // sur GPUs en CUDA et Python

Introduction à la programmation // sur GPUs en CUDA et Python Introduction à la programmation // sur GPUs en CUDA et Python Denis Robilliard Équipe CAMOME: C. Fonlupt, V. Marion-Poty, A. Boumaza LISIC ULCO Univ Lille Nord de France BP 719, F-62228 Calais Cedex, France

Plus en détail

M1 MIAGE Option IFD Data Mining et Parallélisme

M1 MIAGE Option IFD Data Mining et Parallélisme M1 MIAGE Option IFD Data Mining et Parallélisme Alexandre Termier 2011-2012 S2 1 / 24 Besoin ˆ Data Mining doit... traiter de gros volumes de données pouvoir eectuer des analyses complexes (gros calculs)

Plus en détail

Calcul Haute Performance et Parallélisme Historique et exemples

Calcul Haute Performance et Parallélisme Historique et exemples Calcul Haute Performance et Parallélisme Historique et exemples Emmanuel Hermellin LIRMM Janvier 2014 Sommaire 1 Le Calcul Haute Performance Naissance des super-calculateurs Évolution des super-calculateurs

Plus en détail

GRID-TLSE : un site d expertise en algèbre linéaire creuse p. 1/17

GRID-TLSE : un site d expertise en algèbre linéaire creuse p. 1/17 0.5 setgray0 0.5 setgray1 GRID-TLSE : un site d expertise en algèbre linéaire creuse Marc Pantel Marc.Pantel@enseeiht.fr CERFACS, FERIA-IRIT, LaBRI, LIP Projet GRID-TLSE ENSEEIHT 2, rue Camichel, 31071

Plus en détail

Université Pierre et Marie Curie. Laboratoire d Informatique de Paris 6

Université Pierre et Marie Curie. Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie Laboratoire d Informatique de Paris 6 Jean-Luc Lamotte Emmanuel Chailloux Extension d Objective Caml scientifique sur GPU pour le calcul Plan Présentation UPMC / LIP6 /

Plus en détail

SCHÉMA GÉNÉRAL D'UN SYSTÈME INFORMATIQUE

SCHÉMA GÉNÉRAL D'UN SYSTÈME INFORMATIQUE A.R LEGGAT SYSTEME INFORMATIQUE Un système informatique est l'ensemble des moyens logiciels et matériels nécessaires pour satisfaire les besoins informatiques de l'utilisateur. La notion de logiciel correspond

Plus en détail

cluster pour l Enseignement Universitaire et la Recherche

cluster pour l Enseignement Universitaire et la Recherche cluster pour l Enseignement Universitaire et la Recherche Université de Nice Sophia-Antipolis 22 janvier 2013 Université de Nice Sophia-Antipolis cluster pour l Enseignement Universitaire et la Recherche

Plus en détail

Présentation de Citrix XenServer

Présentation de Citrix XenServer Présentation de Citrix XenServer Indexes Introduction... 2 Les prérequis et support de Xenserver 6 :... 2 Les exigences du système XenCenter... 3 Avantages de l'utilisation XenServer... 4 Administration

Plus en détail

Portage d applications sur le Cloud IaaS Portage d application

Portage d applications sur le Cloud IaaS Portage d application s sur le Cloud IaaS Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire AstroParticule et Cosmologie (APC), LabEx UnivEarthS APC, Univ. Paris Diderot, CNRS/IN2P3,

Plus en détail

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi Thèse High Performance by Exploiting Information Locality through Reverse Computing Présentée et soutenue publiquement le 21 décembre 2011 par Mouad Bahi pour l obtention du Doctorat de l université Paris-Sud

Plus en détail

Intercorrélation d images PIV sur GPU application à un écoulement en fluide turbide

Intercorrélation d images PIV sur GPU application à un écoulement en fluide turbide 13 ième Congrès Francophone de Techniques Laser, CFTL 2012 - ROUEN, 18 21 Septembre 2012 Intercorrélation d images PIV sur GPU application à un écoulement en fluide turbide 1 Introduction Emmanuel CID

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Architectures Parallèles

Architectures Parallèles Architectures Parallèles Cours pour Ingénieur Préparé par Dr. Olfa Hamdi-Larbi ola_ola79@yahoo.fr Reçoit les signaux du contrôleur, cherche les données et les traite Instructions, Données à traiter et

Plus en détail

Calcul intensif sur GPU: exemples en traitement d images, en bioinformatique et en télécommunication

Calcul intensif sur GPU: exemples en traitement d images, en bioinformatique et en télécommunication Calcul intensif sur GPU: exemples en traitement d images, en bioinformatique et en télécommunication Sidi Ahmed Mahmoudi, Sébastien Frémal, Michel Bagein, Pierre Manneback Université de Mons, Faculté Polytechnique

Plus en détail

Programmation des processeurs multicoeurs

Programmation des processeurs multicoeurs Programmation des processeurs multicoeurs Cours théorique et Application en OpenCL avec Matrix Studio Pascal Ballet pascal.ballet@univ-brest.fr Université de Bretagne Occidentale Laboratoire d Informatique

Plus en détail

Chapitre 2 : Abstraction et Virtualisation

Chapitre 2 : Abstraction et Virtualisation Virtualisation et Cloud Computing Chapitre 2 : Abstraction et Virtualisation Objectifs Présenter la notion de niveaux d abstraction séparés par des interfaces bien définies Description des avantages et

Plus en détail

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Optimisation : pipeline jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture des

Plus en détail

Architectures parallèles

Architectures parallèles Architectures parallèles GIF-1001 Ordinateurs: Structure et Applications, Hiver 2015 Jean-François Lalonde Image: Michael Thompsett Merci à Étienne Tremblay Architecture parallèle Architecture parallèle:

Plus en détail

ROMEO From multi-core to many-core

ROMEO From multi-core to many-core ROMEO From multi-core to many-core Directeur ROMEO Michaël KRAJECKI michael.krajecki@univ-reims.fr Chef de projet ROMEO Arnaud RENARD arnaud.renard@univ-reims.fr Enseignant-Chercheur CReSTIC Christophe

Plus en détail

Portage, optimisation et développement de logiciels de calcul sur architectures GPU et hybrides PSA PEUGEOT CITROËN

Portage, optimisation et développement de logiciels de calcul sur architectures GPU et hybrides PSA PEUGEOT CITROËN Portage, optimisation et développement de logiciels de calcul sur architectures GPU et hybrides PSA PEUGEOT CITROËN Benoît DESCHAMPS PSA Peugeot Citroën 29/06/11 INDEX Présentations activités Réalité Virtuelle

Plus en détail

Problématique des accès mémoires irréguliers causés par les maillages non structurés :

Problématique des accès mémoires irréguliers causés par les maillages non structurés : Problématique des accès mémoires irréguliers causés par les maillages non structurés :! étude comparative entre les machines massivement multicoeurs et les GPU Loïc Maréchal / INRIA! LJLL, Demi-Journée

Plus en détail

La gestion du poste de travail en 2011 : Panorama des technologies

La gestion du poste de travail en 2011 : Panorama des technologies La gestion du poste de travail en 2011 : Panorama des technologies François Clémence C.R.I Université Paul Verlaine Metz UFR Sciences Humaines et Arts clemence@univ-metz.fr Olivier Mathieu C.R.I Université

Plus en détail

État de l art des simulations multi-agents sur GPU

État de l art des simulations multi-agents sur GPU État de l art des simulations multi-agents sur GPU Emmanuel Hermellin Fabien Michel Jacques Ferber emmanuel.hermellin@lirmm.fr fmichel@lirmm.fr ferber@lirmm.fr LIRMM - Laboratoire Informatique Robotique

Plus en détail

Formation en Calcul Scientifique - LIEM2I

Formation en Calcul Scientifique - LIEM2I Formation en Calcul Scientifique - LIEM2I Introduction au calcul parallèle Loïc Gouarin, Violaine Louvet, Laurent Series Groupe Calcul CNRS 9-13 avril 2012 Loïc Gouarin, Violaine Louvet, Laurent Series

Plus en détail

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC JSO HPC-Desk - 20 mai 2014 Vincent Ducrot, Sébastien Monot AS+ - Groupe Eolen Donnons de la suite à vos idées PRÉSENTATION

Plus en détail

Comment concevoir un ordinateur? Quelques questions à considérer

Comment concevoir un ordinateur? Quelques questions à considérer Comment concevoir un ordinateur? Quelques questions à considérer Unité d entrée Unité de traitement Unité de sortie Comment coder les données Entiers, réels, caractères Comment restituer les résultats

Plus en détail

Infrastructure de calcul du CRRI

Infrastructure de calcul du CRRI Infrastructure de calcul du CRRI Types d'infrastructures de calcul Calcul Intensif (High Performance Computing) Tâches fortement couplées (codes vectoriels / parallèles) Supercalculateurs, SMP, clusters,

Plus en détail

Faire des simulations au DMS

Faire des simulations au DMS (lorsque l on est statisticien) P. Lafaye de Micheaux 1 1 Département de Mathématiques et de Statistique Université de Montréal Séminaire midi, 2010 Plan de la présentation 1 Motivation/Objectif 2 3 C/C++

Plus en détail

BE de programmation MPI-1 par envois de messages bloquants

BE de programmation MPI-1 par envois de messages bloquants BE-MPI-1envois de messages bloquants Page 1 of 3 01/03/2010 Calcul parallèle et distribué, et Grilles de calculs Cours de 3ème année SI à Supélec BE de programmation MPI-1 par envois de messages bloquants

Plus en détail

GPGPU pour l optimisation avec EASEA

GPGPU pour l optimisation avec EASEA GPGPU pour l optimisation avec EASEA Ogier Maitre, Frédéric Krüger, Nicolas Lachiche, Pierre Collet Laboratoire de Sciences de l Image de l Informatique et de la Télédétection Equipe Fouille de Données

Plus en détail

Introduction à la Programmation Sylvain Tisserant

Introduction à la Programmation Sylvain Tisserant INFO 1 Introduction à la Programmation Sylvain Tisserant Mes coordonnées Enseignant-Chercheur Professeur au département IRM depuis sa création (ES2I, ESIL, Polytech Marseille) Directeur du département

Plus en détail

! Vous aurez pris connaissance de l'évolution. ! Vous comprendrez pourquoi on utilise le binaire en. ! Vous serez capable de construire un circuit

! Vous aurez pris connaissance de l'évolution. ! Vous comprendrez pourquoi on utilise le binaire en. ! Vous serez capable de construire un circuit Architecture élémentaire Un cours d architecture pour des informaticiens Samy Meftali Samy.meftali@lifl.fr Bureau 224. Bâtiment M3 extension Sans architecture pas d informatique Comprendre comment çà marche

Plus en détail

Thales Research & Technology

Thales Research & Technology Thales Research & Technology Kick-off OpenGPU SP2 SPEAR Design Environment 25/03/10 Research & Technology SPEAR Design Environment 25/03/10 Approche semi-automatique complémentaire des compilateurs paralléliseurs

Plus en détail

Programmation parallèle CPU / GPU

Programmation parallèle CPU / GPU Pré-rapport de stage de Master 2 Professionnel Mention Informatique Spécalité Systèmes et Applications Répartis Parcours Systèmes répartis embarqués ou temps-réel Programmation parallèle CPU / GPU Auteur

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Comment reproduire les résultats de l article : POP-Java : Parallélisme et distribution orienté objet

Comment reproduire les résultats de l article : POP-Java : Parallélisme et distribution orienté objet Comment reproduire les résultats de l article : POP-Java : Parallélisme et distribution orienté objet Beat Wolf 1, Pierre Kuonen 1, Thomas Dandekar 2 1 icosys, Haute École Spécialisée de Suisse occidentale,

Plus en détail

CARTE GRAPHIQUE. Sommaire : I. Histoire. Les cartes graphiques 2D-3D Pourquoi une carte graphique? II. Composants

CARTE GRAPHIQUE. Sommaire : I. Histoire. Les cartes graphiques 2D-3D Pourquoi une carte graphique? II. Composants CARTE GRAPHIQUE Sommaire : I. Histoire Les cartes graphiques 2D-3D Pourquoi une carte graphique? II. Composants Le processeur graphique La mémoire vidéo Le RAMDAC Le BIOS vidéo La connexion entre la carte

Plus en détail

QU EST-CE QUE LA GPGPU? POURQUOI SUR GPU?

QU EST-CE QUE LA GPGPU? POURQUOI SUR GPU? QU EST-CE QUE LA GPGPU? Initiation à la GPGPU Introduction General Programing on Graphic Processing Units. Utilisation de la puissance des cartes graphiques pour autre choses qu afficher des triangles.

Plus en détail

HAUTE PERFORMANCE DE CALCUL

HAUTE PERFORMANCE DE CALCUL Journées d études 2010 Modélisation actif-passif & HAUTE PERFORMANCE DE CALCUL FRACTALES 0 Journées d études 2010 Sommaire Projet SIGMA 1 ère partie 1.! Le printemps des modèles Applications Haute Performance

Plus en détail

ParaView / VTK / HDF5 un cas d utilisation : SimSERT. RDataDev OSUG 10 Avril 2015 Yves Rogez

ParaView / VTK / HDF5 un cas d utilisation : SimSERT. RDataDev OSUG 10 Avril 2015 Yves Rogez ParaView / VTK / HDF5 un cas d utilisation : SimSERT RDataDev OSUG 10 Avril 2015 Yves Rogez ParaView / VTK / HDF5 un cas d utilisation : SimSERT 1. Contexte : CONSERT / ROSETTA 2. ParaView : Fonctionnalités,

Plus en détail

Chapitre 4: Introduction au Cloud computing

Chapitre 4: Introduction au Cloud computing Virtualisation et Cloud Computing Chapitre 4: Introduction au Cloud computing L'évolution d'internet Virt. & Cloud 12/13 2 Définition Le cloud computing est une technologie permettant de délocaliser les

Plus en détail

Jonathan Passerat-Palmbach

Jonathan Passerat-Palmbach Techniques de Génie Logiciel au service des Simulations de Monte Carlo : cas de la distribution des nombres Pseudo-Aléatoires dans un environnement de Calcul à Haute Performance Jonathan Passerat-Palmbach

Plus en détail