RAPPEL. F em = BlI. 4. La loi de la dynamique : si la vitesse v est constante, elle implique :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "RAPPEL. F em = BlI. 4. La loi de la dynamique : si la vitesse v est constante, elle implique :"

Transcription

1 RAEL Quatre lois déterminent le système électromécanique : 1. La loi de Faraday : si la vitesse du conducteur est v Il aaraît une f.é.m. E : E = Blv 2. La loi de Lalace : si le courant dans le conducteur est I Il existe une force électromagnétique : F em = BlI 3. La loi d Ohm : U = E + RI 4. La loi de la dynamique : si la vitesse v est constante, elle imlique : F em = F Le fonctionnement sera moteur si F em et v sont de même sens U = E + RI Le fonctionnement sera générateur électrique si et v sont de sens oosé. La f.é.m. E va dans le sens du courant U = E RI La uissance em F em v B l I E B l EI 1

2 Chaitre 2 Machines à courant continu Les moteurs à courant continu restent très utilisés dans le domaine de l automobile (ventilateurs, lève-vitre, etc.) ainsi qu en tant que «moteur universel» dans l électroménager et l outillage Moteur lève vitre Moteur lève-vitre Moteur universel Moteur universel 2

3 Étude de la machine à courant continu Objectifs Connaître la constitution des machines à courant continu Établir les équations de fonctionnement en régime ermanent Faire le bilan des uissances Ce chaitre rerésente le minimum de ce qui doit être comris our être caable de mener un rojet de machine à courant continu ou le maximum de ce qui est tolérable our comrendre ce qu il y a dedans. 3

4 CONSTITUTION D UNE MACHINE À COURANT CONTINU Une machine à courant continu comrend quatre arties rinciales : l inducteur ; l induit ; le collecteur ; les balais également aelés charbons 4

5 Une machine à courant continu comrend quatre arties rinciales : l inducteur ; l induit ; le collecteur ; les balais également aelés charbons Ventilateur Induit bobiné Inducteur Boîte à bornes Balais Collecteur 5

6 L inducteur ièces olaires Enroulements 6

7 L inducteur Le bobinage inducteur, traversé ar le courant inducteur I e, roduit le flux magnétique dans la machine L inducteur I e r U Modèle 7

8 4 tyes d excitation I e r I I e I tot I U MCC U r MCC U excitation indéendante excitation Shunt I Ie Itot I r MCC U r MCC U excitation Série excitation comosée 8

9 Constitution Collecteur Conducteurs Circuit magnétique 9

10 L induit L induit est comosé d un ensemble de bobines identiques réarties uniformément autour d un noyau cylindrique. Il est monté sur un arbre et tourne entre les ôles de l inducteur I MCC U Modèle 10

11 Collecteurs Le collecteur est un ensemble cylindrique de lames de cuivre isolées les unes des autres ar des feuilles de mica Balais ou charbons Les balais, ortés ar le stator, frottent sur les lames du collecteur, et ermettent d établir une liaison électrique entre l induit qui tourne et l extérieur de la machine 11

12 I SCHÉMA ÉLECTRIQUE ÉQUIVALENT D UNE MACHINE À COURANT CONTINU I e E(V ) E R U r U (rad / sec) Induit Inducteur U ri E f ( ) I ( fixe) e Exression de E U E RI E a n E k 1 E k1 k2 I e E k 12

13 Exression de coule électromagnétique C em (Nm) C em k I k 1 C em em I C em f ( I) I ( fixe) e I(A) Exression de coule utile C u u C em c c fer Exression de la uissance U I U abs I e u C u em F 13

14 Bilan des uissances et rendement Fonctionnement moteur à excitation indéendante U exc I e élec U I em EI sortie C s ji jie fi c fi u sortie entrée u ji u jie F ent ji fi em jie élec c : uissance d entrée : ertes joules de l induit : ertes fer de l induit : uissance transmise au rotor ou uissance électromagnétique : ertes joules de l inducteur : ertes mécaniques : uissance électrique ertes constantes 14

15 En entrée : Circuit induit : ent élec U I Circuit d inducteur: U exc I e En sortie : sortie C Le rendement s écrira : ertes joules de l induit : sortie entrée 2 ji RI u ji u jie F ertes joules de l inducteur : e 2 ji ri e ertes fer de l induit : ertes mécaniques : fi moteur à excitation série C em k I 2 15

16 MODES DE FONCTIONNEMENT Dans les quadrants 1 et 3, le coule et la vitesse sont de même sens : la uissance électrique est transformée en uissance mécanique fournie à la charge Le quadrant 1 corresond au fonctionnement moteur en marche avant, tandis que le 3 corresond à un fonctionnement moteur en marche arrière. Le moteur freine la charge à la montée (rad / sec) 0 0 Le moteur entraîne la charge à la montée C 0 C 0 Le moteur entraîne la charge à la descente 0 Le moteur freine la charge 0 0 à la descente C (Nm) C 0 C 0 Dans les quadrants 2 et 4, le coule est oosé à la vitesse. La uissance mécanique est fournie ar la charge qui est alors entraînante, le moteur se comorte en frein La machine convertit la uissance mécanique en uissance électrique qui sera soit renvoyée vers l alimentation (récuération) soit dissiée dans des résistances (freinage rhéostatique). 16

17 QUESTIONS DE COURS Q1. Dans une machine à courant continu, ourquoi l inducteur est-il au stator et non au rotor? R1. Une machine à courant continu avec inducteur au rotor nécessiterait deux bagues our l excitation, comme our la machine synchrone, mais en lus deux balais tournants liés électriquement aux deux bagues our la liaison avec l extérieur, les balais étant en quadrature avec l axe des ôles. Q2. A quel niveau la conversion électromécanique se fait dans une machine électrique? R2. Au niveau de la f.é.m. de l induit Q3. ourquoi chaque fil actif est-il le siège d une f.é.m. alternative au cours de la rotation? R3. e = B.l.v, l et v étant constant au cours de la rotation, e(t) reroduit dans le tems l image de B, à réartition sinusoïdale dans l esace, e est nulle sur la ligne neutre et maximale sur la ligne des ôles, e est de ulsation w Q4. Quelle est la fonction de l inducteur de la machine? R4. Création du cham magnétique Q5. our inverser le sens de rotation d un moteur, que faut-il inverser? R5. Les bornes d alimentation de l induit ou de l inducteur arès avoir éteint toutes les alimentations mais as les deux à la fois. 17

18 18

19 1.4 Le treuil tourne à une vitesse de: Ω = v 11.π = 60 R 0,1 5,76 rad/sec Le moteur tourne 20 fois lus vite que le treuil Ω mot = 20 5,76 115,2rad/sec Soit C u = u Ω = ,2 76,4Nm mot 60115,2 N 1100tr 2 2 / min 19

20 FIN 20

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

Conversion électromécanique. Machine Asynchrone 1 INTRODUCTION, DOMAINES D EMPLOI... 2 2 CONSTITUTION ET PRINCIPE DE FONCTIONNEMENT...

Conversion électromécanique. Machine Asynchrone 1 INTRODUCTION, DOMAINES D EMPLOI... 2 2 CONSTITUTION ET PRINCIPE DE FONCTIONNEMENT... CI Machines électriques alternatives et leur contrôle Conversion électromécanique Machine Asynchrone 1 INTRODUCTION, DOMAINES D EMLOI... CONSTITUTION ET RINCIE DE FONCTIONNEMENT....1 VUE D ENSEMBLE ECLATEE

Plus en détail

Les machines électriques Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 e-mail : Christophe.Palermo@univ-montp2.fr

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

15 exercices corrigés d Electrotechnique sur la machine à courant continu

15 exercices corrigés d Electrotechnique sur la machine à courant continu 15 exercices corrigés d Electrotechnique sur la machine à courant continu Sommaire Exercice MCC01 : machine à courant continu Exercice MCC02 : machine à courant continu à excitation indépendante Exercice

Plus en détail

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU CONVERTIR L ENERGIE MACHINES A COURANT CONTINU Les machines à courant continu sont réversibles. Elles peuvent devenir génératrices ou moteur. Energie mécanique GENERATRICE CONVERTIR L ENERGIE Energie électrique

Plus en détail

Electrotechnique: Electricité Avion,

Electrotechnique: Electricité Avion, Electrotechnique: Electricité Avion, La machine à Courant Continu Dr Franck Cazaurang, Maître de conférences, Denis Michaud, Agrégé génie Electrique, Institut de Maintenance Aéronautique UFR de Physique,

Plus en détail

T.P. numéro 27 : moteur asynchrone.

T.P. numéro 27 : moteur asynchrone. T.P. numéro 27 : moteur asynchrone. Buts du TP : le but de ce TP est l étude du moteur asynchrone triphasé. On étudie la plaque signalétique du moteur, puis on effectue un essai à vide et enfin un essai

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU

Moteur à courant continu MACHINE A COURANT CONTINU I. PESENTATION MACHINE A COUANT CONTINU Une machine à courant continu est un convertisseur réversible rotatif d'énergie. Lorsque l'énergie électrique est trasformée en énergie mécanique, la machine fonctionne

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

E = k. La vitesse est nulle, la FEM E est nulle aussi. Ce = k. Um = E + R Im. 2 π 60 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU

E = k. La vitesse est nulle, la FEM E est nulle aussi. Ce = k. Um = E + R Im. 2 π 60 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 A PRÉSENTATION Beaucoup d'appplications nécessitent un couple de démarrage élevé. Le Moteur à

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Place Cormontaigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences Appliquées. Savoir-faire expérimentaux. Référentiel : S5 Sciences Appliquées.

Plus en détail

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones Gérard-ndré CPOLINO 1 Machine à pôles lisses Concept (machine à 2 pôles) Le stator est un circuit magnétique circulaire encoché Un bobinage triphasé est placé dans les encoches Le rotor est également un

Plus en détail

CHAPITRE CP2 C Conversions électromécaniques

CHAPITRE CP2 C Conversions électromécaniques PSI rizeux Ch. CP2: Conversions électromécaniques 13 CHAPITRE CP2 C Conversions électromécaniques Comme nous allons le voir, il est possible (et nécessaire ) de convertir l énergie électrique en énergie

Plus en détail

LES MOTEURS ELECTRIQUES

LES MOTEURS ELECTRIQUES L objectif de ce cours est de comprendre le fonctionnement des moteurs électriques. Nous verrons les notions de puissance, de pertes et de rendement. Nous étudierons de manière simplifié comment ces moteurs

Plus en détail

Le circuit de charge

Le circuit de charge 1 1. Mise en situation : 2. Définition : comprend l intégralité des pièces permettant l alimentation électrique de l ensemble des consommateurs du véhicule et la charge de la batterie 3. Fonction globale

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone Chap. 8 : Le moteur asynchrone I.Principe Le stator est formé de 3 bobines dont les axes font entre eux un angle de. Il est alimenté par un réseau triphasé équilibré, qui crée dans l entrefer un ( radial

Plus en détail

PRINCIPE DE FONCTIONNEMENT.

PRINCIPE DE FONCTIONNEMENT. PRINCIPE DE FONCTIONNEMENT. Le stator crée un champ inducteur tournant à la vitesse de synchronisme. La pulsation des courants stator est = p S. Pour que le rotor tourne, il faut qu'il y ait du courant

Plus en détail

Énergie électrique mise en jeu dans un dipôle

Énergie électrique mise en jeu dans un dipôle Énergie électrique mise en jeu dans un dipôle Exercice106 Une pile de torche de f.é.m. E = 4,5 V de résistance interne r = 1,5 Ω alimente une ampoule dont le filament a une résistance R = 4 Ω dans les

Plus en détail

embrayage ou transmission hydraulique (frottements visqueux) ex. : engin de chantier

embrayage ou transmission hydraulique (frottements visqueux) ex. : engin de chantier G. Pinson - Physique Appliquée Machine asynchrone - C34 / 1 C34 - Machine Asynchrone (MAS) Moteur asynchrone Transmissions mécaniques asynchrones (transmissions de couple) : P m s bain d huile ailettes

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 3 : MACHINE ASYNCHRONE Exercice 1 Un moteur asynchrone tétrapolaire, stator monté en triangle, fonctionne dans les conditions suivantes : tension entre phases U = 380 V ; fréquence f

Plus en détail

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2)

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2) CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2015 Concours : EXTERNE Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 2 MODÉLISATION DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS TRANSFORMÉE DE LAPLACE TRAVAIL DIRIGÉ Robot Ericc Le robot

Plus en détail

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère ) ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel

Plus en détail

Couple électromagnétique (couple moteur)

Couple électromagnétique (couple moteur) Principe de fonctionnement Le rotor, alimenté en courant continu, par un système de contacts glissants (bagues), crée un champ magnétique rotorique qui suit le champ tournant statorique avec un retard

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Le moteur asynchrone triphasé 1 ) Généralités Le moteur asynchrone triphasé est largement utilisé dans l'industrie, sa simplicité de construction en fait un matériel très fiable et qui demande peu d'entretien.

Plus en détail

ELEC218 Machines électriques

ELEC218 Machines électriques ELEC218 Machines électriques Jonathan Goldwasser 1 Lois de la conversion électromécanique de l énergie f.e.m de transformation e it = inductance * dérivées du courant par rapport au temps. f.e.m de rotation

Plus en détail

CHAPITRE 7 LES MOTEURS D AUTOMATISME

CHAPITRE 7 LES MOTEURS D AUTOMATISME DG STPI nité 3 CHAPITR 7 LS OTRS D ATOATIS. Introduction. Ces dernières années, une véritable révolution a eu lieu concernant les moteurs d automatisme. Alors qu il y seulement une dizaine d années, ce

Plus en détail

Cours 5. Moteurs électriques

Cours 5. Moteurs électriques Cours 5. Moteurs électriques 1. INTRODUCTION 2. MOTEURS ASYNCHRONES TRIPHASÉS 3. MOTEURS ASYNCHRONES MONOPHASÉS 4. MOTEURS SYNCHRONES À COURANT CONTINU 6. MOTEURS PAS À PAS Ces diapositives sont nouvelles

Plus en détail

Etude d'un monte-charge

Etude d'un monte-charge BTS ELECTROTECHNIQUE Session 1998 3+

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

Machine asynchrone. - Définitions. Principe. Rotor : Cage d écureuil. Pulsation du stator Synchronisme. Pulsation du Rotor N.

Machine asynchrone. - Définitions. Principe. Rotor : Cage d écureuil. Pulsation du stator Synchronisme. Pulsation du Rotor N. Ω s Principe - Définitions Pulsation du stator Synchronisme Rotor : Cage d écureuil Ω Pulsation du Rotor Ω < Ω s N B S g g = Glissement Ωs Ω N s = Ω N s s N Stator : Inducteur Ω = Ω s Rem Si plus de variation

Plus en détail

Pédaler en danseuse P2 P1

Pédaler en danseuse P2 P1 Pédaler en danseuse Pédaler en danseuse consiste à ne as s asseoir sur la selle et à se dresser sur les édales. Le mouvement de édalage s écarte alors notablement du édalage assis. Notre roos est d analyser

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

LE CIRCUIT DE CHARGE

LE CIRCUIT DE CHARGE MAINTENANCE AUTOMOBILE 1 LE CIRCUIT DE CHARGE PROBLÈME POSÉ Les véhicules automobiles modernes sont maintenant équipés de circuits électriques et électroniques aussi variés que nombreux. Il est donc nécessaire

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009. Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009. Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009 Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficient : 5 L'emploi de toutes les

Plus en détail

ELECTROTECHNIQUE - ELECTRONIQUE

ELECTROTECHNIQUE - ELECTRONIQUE CONCOURS GÉNÉRAL SÉNÉGALAIS 1/5 Durée : 06 heures SESSION 2014 ELECTROTECHNIQUE - ELECTRONIQUE Le sujet est composé de trois problèmes (A, B, et C) pouvant être traités de façon indépendante. Il comporte

Plus en détail

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur:

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur: EXERCICE N 1 Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor sont en

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

PARTIE THEORIQUE. 2 - Machines à courant continu (moteur et génératrice)

PARTIE THEORIQUE. 2 - Machines à courant continu (moteur et génératrice) Génératrice et moteur à courant continu PARTIE THEORIQUE 1 - Essais des machines électriques Lorsqu'on construit une machine, on optimise ses paramètres pour obtenir le meilleur rendement pour des conditions

Plus en détail

induit collecteur arbre + palier ventilateur

induit collecteur arbre + palier ventilateur G. Pinson - Physique Appliquée Machine à courant continu - C32 / C32 - Machine à Courant Continu (MCC) à excitation séparée à courant continu Constitution (schéma simplifié). Exemple : moteur à deux paires

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles

1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles CHAPITRE 1 ANALYSE DES SYSTÈMES 1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles L objectif de ce TD est de montrer que l outil équation différentielle

Plus en détail

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu Ingénieur Manager Entrepreneur TRAVAUX DIRIGES Equipements Electriques La machine à courant continu ITEEM 1ere année 1 Les exercices encadrés seront fait en TD. Il est vivement conseillé de préparer les

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

Machine synchrone autopilotée : application aux asservissements : moteur brushless

Machine synchrone autopilotée : application aux asservissements : moteur brushless Machine synchrone autopilotée : application aux asservissements : moteur brushless Cours non exhaustif destiné aux étudiants de BTS maintenance industrielle (les textes en italiques ne sont pas à être

Plus en détail

Cours d électrotechnique

Cours d électrotechnique MACHINE TOURNANTE A COURANT CONTINU LES MACHINES A COURANT CONTINU PARTIE N 3 : LE MOTEUR TABLE DES MATIERES 1. Principe de fonctionnement... 3 1.1. Principe de base... 3 1.2. Pour N spires à l induit...

Plus en détail

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V 1 Transformateur parfait : transformateurs : 1) On désire alimenter sous une tension de 220 V un récepteur monophasé absorbant 50 A avec un facteur de puissance de 0,6 arrière (inductif). Ce récepteur

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

Manuel d'utilisation de la maquette

Manuel d'utilisation de la maquette Manuel d'utilisation de la maquette AÉROGÉNÉRATEUR À COURANT ALTERNATIF (énergie éolienne avec transformation d énergie) Enseignement primaire et collège Articles Code Aérogénérateur à courant alternatif

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique C est en 1831 que Michael Faraday découvre le phénomène d induction, il découvre qu un courant électrique est créé dans un conducteur lorsqu il est soumis à un champ magnétique

Plus en détail

CIRCUIT DE CHARGE BOSCH

CIRCUIT DE CHARGE BOSCH LA GUZZITHÈQUE 1/5 10/06/06 CIRCUIT DE CHARGE BOSCH Ce document est issu d un article de l Albatros, revue de liaison du MGCF, lui-même issu du Gambalunga, revue anglaise de liaison du MGC d Angleterre.

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

La machine à courant continu

La machine à courant continu Lycée La Fayette Page 1 Chaitre 3 La machine à courant continu 1. INTODUCTION La machine à courant continu est totalent réversible : elle ourra onctionner en moteur ou en génératrice.. CONSTITUTION La

Plus en détail

RENDEMENT DES ALTERNATEURS Comment neutraliser le couple antagoniste de la réactance d induit et quelle en est la conséquence.

RENDEMENT DES ALTERNATEURS Comment neutraliser le couple antagoniste de la réactance d induit et quelle en est la conséquence. RENDEMENT DES ALTERNATEURS Comment neutraliser le couple antagoniste de la réactance d induit et quelle en est la conséquence. Explications détaillées pages 2-12 Annexe pages 13-14 L Effet de la réactance

Plus en détail

Partie A : Principe du moteur asynchrone (37%)

Partie A : Principe du moteur asynchrone (37%) Les trois parties A, B et C de cette épreuve sont indépendantes. Partie A : Principe du moteur asynchrone (37%) Aucune connaissance préalable du moteur asynchrone n est nécessaire pour l étude de cette

Plus en détail

LE CIRCUIT DE DEMARRAGE dém. 1/6

LE CIRCUIT DE DEMARRAGE dém. 1/6 LE CIRCUIT DE DEMARRAGE dém. 1/6 I DESCRIPTION - Le circuit est composé d'une batterie, d'un contacteur général (allumage / démarrage ) et d'un démarreur. + contact + batterie + allumage - masse + AVC

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

EPREUVE N 1. Sciences et techniques des installations. (durée : 4 heures ; coefficient 3) Aucun document n est autorisé.

EPREUVE N 1. Sciences et techniques des installations. (durée : 4 heures ; coefficient 3) Aucun document n est autorisé. CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2006 CONCOURS : INTERNE Section : Electrotechnique et électronique maritime EPREUVE N 1 Sciences et

Plus en détail

Questionnaire à choix multiple : Principe de fonctionnement des convertisseurs électromagnétiques à champ tournant

Questionnaire à choix multiple : Principe de fonctionnement des convertisseurs électromagnétiques à champ tournant Chapitre 3 : Principe de fonctionnement des convertisseurs électromagnétiques à champ tournant Questionnaire à choix multiple : Principe de fonctionnement des convertisseurs électromagnétiques à champ

Plus en détail

ROBUROC 6 : PLATEFORME D EXPLORATION TOUS TERRAINS

ROBUROC 6 : PLATEFORME D EXPLORATION TOUS TERRAINS PS/MP ROBUROC 6 Lycée Paul Valéry ROBUROC 6 : PLATEFORME D EXPLORATON TOUS TERRANS Le RobuROC 6 (hotograhie ci-dessous) est un robot mobile déveloé ar la société ROBOSOFT. Cette late-forme robotisée a

Plus en détail

Boucle à verrouillage de phase

Boucle à verrouillage de phase Chaitre 2 Boucle à verrouillage de hase Introduction La boucle à verrouillage de hase, que l on désignera ar la suite ar l acronyme anglais PLL (Phase Locked Loo), est un disositif largement utilisé dans

Plus en détail

CIRCUIT DE CHARGE DOCUMENT RESSOURCE

CIRCUIT DE CHARGE DOCUMENT RESSOURCE CIRCUIT DE CHARGE DOCUMENT RESSOURCE Tous les véhicules, du scooter au camion, possèdent aujourd hui des systèmes électriques (démarrage, signalisation, injections, confort) qui nécessitent une unité de

Plus en détail

Actionneurs électriques 1. Introduction

Actionneurs électriques 1. Introduction Actionneurs électriques 1. Introduction Master Spécialisé 1 Mécatronique Faculté des Sciences de Tétouan Février-Juin 2014 Jaouad Diouri Projet du cours Contenu Circuits magnétiques, transformateurs, puissance,

Plus en détail

VENTELEC RENOUVELER L AIR

VENTELEC RENOUVELER L AIR OBJECTIF Etudier l influence du Variateur de vitesse, sur le banc moto-ventilateur, en phase de démarrage et en régime établi (volet totalement OUVERT). Mettre en œuvre les mesureurs et leurs accessoires.

Plus en détail

Chapitre 4 MODELISATION DE LA MACHINE A COURANT CONTINU

Chapitre 4 MODELISATION DE LA MACHINE A COURANT CONTINU 3.4.3 Moteur asynchrone à cage d écureuil C est de loin le moteur le plus utilisé. Son design est surtout prévu pour les applications à vitesse constante. De plus, afin de réduire son courant de démarrage,

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Freinage des moteurs asynchrones

Freinage des moteurs asynchrones Freinage des moteurs asynchrones Introduction : Le fonctionnement d un système industriel peut nécessiter pour le moteur d entraînement: Un ralentissement Un freinage Un maintien à l arrêt Pour cela, on

Plus en détail

TPE Alternateur. Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez

TPE Alternateur. Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez TPE Alternateur Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez 1 Thème : Avancées scientifiques et réalisations techniques. Problématique : Comment peut-on transformer de l énergie mécanique

Plus en détail

BALAIS Moteur (charbons)

BALAIS Moteur (charbons) BALAIS Moteur (charbons) 1/ Rôle a) Pour les machines électriques comportant des bagues (alternateur moteur asynchrone) : moteur universel Les balais doivent maintenir un contact constant avec la bague

Plus en détail

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu Considérons un rotor très simplifié, sur lequel on a bobiné une seule spire, dont les extrémités

Plus en détail

FREINAGE MOTEUR ASYNCHRONE Le freinage problématique

FREINAGE MOTEUR ASYNCHRONE Le freinage problématique Le freinage problématique PAGE : 1 Le freinage doit être immédiat lors de l appuie sur AU Hors dispositifs électroniques Frein à appel de courant Dans le cas du frein à appel de courant, c'est l'alimentation

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE ( Leçon 6 ) LE MOTEUR ASYNCHRONE TRIPHASE Les moteurs asynchrones triphasés représentent plus de 80 % du parc moteur électrique. Ils sont utilisés pour transformer l énergie

Plus en détail

LES MOTEURS. A). Présentation : I ). Schéma fonctionnel : II ). Principe de fonctionnement :

LES MOTEURS. A). Présentation : I ). Schéma fonctionnel : II ). Principe de fonctionnement : LES MOTEURS A). Présentation : I ). Schéma fonctionnel : Un moteur est un élément qui permet de transformer une énergie Electrique (Tension, Courant) en énergie Mécanique (Rotation) caractérisée par son

Plus en détail

S2I 1. quartz circuit de commande. Figure 1. Engrenage

S2I 1. quartz circuit de commande. Figure 1. Engrenage TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles

Plus en détail

Les interactions électromagnétiques

Les interactions électromagnétiques Les interactions électromagnétiques Activité 1 Le champ magnétique La force électromagnétique 1. Le champ magnétique Document 1 : Champ magnétique d un aimant droit Document 2 : champ magnétique d un aimant

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

INDEX COLONNE PORTE BOBINES AVEC TENDEUR DE FIL BOBINEUSE POUR MOTEURS ET TRANSFORMATEURS BOBINEUSE DIDACTIQUE POUR MOTEURS

INDEX COLONNE PORTE BOBINES AVEC TENDEUR DE FIL BOBINEUSE POUR MOTEURS ET TRANSFORMATEURS BOBINEUSE DIDACTIQUE POUR MOTEURS INDEX BOBINEUSES BOBINEUSE MANUELLE COLONNE PORTE BOBINES AVEC TENDEUR DE FIL BOBINEUSE POUR MOTEURS BOBINEUSE POUR MOTEURS ET TRANSFORMATEURS BOBINEUSE DIDACTIQUE POUR MOTEURS DL 1010B DL 1010D DL 1012Z

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

L ALLUMAGE. Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre.

L ALLUMAGE. Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre. L ALLUMAGE Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre. - 1 - Création de l arc électrique : L arc électrique

Plus en détail

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

1 Introduction. 2 Modèle

1 Introduction. 2 Modèle Projet d introduction à l analyse numérique : Etude de la dynamique d une centrale hydroélectrique Premier Bachelier en sciences de l ingénieur Année académique 2012-2013 1 Introduction Parmi les systèmes

Plus en détail

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

électricité Pourquoi le courant, dans nos maison, est-il alternatif? CHAPITRE 4 : Production de l él électricité Pourquoi le courant, dans nos maison, est-il alternatif? D où vient le courant? Comment arrive-t-il jusqu à nous? 1 la fabrication du courant 2 Les transformateurs

Plus en détail

FORMATION CONTINUE TECHNICIENS SUPERIEURS INGENIEURS ELECTROTECHNICIENS LA MACHINE SYNCHRONE. Cours préparé par Bapio BAYALA

FORMATION CONTINUE TECHNICIENS SUPERIEURS INGENIEURS ELECTROTECHNICIENS LA MACHINE SYNCHRONE. Cours préparé par Bapio BAYALA FORMATION CONTINUE TECHNICIENS SUPERIEURS INGENIEURS ELECTROTECHNICIENS LA MACHINE SYNCHRONE Cours préparé par Bapio BAYALA SOMMAIRE I/ PRINCIPE DE FONCTIONNEMENT A/ PHENOMENES D INDUCTION B/ APPLICATION

Plus en détail

BACCALAURÉAT PROFESSIONNEL. «Traitements de surfaces»

BACCALAURÉAT PROFESSIONNEL. «Traitements de surfaces» BACCALAURÉAT PROFESSIONNEL «Traitements de surfaces» Éreuve E1B1-U1 SOUS-ÉPREUVE ÉCRITE Sujet Mathématiques et Sciences Physiques Durée : heures Coefficient : 1,5 Le sujet comorte 5 ages numérotées de

Plus en détail

TUTORAT D'ELECTROTECHNIQUE

TUTORAT D'ELECTROTECHNIQUE DRIEU Samuel GARIT Florent TUTORAT D'ELECTROTECHNIQUE Etude d'un véhicule électrique Nous allons ici étudier un véhicule tout électrique mue par une machine électrique. Dans une première partie, nous étudierons

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

La production et le transport de l électricité

La production et le transport de l électricité Comment produire simplement une tension alternative? Connecter les deux bornes d une bobine à un oscilloscope À l aide d un moteur, faire tourner un aimant devant la bobine (doc ) Observer sur l oscillogramme

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail