Activité Documentaire n 1 Chapitre 1 : Ondes et matière Différentes sources de rayonnements Partie 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Activité Documentaire n 1 Chapitre 1 : Ondes et matière Différentes sources de rayonnements Partie 2"

Transcription

1 Activité Documentaire n 1 Chapitre 1 : Ondes et matière Différentes sources de rayonnements Partie 2 II)Rayonnements et particules 10) Rappeler l'intervalle des longueurs d'ondes visibles par l'oeil humain nm 11) Compléter le tableau ci-dessous, en donnant, pour chaque rayonnement ELM, les sources caractéristiques :

2 Sources célestes Rγ Rx UV Visible IR µondes Radio Trous noirs Naines blanches, Quasars Etoiles Etoiles, Nébuleuses Etoiles Poussières inter - stellaires Pulsars Sources Terrestres Réactions nucléaires Radiographie X Lampes à bronzer, lumière "noire" Flammes, lasers, ampoules à filament... Sources de chaleur Fours à µ- ondes... TV, Wifi, GPS, téléphonie... 12) Quel est, selon vous, l'intérêt d'observer l'univers dans d'autres domaines de rayonnement que le visible? Le visible correspond à ce que l'on voit à l'oeil nu, mais le tableau précédent nous montre directement qu'il existe des objets célestes invisibles à l'oeil nu, précisément, donc "observer" (qui devient un terme impropre, analyser serait plus rigoureux) dans d'autres domaines de rayonnement permet d'étudier ces corps célestes, dans toute leur diversité et donc aussi de détecter de nouveaux objets célestes, et donc aussi de les répertorier (faire une cartographie complète du ciel).

3 D A C B 13) Interpréter l'axe des ordonnées du graphique du document % d'opacité indique ou signifie 0% de transparence, donc l'axe des ordonnées augmente avec la perte de transparence, donc reflète l'absorption réalisée par l'atmosphère des rayonnements de longueur d'ondes spécifiées en abscisses. 14) Quels types d'ondes ELM peuvent traverser facilement l'atmosphère terrestre? Pour savoir quelles ondes ELM traversent l'atmosphère, il faut chercher celles qui ne sont pas ou seulement partiellement absorbées, donc sur le graphique, chercher les "bandes" ou domaines qui ont une ordonnée relativement basse soit : Visible Proche IR Bande médiane des IR Bande haute des Micro-ondes Bande basses des Radiofréquences 15) En déduire ceux qui restent inaccessibles depuis la surface terrestre. Les rayons Gamma, X, les UV, une grande partie des IR et micro-ondes, ainsi qu'une partie des Radiofréquences ne parviennent pas sur Terre.

4 16) Donner des exemple d'ondes d'origine terrestre perturbant la radiodétection. Les ondes radio sont essentiellement issues d'appareils comme : TV, radio, Wifi, GPS, téléphonie, CB... 17) Comment les scientifiques et astrophysiciens limitent ils cette gêne dans la radiodétection? En s'éloignant des sources! Donc loin des structures urbaines et si possible aussi en altitude, car alors, si on vise le ciel, on ne pointe plus en direction des sources émettrices plus basses : le désert, les montagnes sont des lieux privilégiés! 18) Comment observer les rayonnements inaccessibles depuis la surface terrestre? Aller directement dans l'espace, via des télescopes spatiaux ou monter au moins en altitude le plus possible. L'espace est idéal car il n'est plus soumis aux variations météorologiques et de température, qui modifient les couches d'air et provoquent des perturbations de mesure... 19) Associer les lettres A, B... du Document 3 au tableau du Document 4, permettant de savoir quel capteur est utilisé pour observer tel type de rayonnement. Voir Document 4. 20) Quelle information du texte est illustrée dans le Document 6? Que se passe t-il au point A? "Si l'énergie apportée par la particule est suffisante, les produits de ces transformations interagissent à leur tour avec le milieu et il se produit finalement une gerbe de particules secondaires qui finissent par atteindre le sol."

5 Au point A est représenté, précisément, l'ensemble des interactions et transformations possibles, qui se termine en "gerbe" de particules produites, dans de nombreuses directions... 21) Trouver des avantages aux accélérateurs de particules par rapport aux rayons cosmiques pour étudier et expérimenter sur les particules. Travailler avec un accélérateur de particules permet de contrôler la vitesse des particules manipulées, donc de contrôler la violence des collisions et donc d'orienter certaines transformations et pas d'autres... (à haute énergie, on peut casser un noyau, par exemple, à plus haute énergie encore, casser les nucléons en quarks...) Il n'est pas nécessaire d'aller en altitude! Il n'est pas nécessaire d'attendre qu'il se passe quelque chose, en accélérateur, le déclenchement est contrôlé. L'étude des particules accélérées par l'accélérateur se font sur de petite régions de l'espace faciles à déceler, contrairement aux réactions atmosphères, difficilement localisables, sur plusieurs km 3. (... mais ça coûte EXTREMEMENT cher!) 22) Quelles informations peut-on tirer de l'étude des particules cosmiques? L'intérêt propre des particules cosmiques est d'abord, en fonction de leur provenance, de comprendre le mode de production par certains corps célestes de ces particules, mais aussi d'étudier notre environnement céleste (voie lactée, présence de nébuleuse, trous noirs), proche et plus lointain. Cette "récolte" de particules provenant du grand lointain est aussi ce qui nous permet d'étudier les débuts de l'univers, donc de se rapprocher un peu de cet événement fondateur qu'est le Big-Bang... III) Un exemple de détecteur de particules : le photomultiplicateur

6 23) Quelle semble être le principe central de fonctionnement de cet appareil? Celui de capter des particules (photons) caractéristiques des rayonnements ELM, même en faible quantité ("lumière réduite") et d'amplifier ce signal de réception, sous la forme d'électrons dont le nombre augmente grâce au multiplicateur d'électrons, et donc production d'un courant électrique. Il s'agit donc d'une conversion d'énergie lumineuse en énergie électrique.

7 24) Quel est l'organe de cet appareil susceptible de subir un effet photoélectrique? La photocathode uniquement, car c'est le seul endroit du tube PM qui transforme un ou des photons en flux d'électrons, arrachés à la matière. Ensuite, le nombre d'électrons augmente, mais il n'y a plus intervention de photons à l'intérieur du tube. 25) Afin d'éjecter 1 électron d'une structure, un photon doit être absorbé par un électron en lui fournissant une énergie E ph supérieure à l'énergie appelée "travail d'extraction" propre à chaque type d'atome, dont on donne quelques valeurs ci-dessous : Atome Na Ag Si C Au Travail d'extraction 2,7 ev 4,3 ev 4,8 ev 5,0 ev 5,1 ev a) Quelle est la longueur d'onde d'une radiation lumineuse susceptible d'arracher un électron d'une plaque d'or? λ = h.c/e = (6, * 3, ) / (5,1 * 1, ) = 2, m = 240 nm b) Dans quel domaine se situe cette longueur d'onde? Dans les UV. 26) L'ensemble de dynodes constitue ce qu'on appelle un électromultiplicateur : quel est son rôle? De produire à chaque dynode des électrons de moindre énergie mais en plus grand nombre que ceux reçus de la dynode précédente, c'est en cela qu'il y a multiplication du nombre d'électrons, mais à énergie constante globale : l'électron initial a autant d'énergie que les X électrons produits à la fin... car le tube est en principe vide, pour ne voir interagir ces électrons produits avec d'autres matières que les dynodes... 27) Un laser Hélium-Néon émet un faisceau de lumière de puissance P = 0,10 W, de longueur d'onde 633 nm : a) Quelle est la couleur visible de ce laser? Rouge. b) Déterminer le nombre de photons moyen émis par ce laser à chaque minute. Justifier les calculs. De la relation du Document 3, on tire : N = P * (Δt / E) = P * (Δt * λ / h.c) = 0,10 * (60 * / (6, * 3, ) ) = 1, photons émis en 1 minute (60 s)

8 c) Le photomultiplicateur est il, d'après vous, adapté pour l'étude de cette source de lumière? Justifier. Le temps de réponse de ce tube PM est de 10-9 s, ce qui signifie qu'il lui faut, entre 2 réceptions de photons, au moins 10-9 s, pour les "traiter". Donc en une minute, il pourrait traiter : N theo = 60 / 10-9 = photons, ce qui reste très inférieur aux 1, photons émis par le laser... donc, non, ce tube PM n'est pas adapté (et c'est normal, n'oublions pas qu'un tube PM récolte de la lumière "réduite", c'est à dire très peu intense, tout le contraire d'un laser qui émet une lumière concentrée!) Données : c = 3, m.s -1 h = 6, J.s 1 W = 1 J.s -1 1 ev = 1, J

Correction Activité 1 : Comment observer l univers?

Correction Activité 1 : Comment observer l univers? Observer : Ondes et Matière Ondes et particules Correction Activité 1 : Comment observer l univers? Document 1 : Atmosphère et observation astronomique La Terre reçoit de toutes les directions de l'espace

Plus en détail

Notions et contenus :

Notions et contenus : Ondes et particules Sommaiire -I- Les ondes (mécaniques) dans la matière. ---------------------------------2 1. La houle: (Voir l'activité documentaire 1) ------------------------------------ 2 2. Les

Plus en détail

Chapitre 4 : Rayonnements et particules

Chapitre 4 : Rayonnements et particules 1. Définitions Chapitre 4 : Rayonnements et particules Un rayonnement (ou radiation) est l émission ou la transmission d'énergie transportée par une onde électromagnétique (ou OEM) ou une particule (proton,

Plus en détail

LES RECEPTEURS PHOTOSENSIBLES

LES RECEPTEURS PHOTOSENSIBLES LES RECEPTEURS PHOTOSENSIBLES 1. L effet photoélectrique 1.1 Description Lorsqu une plaque de métal est éclairée par un faisceau lumineux de fréquence f, celle-ci émet dans certaines conditions des électrons.

Plus en détail

Thème : Observer Activité expérimentale n 1 «Ondes et particules, des supports d'information»

Thème : Observer Activité expérimentale n 1 «Ondes et particules, des supports d'information» Lycée Joliot Curie à 7 PHYSIQUE - Chapitre I Classe de Ter S Thème : Observer Activité expérimentale n 1 «Ondes et particules, des supports d'information» Objectifs : Extraire et exploiter des informations

Plus en détail

C EST PARTICULIER (CONSIGNES)

C EST PARTICULIER (CONSIGNES) Observer 1 C EST PARTICULIER (CONSIGNES) BUT : Comprendre qu'un rayonnement permet d'obtenir des informations de l Univers Connaitre des sources de rayonnement radio, infrarouge et ultraviolet. Découvrir

Plus en détail

Activité 1 : Instruments d astronomie

Activité 1 : Instruments d astronomie Chapitre II : Rayonnement dans l univers Activité 1 : Instruments d astronomie Tous les objets célestes émettent des rayonnements dans divers domaines. Qu est-ce qu un rayonnement?.... Quels types de rayonnement

Plus en détail

Chapitre 1 Ondes électromagnétiques Spectres, communication et énergie

Chapitre 1 Ondes électromagnétiques Spectres, communication et énergie TSTI2D 1 Ondes électromagnétiques Spectres, communication et énergie 1. Ondes électromagnétiques Définitions 1-1 Structure d une onde électromagnétique Une onde électromagnétique est un signal périodique

Plus en détail

Sources de lumière colorée Séance 3 I Les différentes sources 1) Les sources à haute température Incandescence 2) Les corps à basse température

Sources de lumière colorée Séance 3 I Les différentes sources 1) Les sources à haute température Incandescence 2) Les corps à basse température Sources de lumière colorée Accompagnement 1 ère S Séance 3 I Les différentes sources 1) Les sources à haute température Incandescence Tout corps chaud émet des rayonnements. Au début, ces derniers appartiennent

Plus en détail

1.1. Analyser les documents a. Quelles sont les sources d informations, étudiées par les scientifiques, qui nous parviennent de l Univers?

1.1. Analyser les documents a. Quelles sont les sources d informations, étudiées par les scientifiques, qui nous parviennent de l Univers? RAYONEMENTS ET PARTICULES DANS L UNIVERS DOCUMENT PAGE 16 1.1. Analyser les documents a. Quelles sont les sources d informations, étudiées par les scientifiques, qui nous parviennent de l Univers? des

Plus en détail

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015 DS DE PHYSQUE-CHME DU 19 NOVEMBRE 2015 Rendre l énoncé avec la copie. Documents interdits. Calculatrice autorisée. Soigner la présentation. Numéroter correctement les questions. EXERCCE 1 : LES RAYONS

Plus en détail

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm.

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm. Données : constante de Planck : h=6,63.0-34 J.s ; ev correspond à,60.0-9 J ; c=3,00.0 8 m.s - ; Loi de Wien : avec en C et max en nm. Exercice (6 points) Rayonnements UV et IR. Les ondes lumineuses visibles

Plus en détail

PROGRESSION sur L ANNEE SCOLAIRE

PROGRESSION sur L ANNEE SCOLAIRE PROGRESSION sur L ANNEE SCOLAIRE ONDES 1. Ondes et particules 2. Caractéristiques des ondes 3. Propriétés des ondes ANALYSE CHIMIQUE 4. Analyse spectrale 5. Réaction chimique par échange de proton 6. Contrôle

Plus en détail

lumière polychromatique : plusieurs radiations ; exemple : mercure

lumière polychromatique : plusieurs radiations ; exemple : mercure Chapitre 3 : Sources de lumières colorées I. Différentes sortes de sources sources chaudes : étoile, lampe à filament, feu sources froides : laser, lampe à économie d'énergie, tube fluorescent rappel :

Plus en détail

Travaux dirigés N 2 : Effet photoélectrique

Travaux dirigés N 2 : Effet photoélectrique 1 Travaux dirigés N 2 : Effet photoélectrique Exercice 4 La cathode d'une cellule photoélectrique est en césium, la longueur d'onde de seuil du césium est 0 = 0,660 m, l'intensité du courant de saturation

Plus en détail

Spectre atomique. Gaz à faible pression

Spectre atomique. Gaz à faible pression I- La quantification de l énergie 1/ Expérience de Franck et Hertz Spectre atomique a- Schéma simplifié du dispositif expérimental Cette expérience consiste à bombarder de la vapeur de mercure sous faible

Plus en détail

Thème : Couleur. Chap 1 : LA LUMIERE

Thème : Couleur. Chap 1 : LA LUMIERE Thème : Couleur Chap 1 : LA LUMIERE 1) Introduction : - Exemples de sources naturelles de lumière : soleil (les étoiles), ver luisant, certains champignons et poissons, flamme d un corps en combustion

Plus en détail

Activité 3 : Observation de l univers sur Terre et dans l espace

Activité 3 : Observation de l univers sur Terre et dans l espace Ondes et matière Activité 3 : Observation de l univers sur Terre et dans l espace I Détections des ondes électromagnétiques Objectif : Extraire et exploiter des informations sur l absorption de rayonnements

Plus en détail

1ere S Chapitre 4 : Les sources de lumières colorées 1/5

1ere S Chapitre 4 : Les sources de lumières colorées 1/5 1 ere S Chapitre 4 : Les émissions de lumières colorées Thème Observer BO Notions et contenus Sources de lumière colorée Différentes sources de lumière : étoiles, lampes variées, laser, DEL, etc. Domaines

Plus en détail

Thème 1 : Onde et matière

Thème 1 : Onde et matière Thème 1 : Onde et matière Chapitre 1 : Ondes et particules, support d information Activité 1 : Atmosphère et rayonnement dans l univers p16 1) a) La grandeur portée en ordonnée représente la proportion

Plus en détail

P1_Les ondes support d information. Chapitre P1 : Ondes et particules comme support d information

P1_Les ondes support d information. Chapitre P1 : Ondes et particules comme support d information Chapitre P1 : Ondes et particules comme support d information I. Les rayonnements dans l Univers Compétences exigibles : Extraire et exploiter des informations sur l absorption de rayonnements par l atmosphère

Plus en détail

Partie Observer : Ondes et matière CHAP 01-COURS Ondes et particules

Partie Observer : Ondes et matière CHAP 01-COURS Ondes et particules Page 1 sur 5 Partie Observer : Ondes et matière CHAP 01-COURS Ondes et particules Objectifs : Connaître des sources de rayonnement, savoir que ces rayonnements peuvent être absorbés par l atmosphère et

Plus en détail

PARTIE I : OBSERVER. Chapitre 1

PARTIE I : OBSERVER. Chapitre 1 PARTIE I : OBSERVER Extraire et exploiter des informations sur l absorption de rayonnements par l atmosphère terrestre et ses conséquences sur l observation des sources de rayonnements dans l Univers.

Plus en détail

lumière David Smith Centre d Etudes Nucléaires de Bordeaux-Gradignan ( CENBG - in2p3 - CNRS )

lumière David Smith Centre d Etudes Nucléaires de Bordeaux-Gradignan ( CENBG - in2p3 - CNRS ) La Les Pulsars lumière gamma avec GLAST David A. Smith, PhD smith@cenbg.in2p3.fr Centre d Études Nucléaires de Bordeaux-Gradignan (CNRS et Université de Bordeaux) David Smith Centre d Etudes Nucléaires

Plus en détail

Chapitre 3 : Les sources de lumières colorées (p. 45)

Chapitre 3 : Les sources de lumières colorées (p. 45) PARTIE 1 - OBSERVER : COULEURS ET IMAGES Chapitre 3 : Les sources de lumières colorées (p. 45) Compétences attendues : Distinguer une source polychromatique d une source monochromatique caractérisée par

Plus en détail

2.2. Étude du spectre du mercure. Le diagramme ci-dessous représente quelques niveaux d'énergie de l'atome de mercure.

2.2. Étude du spectre du mercure. Le diagramme ci-dessous représente quelques niveaux d'énergie de l'atome de mercure. Exercice n 1 : extrait du sujet de bac juin 2004 Principe de fonctionnement d'un tube fluorescent. Le tube fluorescent étudié est constitué d'un cylindre de verre qui contient un gaz à basse pression.

Plus en détail

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique.

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique. ① OBJECTIF Connaître le spectre de la lumière solaire et le spectre électromagnétique. 1- Décomposition du rayonnement visible solaire On obtient une plage multicolore s étalant du rouge au violet en passant

Plus en détail

Ce qu il faut retenir sur les sources de lumière

Ce qu il faut retenir sur les sources de lumière Ce qu il faut retenir sur les sources de lumière Une source monochromatique émet une lumière dont le spectre est caractérisé par sa longueur d onde dans le vide. Une source polychromatique émet une lumière

Plus en détail

PROGRESSION sur L ANNEE SCOLAIRE

PROGRESSION sur L ANNEE SCOLAIRE PROGRESSION sur L ANNEE SCOLAIRE ONDES 1. Ondes et particules 2. Caractéristiques des ondes 3. Propriétés des ondes ANALYSE CHIMIQUE 4. Analyse spectrale 5. Réaction chimique par échange de proton 6. Contrôle

Plus en détail

LES SOURCES DE LUMIERE ET LES SPECTRES

LES SOURCES DE LUMIERE ET LES SPECTRES LS SOURCS D LUMIR T LS SPCTRS 1. Les spectres d émission Un spectre d émission est un spectre produit par la lumière directement émise par une source (lampe à incandescence, corps chauffé, lampe à vapeur

Plus en détail

CORRIGE du Contrôle n 4 Chapitre 10 : Les messages de la lumière dans l'univers

CORRIGE du Contrôle n 4 Chapitre 10 : Les messages de la lumière dans l'univers CORRIGE du Contrôle n 4 Chapitre 10 : Les messages de la lumière dans l'univers Données : On rappelle l'échelle de température en Kelvins : T(K) = T( C) + 273,15 On rappelle la loi de Wien : T(K) = k /

Plus en détail

b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption

b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption Exercices Exercices d application 5 minutes chrono! 1. Mots manquants 2. QCM a.!= c " b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption a. 5,45

Plus en détail

Partie 1 Observer _ indb 7 15/01/ :20:15

Partie 1 Observer _ indb 7 15/01/ :20:15 Partie 1 Observer Chapitre 1 Niveau basique 1 Qu est-ce qu une onde électromagnétique? Aide : Le visible ou les rayons X en sont des exemples 2 Comment reconnaît-on un signal périodique? Aide : Un journal

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC STAV ACTIVITÉS 1 LE SPECTRE ÉLECTROMAGNÉTIQUE 2 ASPECT ONDULATOIRE DE LA LUMIÈRE 3 ASPECT CORPUSCULAIRE DE LA LUMIÈRE 1 Activité 1 OBJECTIF

Plus en détail

SMARTCOURS. BAC S PHYSIQUE-CHIMIE Sujet Pondichéry, avril 2013 PROTONS ENERGETIQUES

SMARTCOURS. BAC S PHYSIQUE-CHIMIE Sujet Pondichéry, avril 2013 PROTONS ENERGETIQUES Page 1 sur 7 SMARTCOURS BAC S PHYSIQUE-CHIMIE Sujet Pondichéry, avril 2013 PROTONS ENERGETIQUES Des protons énergétiques sont des protons animés d une grande vitesse. Le but de cet exercice est d exploiter

Plus en détail

CAHIER DE TEXTE TERMINALE 2 Année Novembre - Décembre

CAHIER DE TEXTE TERMINALE 2 Année Novembre - Décembre CAHIER DE TEXTE TERMINALE 2 Année 2009-2010 Novembre - Décembre Date : jeudi 5 novembre 2009 Contenu : Correction du bac blanc Chapitre 1 Physique : Médecine nucléaire I. Quelques rappels sur le noyau

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO ① LA LUMIÈRE SOLAIRE ② ASPECT ONDULATOIRE DE LA LUMIÈRE ③ ASPECT CORPUSCULAIRE DE LA LUMIÈRE OBJECTIFS DES ACTIVITÉS Connaître

Plus en détail

VERS L INVISIBLE. En regardant le spectre électromagnétique dans son ensemble, on peut remarquer que la lumière visible ne représente qu'une infime

VERS L INVISIBLE. En regardant le spectre électromagnétique dans son ensemble, on peut remarquer que la lumière visible ne représente qu'une infime L Astronomie DU VISIBLE Quelques années plus tard, Isaac Newton a l'idée de construire un télescope non pas avec des lentilles, mais avec des miroirs. Ce télescope porte le nom de télescope à réflexion

Plus en détail

CAHIER DE TEXTE TERMINALE 4 Année Novembre - Décembre

CAHIER DE TEXTE TERMINALE 4 Année Novembre - Décembre CAHIER DE TEXTE TERMINALE 4 Année 2009-2010 Novembre - Décembre Date : vendredi 6 novembre 2009 Correction du bac blanc Chapitre 1 Physique : Médecine nucléaire I. Quelques rappels sur le noyau atomique

Plus en détail

II- La lumière émise par une source chaude dépend-elle de sa température?

II- La lumière émise par une source chaude dépend-elle de sa température? Chapitre II : Sources de lumières colorées Et la lumière fut! Outre le Soleil qui éclaire notre planète, il existe une grande diversité de sources lumineuses, des ampoules classiques aux DEL en passant

Plus en détail

Chapitre 6 : LA LUMIERE DES ETOILES

Chapitre 6 : LA LUMIERE DES ETOILES Thème 2 : L Univers Chapitre 6 : LA LUMIERE DES ETOILES I) LUMIERE ET SPECTROSCOPIE Histoire des sciences : l analyse spectrale 1) Qu est-ce que la lumière? La lumière est un rayonnement émis par un corps.

Plus en détail

Chapitre 1 : Ondes et particules

Chapitre 1 : Ondes et particules I- Les rayonnements dans l'univers 1) Quelques rappels : Chapitre 1 : Ondes et particules a) Rappeler les longueurs d ondes limites du spectre visible de la lumière : donner les couleurs correspondantes.

Plus en détail

TP4: La lumière... onde ou particules?

TP4: La lumière... onde ou particules? TP4: La lumière... onde ou particules? 1. Les sources de lumière: Les lampes à incandescence sont constituées par un filament métallique porté à haute température par le passage d un courant électrique.

Plus en détail

Chapitre VI SPECTRES DE LA LUMIERE

Chapitre VI SPECTRES DE LA LUMIERE Chapitre VI SPECTRES DE LA LUMIERE 1. Qu'est- ce que la lumière? La lumière est l ensemble des ondes électromagnétiques visibles (entre 400 et 800 nm). Décomposition de la lumière blanche La lumière solaire,

Plus en détail

Devoir surveillé n 1 (TS) Calculatrice autorisée

Devoir surveillé n 1 (TS) Calculatrice autorisée Devoir surveillé n 1 (TS) Calculatrice autorisée Exercice 1 : Lumières d'étoiles (8 points) La galaxie d'andromède (figure 1), située à 2 millions d'années de lumière, ressemble beaucoup à la nôtre. De

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie. I. Quantification des niveaux d énergie de la matière. 1. Modèle corpusculaire de la lumière

Plus en détail

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev)

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev) I- la quantification du transfert d énergie entre un atome et le milieu extérieur. 1 / Expérience de Frank et Hertz : a- Dispositif expérimental Canon à électrons : Permettant d'obtenir des électrons de

Plus en détail

Thème 2 : Lumière et matière colorée / CHAP3

Thème 2 : Lumière et matière colorée / CHAP3 Thème 2 : Lumière et matière colorée / CHAP3 DOC1 : Quelques données numériques Couleur violet bleu vert jaune orange rouge λ (nm) 400-435 435-500 500-570 570-600 600-625 625-700 1 ev = 1,6.10-19 J c =

Plus en détail

Exercice 1 : Un pendule à l université du Massachossette / 8 pts

Exercice 1 : Un pendule à l université du Massachossette / 8 pts Exercice 1 : Un pendule à l université du Massachossette / 8 pts Un cours avec Walter H.G. Lewin ressemble à un spectacle vivant. Personne ne sait véritablement à quoi s attendre. Le professeur met en

Plus en détail

IMAGERIE MÉDICALE. I Quelques techniques d imagerie médicale. II Les ondes électromagnétiques. III La loi de déplacement de Wien.

IMAGERIE MÉDICALE. I Quelques techniques d imagerie médicale. II Les ondes électromagnétiques. III La loi de déplacement de Wien. IMAGERIE MÉDICALE I Quelques techniques d imagerie médicale. II Les ondes électromagnétiques. III La loi de déplacement de Wien. I Quelques techniques d imagerie médicale. Activité documentaire : Citer

Plus en détail

Partie 2, chapitre 4. Lorsque les ondes électromatgnétiques rencontrent la matière

Partie 2, chapitre 4. Lorsque les ondes électromatgnétiques rencontrent la matière Partie 2, chapitre 4 Lorsque les ondes électromatgnétiques rencontrent la matière 1 http://houle.free.fr/page.php?page=def http://www.cite-acoustique.fr/m1r2_metier_acoust_ondes.php http://uneondesonorepeutellebriserunverre.e-monsite.com/pages/i-partie-theorique/partie-theorique.html

Plus en détail

H.S. 42 Pourquoi faut-il se protéger les yeux des rayons du soleil?

H.S. 42 Pourquoi faut-il se protéger les yeux des rayons du soleil? H.S. 42 Pourquoi faut-il se protéger les yeux des rayons du soleil? I) Mesurer l éclairement à l aide d un luxmètre : 1) Le luxmètre : Le luxmètre est un capteur qui permet de mesurer de façon simple l

Plus en détail

La détection des ondes et des particules

La détection des ondes et des particules Chapitre 1 La détection des ondes et des particules La majorité des rayonnements, ondes et particules, qui nous parviennent sont invisibles. Ceci explique le temps qu il a fallu pour les capter, les utiliser

Plus en détail

Spectre d émission et spectre d absorption de quelques éléments chimiques

Spectre d émission et spectre d absorption de quelques éléments chimiques AS: 009/010 PROF : Mr BECHA Adel ( prof principal) 4 eme Sciences exp, maths et technique Matière : Sciences physiques www.physique.ht.cx SERIE D EXERCICES Objet : : Les spectres atomiques ---------------------------------------------------------------------------------------------------------------------------------

Plus en détail

Exercices chapitre 1. J. Rivet

Exercices chapitre 1.   J. Rivet Exercices chapitre 1 http://jrivetspc.pagesperso-orange.fr 1 Pour pouvoir faire tous les exercices et donc les évaluations dans de bonnes conditions, il faut revoir les chapitres 3, 4, 5 de première S.

Plus en détail

Sources de lumière colorée Interaction lumière-matière

Sources de lumière colorée Interaction lumière-matière CH03 CH04 Sources de lumière colorée Interaction lumière-matière Table des matières 1 Différentes sources de lumière 2 2 Sources monochromatiques ou polychromatiques 5 3 Lumière et ondes électromagnétiques

Plus en détail

PHYSIQUE. (Révisions vacances d hiver 2013)

PHYSIQUE. (Révisions vacances d hiver 2013) PHYSIQUE (Révisions vacances d hiver 2013) Séance 3 ONDES : RAYONNEMENT DANS L UNIVERS CARACTERISTIQUES DES ONDES MECANIQUES PROPRIETES DES ONDES PERIODIQUES-DIFFRACTION Exercice Type 1 : Ondes progressives

Plus en détail

Les galaxies. Niveau. Objectif. Compétences. Pré requis. Durée. Déroulement. 1 ère S

Les galaxies. Niveau. Objectif. Compétences. Pré requis. Durée. Déroulement. 1 ère S Les galaxies Niveau 1 ère S Objectif Utiliser le logiciel Aladin créé par l'observatoire de Strasbourg pour observer et étudier des galaxies, à différentes longueurs d'onde, pour mieux comprendre leur

Plus en détail

CHAPITRE 1 : ONDES ET PARTICULES

CHAPITRE 1 : ONDES ET PARTICULES CHAPITRE 1 : ONDES ET PARTICULES Lycée International des Pontonniers Septembre 2018 1. Rayonnements dans l Univers 1.1. Rayonnement électromagnétique solaire - un spectre très étendu : des ondes radio

Plus en détail

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses.

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses. Physique quantique 15 CHAPITRE Jusqu'au début du XX ème siècle, la physique s'est développée dans le cadre de la mécanique créée par Newton. Connaître, à un instant donné, la position du corps et toutes

Plus en détail

TSTIDD: SANTÉ-Caractéristiques des ondes électromagnétiques utilisées pour se soigner. Activité_1. Quelles sont les propriétés d'un faisceau laser

TSTIDD: SANTÉ-Caractéristiques des ondes électromagnétiques utilisées pour se soigner. Activité_1. Quelles sont les propriétés d'un faisceau laser Activité_1. Quelles sont les propriétés d'un faisceau laser 14/05/13-TSTIDD_SanteOndEM.odt-Djl-Page: 1 / 10 Activité_2. Des matériaux transparents (dans le visible), absorbent les UV? http://wiki.scienceamusante.net/index.php?title=les_ultraviolets

Plus en détail

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler 1 Le rayonnement de corps noir Rappels : Propriétés essentielles

Plus en détail

Sources de lumière colorée

Sources de lumière colorée Sources de lumière colorée " Que la lumière soif Et la lumière but. " André Beucler, poète, romancier et scénariste français du XX e siècle Prérequis : Le Soleil, les étoiles et les lampes sont des sources

Plus en détail

Sources de lumière colorée

Sources de lumière colorée 2 novembre 2012 Sources de lumière colorée Table des matières 1 Différentes sources de lumière 2 2 Sources monochromatiques ou polychromatiques 4 3 Lumière et ondes électromagnétiques 5 4 Couleur des corps

Plus en détail

Chapitre 3.1b La nature ondulatoire de la lumière : preuve théorique

Chapitre 3.1b La nature ondulatoire de la lumière : preuve théorique Chapitre 3.b La nature ondulatoire de la lumière : preuve théorique La loi de la réfraction par le principe d Huygens En considérant qu une source de lumière ponctuelle émet des fronts d onde sphérique

Plus en détail

et ondes dans la matière

et ondes dans la matière Rayonnements dans l Univers et ondes dans la matière Compétences exigibles au Baccalauréat Extraire et exploiter des informations sur l absorption de rayonnements par l atmosphère terrestre et ses conséquences

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé / L0 Santé - Olivier CAUDRELIER oc.polyprepas@orange.fr 1 Données générales : é é é è..,.. é :,. ;,. exercice 1 : a) Calculer,

Plus en détail

Thème : UNIVERS Chapitre 6 : La lumière des étoiles et des atomes Cours livre p 126 à 129 et 142 à 145

Thème : UNIVERS Chapitre 6 : La lumière des étoiles et des atomes Cours livre p 126 à 129 et 142 à 145 Thème : UNIVERS Chapitre 6 : La lumière des étoiles et des atomes Cours livre p 126 à 129 et 142 à 145 Trame du chapitre I. Lumière monochromatique et lumière polychromatique. Activité documentaire n 12:

Plus en détail

LE MODELE ONDULATOIRE DE LA LUMIERE

LE MODELE ONDULATOIRE DE LA LUMIERE LE MODELE ONDULATOIRE DE LA LUMIERE Lumière onde 1 I LA LUMIERE : UNE ONDE? 1) Diffraction de la lumière : Lorsqu'une ouverture ou un obstacle de petite taille (fente, trou circulaire, fil fin etc ) est

Plus en détail

EXERCICE I : LE MUON, EXPLORATEUR DE VOLCAN (6 points)

EXERCICE I : LE MUON, EXPLORATEUR DE VOLCAN (6 points) EXERCICE I : LE MUON, EXPLORATEUR DE VOLCAN (6 points) Les muons, produits à haute altitude lors d interactions entre les rayons cosmiques et les noyaux atomiques présents dans l atmosphère terrestre,

Plus en détail

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE TaleS / P15 İNTRODUCTİON A LA PHYSİQUE QUANTİQUE 1/ LA DUALİTÉ ONDE-PARTİCULE : Activité 15.1 a Dualité onde-particule de la lumière : Les phénomènes de diffraction et d interférences s expliquent par

Plus en détail

chap1 : ondes et particules

chap1 : ondes et particules Comment détecter les rayonnements dans l Univers? 1. Activité de découverte : Instruments d astronomie Un instrument d astronomie permet de capter et d enregistrer le rayonnement visible et invisible émis

Plus en détail

La structure atomique. Chimie 11

La structure atomique. Chimie 11 La structure atomique Chimie 11 L'atome Un atome est constitué d'électrons qui gravitent autour d'un noyau. Le noyau est composé de protons et de neutrons (nucléons). Stabilité : nombre de protons = nombre

Plus en détail

Seconde EVALUATION N 4.2 (1h)

Seconde EVALUATION N 4.2 (1h) Nom, Prénom, Classe :... Seconde EVALUATION N 4.2 (1h) Toutes les réponses doivent être rédigées et justifiées!! Partie A : Le système «Gliesien» Document 1. 581g, 1ère exoplanète potentiellement habitable?

Plus en détail

Chapitre 1 DESCRIPTION DE L UNIVERS

Chapitre 1 DESCRIPTION DE L UNIVERS Chapitre 1 DESCRIPTION DE L UNIVERS «Espace, frontière de l'infini, vers laquelle voyage notre vaisseau spatial. Sa mission de cinq ans : explorer de nouveaux mondes étranges, découvrir de nouvelles vies,

Plus en détail

Transferts quantiques d énergie et dualité onde-particule

Transferts quantiques d énergie et dualité onde-particule 1. Onde électromagnétique et photon Au début du XXème siècle, la nature ondulatoire de la lumière est presque unanimement admise. 1.1. Insuffisance du modèle ondulatoire Expérience de Hertz (physicien

Plus en détail

L'astronomie de l'invisible...

L'astronomie de l'invisible... L'astronomie de l'invisible... Cité Scolaire du Maréchal Lannes Place Brossolette 32 700 LECTOURE S. DELBES 1. Comment émettre de la lumière? 1.a. Emission lumineuse d'origine thermique Température > -273

Plus en détail

Programme de Seconde Générale BO 29 avril 2010 L UNIVERS. Montagne 103 Molécule. Homme. Fourmi. Cellule. Galaxie

Programme de Seconde Générale BO 29 avril 2010 L UNIVERS. Montagne 103 Molécule. Homme. Fourmi. Cellule. Galaxie Programme de Seconde Générale BO 29 avril 2010 L UNIVERS G. Présentation de l Univers Le remplissage de l espace par la matie re est essentiellement lacunaire aussi bien au niveau de l atome qu a l e chelle

Plus en détail

DST DE 1 ere S PHYSIQUE-CHIMIE. Série S

DST DE 1 ere S PHYSIQUE-CHIMIE. Série S DST DE 1 ere S PHYSIQUE-CHIMIE Série S DURÉE DE L ÉPREUVE : 3 h DATE : 17 Novembre 2017 L usage des calculatrices est autorisé Ce sujet comporte trois exercices présentés sur 5 pages numérotées de 1 à

Plus en détail

Correction DST novembre 2017 Exercice 1 : Dosage spectrophotométrique ( 7 points)

Correction DST novembre 2017 Exercice 1 : Dosage spectrophotométrique ( 7 points) Correction DST novembre 2017 Exercice 1 : Dosage spectrophotométrique ( 7 points) Un spectrophotomètre a permis de tracer le spectre d'absorption d'une solution de dichromate de potassium de concentration

Plus en détail

Matière microscopique : une description quantique est nécessaire

Matière microscopique : une description quantique est nécessaire Chapitre 3 Matière microscopique : une description quantique est nécessaire I Spectres d absorption et d émission (observation de la lumière émise ou absorbée par une espèce chimique donnée) 1) xpériences,

Plus en détail

CHAPITRE 1 : ONDES ET PARTICULES

CHAPITRE 1 : ONDES ET PARTICULES CHAPITRE 1 : ONDES ET PARTICULES Lycée International des Pontonniers Septembre 2016 1. Rayonnements dans l Univers 1.1. Rayonnement électromagnétique solaire - un spectre très étendu : des ondes radio

Plus en détail

PRINCIPES GENERAUX DE LA SPECTROSCOPIE

PRINCIPES GENERAUX DE LA SPECTROSCOPIE Chapitre I PRINCIPES GENERAUX DE LA SPECTROSCOPIE I - DEFINITION La spectroscopie est l étude du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des

Plus en détail

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption.

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption. FICHE 1 Fiche à destination des enseignants 1S 5 INTERACTION LUMIERE- MATIERE Type d'activité Activité-cours. Notions et contenus Interaction lumière-matière : émission et absorption. Quantification des

Plus en détail

Nature de la lumie re

Nature de la lumie re Sciences Physiques Unité : Optique Chapitre: Chapitre 3 Lumière et Matière Fiche de Cours S. Zayyani Nature de la lumie re On vient de voir, dans le chapitre précédent, qu une couleur peut être spectrale.

Plus en détail

TROUS NOIRS ET AUTRES ASTRES ETRANGES. Astro. Découverte

TROUS NOIRS ET AUTRES ASTRES ETRANGES. Astro. Découverte ET AUTRES ASTRES ETRANGES Astro 1 Les astres denses issus de la mort des étoiles en fin de vie, une étoile explose ou éjecte progressivement une partie de sa matière mais il reste une sorte de noyau: très

Plus en détail

Sources de lumières colorées

Sources de lumières colorées Sources de lumières colorées 5h Quelles sont les différentes sources de lumière et comment fonctionnentelles? 1) Différencier les sources lumineuses Activité : Des sources lumineuses différentes Les sources

Plus en détail

Exercices d introduction à la physique quantique

Exercices d introduction à la physique quantique Constante de Planck : h = 6,626.10 34 J.s. Charge élecrique élémentaire : e = 1,602.10 19 C. Célérité de la lumière dans le vide : c = 3,00.10 8 m s 1. 1 Vrai ou faux 1. La force d interaction électrique

Plus en détail

I. Les sources de rayonnement

I. Les sources de rayonnement CHAPITRE N 1 PARTIE A RAYONNEMENTS DANS L UNIVERS TS I. Les sources de rayonnement 1. Qu est ce qu un rayonnement? En physique un rayonnement désigne la propagation d énergie émise par une source Dans

Plus en détail

POURQUOI LE CERN? Le CERN. Résumé du cours du matin. Les outils de la physique des particules:

POURQUOI LE CERN? Le CERN. Résumé du cours du matin. Les outils de la physique des particules: POURQUOI LE CERN? C. Vander Velde ULB -19 avril 2002 Contenu (suite): Après-midi: Le CERN Résumé du cours du matin. Les outils de la physique : Pourquoi de hautes énergies? Comment les obtenir? Les accélérateurs.

Plus en détail

1 La constante de Planck

1 La constante de Planck La constante de Planck 1 1 La constante de Planck 1.1 Méthode de détermination Mesure de la tension seuil d une cellule photoélectrique pour plusieurs longueurs d onde du spectre visible. 1.2 Matériel

Plus en détail

Le ciel en rayons gamma de hautes et très hautes énergies

Le ciel en rayons gamma de hautes et très hautes énergies Le ciel en rayons gamma de hautes et très hautes énergies Lyon, 15 janvier 2011 Guillaume Dubus Institut de Planétologie et d Astrophysique de Grenoble 1 Le ciel en lumière visible 2 Newton le spectre

Plus en détail

LA SPECTROSCOPIE. Un prisme ~huldra/i/0006/.

LA SPECTROSCOPIE. Un prisme   ~huldra/i/0006/. LA SPECTROSCOPIE La couleur d un objet dépend de la lumière qu il renvoie. 1) La décomposition de la lumière blanche : Un prisme www.sjefs.net/ ~huldra/i/0006/. http://da.wikipedia.org/wiki/billede:prismer_med_forskellig_dispersion.jpg

Plus en détail

RIGEL. Avec plus de détails. Constellation d'orion

RIGEL. Avec plus de détails. Constellation d'orion RIGEL Constellation d'orion A l'oeil nu Avec plus de détails Constellation d'orion RIGEL est une étoile de la constellation d'orion. La première image montre cette constellation telle qu'on peut la voir

Plus en détail

La dégradation des molécules organiques

La dégradation des molécules organiques La dégradation des molécules organiques Aspects fondamentaux du spectre solaire Le soleil émet des particules, appelées photons, en très grandes quantités. C'est le rayonnement solaire. Ces flux de photons

Plus en détail

COURS D ASTRONOMIE POUR CRPE PREMIÈRE PARTIE. Les points cardinaux, la boussole

COURS D ASTRONOMIE POUR CRPE PREMIÈRE PARTIE. Les points cardinaux, la boussole COURS D ASTRONOMIE POUR CRPE PREMIÈRE PARTIE Jean-Michel ROLANDO (Site de Bonneville) Les points cardinaux, la boussole La boussole est une aiguille aimantée qui, à la surface de la Terre, s oriente approximativement

Plus en détail

1S 4. Les lampes au quotidien. Notions et contenus. Différentes sources de lumière : étoiles, lampes variées, laser, DEL, etc.

1S 4. Les lampes au quotidien. Notions et contenus. Différentes sources de lumière : étoiles, lampes variées, laser, DEL, etc. FICHE 1 Fiche à destination des enseignants 1S 4 Les lampes au quotidien. Type d'activité Activité documentaire Notions et contenus Différentes sources de lumière : étoiles, lampes variées, laser, DEL,

Plus en détail

Cours d Opto-Electronique

Cours d Opto-Electronique Département Génie Electrique Cours d Opto-Electronique 4GEA Chapitre 2 2016-2017 Chapitre 1 Chapitre 2 - Rappels et définitions - Thermométrie - Grandeurs photométriques - Emetteurs (LED et LASER) - Récepteurs

Plus en détail