Lycée Hoche Versailles Automatique Asservissement 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Lycée Hoche Versailles Automatique Asservissement 3"

Transcription

1 Auomaique Asservissemen Idenificaions emporelles Lycée Hoche Versailles Auomaique Asservissemen Philippe Bourzac

2 Auomaique Asservissemen Idenificaions emporelles ASSERVISSEMENT IDENTIFICATIONS TEMPORELLES. Présenaion. Les processus éudiés ne son pas oujours modélisables à parir de nos connaissances. Ils fon inervenir, par exemple, beaucoup de paramères. Pour proposer, malgré ou, une foncion de ransfer associée au sysème éudié, on réalise une expérimenaion. On enregisre la réponse du sysème à une solliciaion simple (souven un échelon) e on essaye de superposer à la courbe expérimenale obenue une courbe héorique correspondan à des foncions de ransfer connues. e() Processus e() s h Ec s exp. Idenificaion d un modèle d ordre. La réponse indicielle d un sysème à un échelon d ampliude Ec= a éé enregisrée. On obien la courbe ci-dessous. réponse expérimenale,,,,8,, emps

3 Auomaique Asservissemen Idenificaions emporelles Nous consaons une pene à l origine non nulle e aucun dépassemen de la réponse. Nous adopons pour ces raisons le modèle suivan : = =. + La réponse à un échelon d ampliude Ec d un el sysème es donnée par la courbe ci-dessous.,9 Le gain K es obenu à parir de la valeur finale. La consane de emps es obenue soi à parir de la angene à la courbe ou soi avec le emps de réponse à % du sysème. En appliquan cee méhode, on rouve K= e =,s. La courbe réponse issue du modèle es alors racée pour vérifier sa validié. réponses expérimenale e héorique Réponse héorique e sh() Réponse expérimenale,,,,8,, emps On peu affirmer que la foncion de ransfer idenifiée modélise correcemen le sysème éudié.

4 Auomaique Asservissemen Idenificaions emporelles. Idenificaion d un modèle d ordre. cas : La réponse indicielle d un sysème à un échelon d ampliude Ec= a éé enregisrée. On obien la courbe ci-dessous. réponse expérimenale 8,s 7, Nous consaons une réponse pseudo-périodique avec une pene à l origine nulle e des dépassemens de la réponse. Nous adopons pour ces raisons le modèle suivan : = = où <z<. + + La réponse à un échelon d ampliude Ec d un el sysème es donnée par la courbe ci-dessous. D Ta Le gain K es obenu à parir de la valeur finale. Le coefficien d amorissemen es obenu à parir π du premier dépassemen avec : =. La pulsaion propre es obenue à parir de la π π pseudo-période avec : = = En appliquan cee méhode, on rouve K=, z=, e =rd/s. La courbe réponse issue du modèle es alors racée pour vérifier sa validié.

5 Auomaique Asservissemen Idenificaions emporelles réponses expérimenales e héoriques 8 7 Réponse héorique e sh() Réponse expérimenale On peu affirmer que la foncion de ransfer idenifiée modélise correcemen le sysème éudié. emps cas : La réponse indicielle d un sysème à un échelon d ampliude Ec= a éé enregisrée. On obien la courbe ci-dessous. réponse expérimenale emps

6 Auomaique Asservissemen Idenificaions emporelles Nous consaons une réponse apériodique avec une pene à l origine nulle e aucun dépassemen. Nous adopons pour ces raisons le modèle suivan : = = où z>. + + La réponse à un échelon d ampliude Ec d un el sysème es donnée par la courbe ci-dessous. Le gain K es obenu à parir de la valeur finale. La foncion de ransfer peu aussi s écrire sous le forme : = = où + + e son les deux consanes de emps du sysème. L absence de dépassemen e d oscillaion nous condui à uiliser une aure méhode d idenificaion que la précédene. L expression emporelle de la réponse s écri : =. = e on choisi un inervalle de emps T. On peu alors monrer que : On noe ( ) + ( ) + = où = + e =. ( ) ( ) Soi = qui correspond à l équaion d une droie. Il suffi donc de racer cee droie pour une valeur de T donnée e d en déduire e. Les deux consanes de emps e son alors obenues à parir des racines de l équaion du second degré : + + = Remarque : cee méhode es difficile à mere en place. Lorsqu une des consanes de emps es rès inférieure à l aure, <<, on peu uiliser une méhode approchée. On race la angene au poin d inflexion e les inersecions de cee angene avec l axe des abscisses e l asympoe horizonale donnen e. + Il es alors nécessaire de racer la réponse héorique pour vérifier qu elle modélise correcemen la réponse expérimenale.

SAMP Système asservi multi-physique Cours SAMP-1b Réponse temporelle. Cours SAMP-1b TSI1 TSI2. Réponse temporelle

SAMP Système asservi multi-physique Cours SAMP-1b Réponse temporelle. Cours SAMP-1b TSI1 TSI2. Réponse temporelle Cours Cours SAMP-1b TSI1 TSI2 Réponse emporelle X Période Idenificaion des sysèmes 1 2 3 4 5 Cycle 6 : Sysème asservi muli-physique Durée : 4 semaines X Dans le "cours SAMP1 Performances", on s'es inéressé

Plus en détail

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2)

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2) LYCÉE LA MARTINIÈRE MONPLAISIR LYON SCIENCES INDUSTRIELLES POUR L INGÉNIEUR CLASSE PRÉPARATOIRE M.P.S.I. ANNÉE 017-018 C : MODÉLISATION DES SYSTÈMES ASSERVIS TD 3 - Modélisaion e comporemen des sysèmes

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. CI-2-3 PRÉVOIR LES RÉPONSES TEMPO- RELLES ET FRÉQUENTIELLES D UN SYS- TÈME DU PREMIER OU SECOND ORDRE Objecifs A l issue de la

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

3) Action proportionnelle

3) Action proportionnelle /6 3 4 5 6 e sysème s 3/6 Un sysème dynamique, coninu, linéaire, invarian, monovariable es décri par une équaion différenielle linéaire, à coefficiens consans de la forme suivane : a n n d s d s ds...

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique c. Après avoir refai un enregisremen pour verses valeurs croissanes de résisance, on observe que la spirale compore de moins en moins de ours : un our correspond visiblemen à une oscillaion e le nombre

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

TP d informatique n 11 Intégration numérique d ODE

TP d informatique n 11 Intégration numérique d ODE Inégraion numérique d ODE PCSI 2018 2019 I Méhode d Euler La modélisaion d un grand nombre de problèmes ayan leur origine en géomérie, mécanique, physique, sciences de l ingénieur, chimie, biologie, économie

Plus en détail

Structure et propriétés des systèmes asservis. Si les entrées et sorties sont discrètes on a un système logique ou séquentiel.

Structure et propriétés des systèmes asservis. Si les entrées et sorties sont discrètes on a un système logique ou séquentiel. Sciences Indusrielles de l Ingénieur CPGE - Sain Sanislas - Nanes Srucure e propriéés des sysèmes asservis 1.1- Définiion d un sysème auomaisé 1- Définiion Un sysème auomaisé es un sysème qui à une(des)

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Corrigé Exercice 1 : PORTES RETRACTABLES

Corrigé Exercice 1 : PORTES RETRACTABLES TD 03 corrigé - Performances e Modélisaion des SCI (équa. dif. + aplace) Page 1/6 Corrigé Exercice 1 : PORTES RETRACTABES Quesion 1 : Évaluer, dans chacun des cas e en uilisan les crières proposés, les

Plus en détail

Cas d un dipôle RC. Le boîtier de celui- ci est de petite taille : 5 cm de large et 6 mm d'épaisseur. Sa masse est d'environ 30 g.

Cas d un dipôle RC. Le boîtier de celui- ci est de petite taille : 5 cm de large et 6 mm d'épaisseur. Sa masse est d'environ 30 g. Cas d un dipôle I. Un exemple d applicaion d un cricui : le pacemaker. Exrai de l inrocion suje bac Série S Réunion 2004 Nore cœur se conrace plus de 100 000 fois par jour. Il ba 24 h sur 24 pendan oue

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

PERFORMANCES DES SYSTEMES AUTOMATISES

PERFORMANCES DES SYSTEMES AUTOMATISES PERFORMANCES DES SYSTEMES AUTOMATISES I Analyse d'un sysème Démarches d'éude Ch.II Performances des sysèmes asservis - p1 Le chapire précéden a mis en évidence la schémaisaion srucurelle de la commande

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

Contrôle du ballant sur une grue

Contrôle du ballant sur une grue Conrôle du ballan sur une grue es conduceurs de grue doiven acuellemen gérer le déplacemen d une charge e maîriser les balancemens indésirables de celle-ci Divers équipemeniers de grues on déposé des breves

Plus en détail

DM pour le jeudi 27 novembre 2014

DM pour le jeudi 27 novembre 2014 DM pour le jeudi 27 novembre 2014 Agiaeur de cellules (CCP PSI 06) Dans le cadre d expérimenaions pour soigner les malades du diabèe, une équipe de chercheurs ravaille sur une echnique de greffe de cellules

Plus en détail

D.M : Résolution des équations différentielles Méthode d'euler

D.M : Résolution des équations différentielles Méthode d'euler D.M : Résoluion des équaions différenielles Méhode d'uler I - La méhode d'uler : les bases mahémaiques - définiion du nombre dérivée en un poin Soi y = f(x la foncion considérée (supposée coninue e dérivable

Plus en détail

Ch.1 : Introduction aux systèmes asservis

Ch.1 : Introduction aux systèmes asservis AUTOMATIQUE C es l ar d analyser, modéliser, commander les sysèmes, de prendre des décisions en foncions d évènemens exérieurs au sysème. Quelques daes e exemples : ~ 5 av JC : compage du emps (clepsydre

Plus en détail

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t)

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t) PSI - 03/04 TD G - Correcion 9 Tracé de réponses de lres 3 4 5 TD G - Correcion 5 Éude d'un lre acif. Noons pour commencer que ce monage conien une réroacion négaive. On supposera donc que l'ao foncionne

Plus en détail

E X E R C I C E S C H A P I T R E = t

E X E R C I C E S C H A P I T R E = t E X E R C I C E S C H A P I T R E 8 Exercice 8.5 ) D = D x D y = R* e ) = + & # x $! = + % " = ) e On passe de M() à M(/) par la symérie axiale d'axe Δ d'équaion y = x. 0 / - + y & # $! = % " + = ) Quand

Plus en détail

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1 Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. 1. Equaions différenielles linéaires du 1 er ordre 1.1 Présenaion Résoudre une équaion

Plus en détail

REGULATION. 2. Analyse d un procédé

REGULATION. 2. Analyse d un procédé REGULATION 1. Rappel On différenie l asservissemen qui es une réponse au changemen de de la régulaion qui es une réponse à une perurbaion. 2. Analyse d un procédé Différencier le comporemen des sysèmes

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

M4. Les oscillateurs mécaniques

M4. Les oscillateurs mécaniques NO : Prénom : 4. Les oscillaeurs mécaniques Un sysème mécanique peu occuper une même posiion à inervalles de emps réguliers : sa rajecoire es alors périodique. Exemples : - roaion d une planèe auour du

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Fiche 01 - Critères (1) de Performances des SLCI

Fiche 01 - Critères (1) de Performances des SLCI Cours 15 Fiches Synhèses SLCI (1) Ces crières seron approfondis sur les semaines à venir. Lycée Bellevue Toulouse CPGE MP Fiche 1 Crières (1) de Performances des SLCI Sabilié : C'es le crière que l'on

Plus en détail

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1 PSI - 202/203 TD G - Correcion 7 Réponse indicielle d'un lre 4. Une simple loi des mailles perme d'obenir, avec i L oriené de l'enrée vers la sorie : s() = e() L di L d En remplaçan dans l'équaion diérenielle

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007 Universié Pierre e Marie Curie, Paris VI Licence de physique NS Cachan Physique fondamenale, PHYTM PHYSIQU NUMÉRIQU Devoir sur able du 15 novembre 27 Pules couplés Durée de l épreuve : 2h Les éléphones

Plus en détail

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles TD1 Les veceurs Par 1 1. Trouver A+B, A-B, 3A, -B dans chacun des cas suivans: A=(,-1), B=(-1,1) A+B = (1, 0) A=(-1,3), B=(0,4) A+B = (-1, 7) A= (,-1,5), B=(-1,1,1) A+B = (1, 0, 6) A=(π,3,-1),B=(π,-3,7)

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Identification expérimentale des systèmes (réponse indicielle) IDENTIFICATION A UN SYSTEME LINEAIRE DU PREMIER ORDRE PASSE BAS

Identification expérimentale des systèmes (réponse indicielle) IDENTIFICATION A UN SYSTEME LINEAIRE DU PREMIER ORDRE PASSE BAS IDENIFICAION A UN SYSEME LINEAIRE DU PREMIER ORDRE PASSE BAS - Modèle du système linéaire du type passe-bas du premier ordre : e(t) Système linéaire du er ordre transmittance statique, τ constante de temps

Plus en détail

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm.

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm. Suje 4 (Bac S) Exercice 1 (Courbes paramérées) Le plan es rapporé à un repère orhonormal (O ; i r, r j ), l unié graphique éan 1 cm. 1) Soi (C) la courbe don une représenaion paramérique es : = = 1 2 x

Plus en détail

Régime transitoire des systèmes du 1 er ordre

Régime transitoire des systèmes du 1 er ordre Universié du Sud TOUON VA Insiu Universiaire de Technologie Génie lecrique e Informaique Indusrielle égime ransioire des sysèmes du 1 er ordre 1 Généraliés 2 ommande linéaire des sysèmes du 1 ordre 2.1

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1 Eercice (Calculer les inégrales suivanes)..... 5. 6. 7. 8. e d = e d = e ] = = 5. = e e. ( + )d = d = ln ( )] = ln ( ) ln ( ) = ln(). ue u du = e u = e. e e + d = ln ( e + ) e (e + ) d = u (ln u) du =

Plus en détail

GENERALITES SUR LA CINÉTIQUE CHIMIQUE

GENERALITES SUR LA CINÉTIQUE CHIMIQUE ere année Meecine Cinéique Chimique GENERLITES SUR L CINÉTIQUE CHIMIQUE Inroucion La cinéique chimique es la science qui s occupe e la façon on les réacions chimiques procèen (mécanisme) e e leur viesse.

Plus en détail

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i +

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i + Le dipôle R série (2) Décharge du condensaeur Influence des grandeurs caracérisiques des composans (orrecion) ircui d éude On consiue le circui élecrique suivan. e circui perme de suivre la charge (posiion

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

MAT265 Équations différentielles Transformées de Laplace : résumé

MAT265 Équations différentielles Transformées de Laplace : résumé MAT65 Équaions différenielles Transformées de Laplace : résumé 1. La able de ransformées de Laplace : exemples d uilisaion michel.beaudin@esml.ca mars 19 Même si l on se limie aux É.D. à coefficiens consans,

Plus en détail

Chapitre 4. Les séries chronologiques

Chapitre 4. Les séries chronologiques Chapire 4. Les séries chronologiques Jean-François Coeurjolly hp://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboraoire Jean Kunzmann (LJK), Grenoble Universiy 1 Présenaion e analyse héorique des

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

voie 1 L, r u 1 u 2 voie 2

voie 1 L, r u 1 u 2 voie 2 Exercices sur le dipôle (R,L) Eude expérimenale d une bobine (Asie 2004) 1 - Déerminaion expérimenale de l'inducance L de la bobine On réalise le circui élecrique représené ci-dessous (figure 1) comprenan

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures Corrigé Exercice 1 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Série S Candidas ayan suivi l enseignemen de spécialié Durée de l épreuve : 4 heures Coefficien : 9 SPÉCIALITÉ Ce suje compore 6 pages

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Minisère d éducaion e de Formaion D. R. E. Nabeul Lycée Secondaire Roue de la Plage SOLIMAN SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Classe : 4 ème Mahs Dae : Novembre - 216 Prof : Jalel

Plus en détail

Juin 2007 (2 heures et 30 minutes)

Juin 2007 (2 heures et 30 minutes) Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c)

Plus en détail

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de Transformée de Lalace : résoluion d équaions différenielles linéaires Méhode Résoluion de l équaions différenielles du remier ordre : T ds ( ) + s( ) = Ke( ). d Transformaion de l équaion différenielle

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x.

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x. Universié Aboubekr Belkaïd Tlemcen A.U. 2018/2019 Faculé des Sciences / Déparemen de Mahémaiques Final : Equaions Différenielles [Licence L3 S5] 14 janvier 2019 2h00 Exercice 1: Soi l edo écrie sous la

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

PARTIE G Le contrôle et la régulation

PARTIE G Le contrôle et la régulation Terminale STL SPCL Sysèmes e procédés Fiche de synhèse - PARTIE G : le conrôle e la régulaion PARTIE G Le conrôle e la régulaion 1. La régulaion : présenaion 1.1. Bus Mainenir une (ou plusieurs) grandeur(s)

Plus en détail

Analyse documentaire : Étude d un sismographe

Analyse documentaire : Étude d un sismographe MPSI 4 Analyse documenaire : Éude d un sismographe La surveillance des mouvemens du sol dus à la sismicié es imporane, dans la mesure où elle perme de déecer l appariion de phénomènes don les conséquences

Plus en détail

PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET?

PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET? L acion d Euler... C es qui ce ype, Un enraineur de NBA??? Terminale S TP de physique PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET? Bu : - Uiliser le logiciel avimeca e un ableur

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

1.1 : Systèmes commandés en boucle ouverte Etude des procédés en Boucle Ouverte. 1 Présentation 1

1.1 : Systèmes commandés en boucle ouverte Etude des procédés en Boucle Ouverte. 1 Présentation 1 Programme de l exposé Page 0/6 Table des maières 1 Présenaion 1 2 Type de procédé éudié 1 2.1 Procédés coninus ou disconinus....................................... 1 2.2 Procédés mono ou mulivariables.......................................

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale CONCOURS TA A EPREUVES COMMUNES - 996 Mahémaiques PARTIE I : Formules de projecion orhogonale ) Le poin couran M() de l hélice (H) vérifian OM() = R cos i + R sin j + h k, le projeé orhogonal p(m) de M

Plus en détail

DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3

DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3 DUT GEII - DUT 2 Alernance Travaux Praiques d Élecronique Séance n 3 Mercredi Décembre 203 Le bu du TP es de faire une synhèse des connaissances sur les circuis RC. Les compéences suivanes devron êre acquises

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique I Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique Inroducion Lors du précéden TP, nous avons éudié une éape de la numérisaion d un : l éape d échanillonnage. Il ne s

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED Durée 2h 25-10-2016 4PémeP Sc expr1,2 SCIENCES PHYSIQUES 0BDEVOIR DE CONTROLE N 1 PR: RIDHA BEN YAHMED NB : Chaque résula doi êre souligné. La claré, la précision de l explicaion renren en compe dans la

Plus en détail

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler La méhode d Euler Inrocion : ce documen doi êre lu de façon acive ; il ne fau pas se conener de le lire en disan «Ah ouais, compris...». Il fau réécrire les calculs sur une feuille à par pour bien voir

Plus en détail

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Techniques ahémaiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Exercice 1 1.a Rappel sur les coniques Les coniques inerviennen dans un nombre d applicaions

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b.

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b. CHAPITRE 8 : FONCTIONS AFFINES COURS 30 : Foncion affine Définiion Soien a e b deux nombres quelconques «fixes». Si, à chaque nombre x, on peu associer le nombre ax + b, alors on défini une foncion affine,

Plus en détail

Chapitre 2 : Estimation de la tendance.

Chapitre 2 : Estimation de la tendance. Séries chronologiques (/6) Chapire : Esimaion de la endance. I. Ajusemen :. Méhode de Mayer : ajusemen par une droie : On ajuse le nuage de poins ( ; Y) par une droie passan par deux poins calculés : On

Plus en détail

Deuxième problème : Électrocinétique

Deuxième problème : Électrocinétique MP Physique-chimie. Devoir surveillé DS n - : corrigé Deuxième problème : Élecrocinéique A - égime sinusoïdal permanen xpression de l ampliude complexe de la ension u ( ) : // Z Nous obenons u par division

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. CI-2-2 MODÉLISER LES SIGNAUX ET LES FONCTIONS DE TRANSFERT. PASSER DU DOMAINE TEMPOREL AU DOMAINE SYMBOLIQUE DE LAPLACE ET INVERSEMENT.

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

Question no.1: (4 points) AUTOMNE Considérer le système en boucle fermée représenté à la figure ci-dessous :

Question no.1: (4 points) AUTOMNE Considérer le système en boucle fermée représenté à la figure ci-dessous : EXAMEN FINAL ELE3 Asservissemens d e 8 Quesion no.: 4 poins AUTOMNE Considérer le sysème en boule fermée représené à la figure i-dessous : + Ref K s +.5 s s - e Figure no. La réponse en fréquene du sysème

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail