Utilisation du symbole

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Utilisation du symbole"

Transcription

1 HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple, la somme S de tous les nverses des dx premers enters non nuls, peut s écrre S ou ben S 0. On dt que est l ndce de la somme; et on lt «S est égale à la somme pour varant de à 0 de». En effet, s on prend l expresson et que l on remplace par la valeur alors on obtent, s on remplace par la valeur alors on obtent, et ans de sute... s on remplace par la valeur 0 alors on obtent 0 qu est le derner terme de la somme. L avantage du symbole est qu l est plus explcte que les pontllés + + qu restent parfos flous. C est auss une façon plus compacte d écrre ces sommes. Cette écrture est, on le verra, très commode, vore ndspensable dans ben des domanes, notamment les probabltés et les statstques (domane où vous avez normalement déjà dû croser ce jol symbole pendant vos années de lycéen(ne?!?. Autre exemple : T s écrt plus smplement T 05 ( +. On dt que est l ndce de la somme; et on lt «T est égale à la somme pour varant de à 05 de (+». En effet, s on prend l expresson ( + et que l on remplace par la valeur alors on obtent, s on remplace par la valeur alors on obtent 3, et ans de sute... s on remplace par la valeur 05 alors on obtent 05 06, expresson qu est le derner terme de la somme. Exercce : Tradure à l ade du symbole les sommes suvantes : S s écrt auss S S s écrt auss S S s écrt auss S 3 03 S s écrt auss S 4 S s écrt auss S 5 S s écrt auss S 6 Exercce : Développer chacune des sommes écrtes à l ade du symbole, en fasant dsparaître ce symbole : T 0 3 T 0 + T 3 n ( +! Rappel : sutes arthmétques. Une sute arthmétque (u n n N est une sute dont le terme général est de la forme u n an + b où a est la rason de la sute. On sat (se démontre asément par récurrence que la somme des termes consécutfs d une sute arthmétque est donnée par la formule u Nombre de termes premer terme + derner terme Rappel : sutes géométrques. Une sute géométrque (v n n N est une sute dont le terme général est de la forme v n α q n où q est la rason de la sute. On sat (se démontre asément par récurrence que la somme des termes consécutfs d une sute géométrque est donnée par la formule de termes qnombre v premer terme q

2 HKBL / 7 symbole sgma Voc un exercce d applcaton : Exercce 3 : Calculer chacune des sommes suvantes, ou en donner la melleure expresson possble : Somme des termes d une sute arthmétque : ( Somme des termes d une sute géométrque : x 0 3 x 7 x Proprétés du symbole : lnéarté S (u n n N est une sute, alors pour tout réel α on a : S (x n n N et (y n n N sont deux sutes, alors on a (αu α (x + y u x + Ces deux proprétés sont équvalentes à cette seule proprété : S (x n n N et (y n n N sont deux sutes et s α et β sont deux réels, on a y pour tout enter n N pour tout enter n N (αx + βy α x + β y pour tout enter n N Exemple : Lnéarté de la somme n(n + S on pose S n 5, alors S n 5 5. S on pose T n n n(n + 3 +, alors T n n. S on pose Z n ( +, alors on peut écrre : Z n ( + ( + mas on connaît (presque par coeur que n n(n + et Z n n + n n(n + (n + n(n Exemple : Lnéarté de la somme + n(n + (n +. Donc 6 S on pose S n la somme des enters pars consécutfs de à n alors S n n Et on a par lnéarté S n n(n + n(n +.. S on pose T n la somme des enters mpars consécutfs de à n alors T n +3+ +n On remarque que S n + T n. c est à dre la somme de tous les enters consécutfs de à n. Donc n(n + S n + T n n(n +. De telle sorte que T n n(n + S n n(n + n(n + n. Autre méthode pour calculer T n : n(n + T n n n n(n + n n.

3 HKBL 3/ 7 symbole sgma Proprétés du symbole : ré-ndexaton d une somme Ce que l on désgne par ce terme barbare de «ré-ndexaton», c est effectuer un changement de varable (ou plutôt d ndce pour smplfer, calculer ou comparer deux sommes. Il n y a pas de défnton formelle à retenr, juste une méthode de calcul assez élémentare... regardez ces quelques exemples : 6 Exemple : S on veut écrre la somme S des enters mpars consécutfs de à on peut écrre S, mas on pourrat auss écrre S 5 j +. j0 Pour passer de la premère écrture à la seconde, l sufft de poser j, ce qu équvaut à j + et donc pour varant de à 6, l ndce j, égal à, vare de 0 à 5. Et la formule est remplacée par (j + j +. Exemple : S T n n (, pour un enter n, alors on peut poser le changement d ndce :. On a n alors vare de à (n, et T n, somme que l on sat calculer : T n (n (n(n 6 Exercce 4 : À l ade d une ré-ndexaton, montrer la règle sur les sommes télescopques : S n (u + u u n+ u 0 ndcaton : dans la somme n u +, poser le changement de varable +. Exercce 5 : À l ade d une ré-ndexaton, justfer que : De même, compléter : a n a n 0 (n ((n + ((n a n... Bnôme de Newton et symbole a n... a n... a n... a n+... a Théorème : Pour tous réels x et y, on a : (x + y n x n y 0 x y n cette règle généralse les denttés remarquables (x + y et (x + y 3, elle s appelle le bnôme de Newton. Exercce 6 : En utlsant le bnôme de Newton, dédusez la valeur de S n et celle de T Écrre de deux façons dfférentes S + T. En dédure la valeur d une somme. Exemple : Montrer que le bnôme de Newton s écrt : (x + y n x n y En effet, en posant le changement d ndce : n dans la somme S n n n à 0 (mas on écrt dans le sens de 0 à n; et on a : S n n proprété des coeffcents du bnôme : n. 0 (. 0 x y n. x n y, on a alors vare de n x y n. Et on conclue en se servant de la

4 HKBL 4/ 7 symbole sgma Sommes doubles Il arrve qu on at à effectuer une somme double, c est à dre une somme qu porte sur deux ndces : p Le sens qu l faut donner à cette somme double est que l on fat pour tout une somme sur j notée S p, pus la somme de tous les S : 0 S S l on fat un dessn (cf c-dessous, chaque S représente la somme par colonnes (les j bougent. Mas on pourrat consdérer que l on veut fare la somme par lgnes, T j n et on aurat la même somme en calculant p T j ; on écrt donc : j0 p p j0 0 0 j0 j chaque pont représente un terme de la somme double j p p p T p.. T T 0 0 n 0 0 n T 0 S 0 S S S n Exercce 8 : Somme double Calculer S n j Calculer T n Calculer U n j et U n + j Calculer V n 0 j j et V n 0 j Exercce 9 : Somme double et changement d ordre de la somme. Dre s chacune des égaltés est vrae ou non : n a b j a b j j0 0 j 0 j j0 0 j0 j j0 j 0 j 0 j j0 0 j j0 0 j 0 Exercce 0 : Développement de polynômes S P(x a x et Q(x b j x j, donner le développement du produt P Q sous la forme 0 j0 exprmant c en foncton des coeffcents a et b j. c x en

5 HKBL 5/ 7 symbole sgma Sommes télescopques Un des exemples d applcaton du symbole Σ est le calcul de sommes télescopques : les termes de la somme s élmnent deux à deux, sauf un nombre fn d entre-eux. Par exemple, S n (u + u u n+ u 0 Exercce : Smplfcatons de sommes télescopques Smplfer les sommes suvantes : S ( + T Exercce : Calcul de sommes télescopques. Smplfer la somme suvante : S ( +. ( + En remarquant que ( + +, en dédure n ( + (n +. En dédure n.. Smplfer la somme suvante : T ( En remarquant que ( , en dédure n ( (n +. En dédure. Exercce 3 : Utlsaton de sommes télescopques Détermner deux réels a et b tels que pour tout x réel strctement postf, on at : Pour tout enter n, on pose : S n n (n + En utlsant ce qu précède, exprmer S n en foncton de n. Que vaut lm S n? n + Autres méthodes de calcul de sommes Exercce 4 : Utlsaton de la dérvaton En utlsant le développement de P(x (x + n, calculer S Dérver P (x. En dédure U. Trouver une méthode smlare pour calculer V. et T x(x + a x + b x + (. Exercce 5 : Le calcul dfférentel au secours d une sommaton Pour x ] ;[ et n N, on pose : f(x + x + x + + x n. Écrre f(x à l ade du symbole. Fare de même pour f (x. Donner une expresson "smple" de f(x; en dédure que la dérvée f de f peut auss s écrre : ( f nx (n + (x ( + ( Pour n N, on pose S n x n. Remarquer que S n xf (x pour une valeur de x ben chose. Donner la valeur de la somme S n en foncton de n. Quelle est la lmte lorsque n tend vers +?

6 HKBL 6/ 7 symbole sgma solutons des exercces Exercce : Tradure à l ade du symbole les sommes suvantes : Soluton : S s écrt auss S 4 S s écrt auss S 04 S S S S s écrt auss S s écrt auss S 4 7 ( + ; autre possblté S 4 8 (j s écrt auss S 5 4 ( + s écrt auss S Exercce : Développer chacune des sommes écrtes à l ade du symbole, en fasant dsparaître ce symbole : Soluton : T T T 3 n ( +!! + 3! (n +! + + n Exercce 3 : Calculer chacune des sommes suvantes, ou en donner la melleure expresson possble : Somme des termes d une sute arthmétque : Soluton : ( (3 + 5 ( n + n n(n + ( ( + n 3 3(n (n n n(n + 7 ( Somme des termes d une sute géométrque : Soluton : x n+ x x n + x x n+ 0 j 7( x x n x xn+ x + Exercce 4 : À l ade d une ré-ndexaton, montrer la règle sur les sutes télescopques : S n (u + u u n+ u 0

7 HKBL 7/ 7 symbole sgma Soluton : S n (u + u ( n u + u + ( n u u par lnéarté (( n ( u + u n+ u 0 + u u n+ u 0 après smplfcaton en posant le changement d ndce + en décomposant les sommes

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

Prérequis de Mathématiques pour GMP

Prérequis de Mathématiques pour GMP Prérequs de Mathématques pour GMP V. Nolot Sommare. Rappels sur les vecteurs La noton de foncton. Foncton et graphe de foncton..................... Nombre dérvé et foncton dérvée.................. 3.3

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale TS - ccompagnement: Probabltés condtonnelles,, varable aléatore et lo bnomale xercce 1 'asthme est une malade nflammatore chronque des voes respratores en constante augmentaton. n France, les statstques

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

La décomposition en valeurs singulières: un outil fort utile

La décomposition en valeurs singulières: un outil fort utile La décomposton en valeurs sngulères: un outl fort utle Références utles: 1- Sonka et al.: sectons 3.2.9 et 3.2.1 2- Notes manuscrtes du cours 3- Press et al: Numercal recpes * Dernère révson: Patrck Hébert

Plus en détail

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans.

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans. http://maths-scences.fr EXERCICES SUR LES STATISTIQUES Exercce 1 Un concessonnare automoble étude l âge des acheteurs de votures de son garage. Deux documents ncomplets (un tableau et un hstogramme) rendent

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

L'INDUCTION ON5WF (MNS)

L'INDUCTION ON5WF (MNS) 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor

Plus en détail

Propriétés thermoélastiques des gaz parfaits

Propriétés thermoélastiques des gaz parfaits Themodynamque - Chapte opétés themoélastques des gaz pafats opétés themoélastques des gaz pafats LES CONNAISSANCES - Gaz pafat à l échelle macoscopque Défnton : Le gaz pafat assocé à un gaz éel est le

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012 Unversté Perre & Mare Cure M de Mathématques MM002 (Algèbre et théore de Galos) Automne 202 TD n 3. Modules lbres Exercce. Montrer que Z/nZ n est pas un Z-module lbre. Plus généralement, montrer que s

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ercces Électrocnétque alculs de tensons et de courants -21 éseau à deu malles Détermner, pour le crcut c-contre, l ntensté qu 1 2 traverse la résstance 2 et la tenson u au bornes de la résstance 3 : 3

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM DEFINITIONS ET PRINCIPES FONDMENTUX DE L RDM 1 OJET DE L RDM PRINCIPES DE L STTIQUE.1 Défnton de l équlbre statque.1.1 Epresson du torseur des actons, moment d une force.1. Sstèmes de forces dvers 3. Les

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Université de Cergy-Pontoise

Université de Cergy-Pontoise Unversté de Cergy-Pontose THESE Dscplne : Géne cvl Présentée par : Salma HASSANI-MANAI Pour obtenr le grade de DOCTEUR DE L UNIVERSITE DE CERGY-PONTOISE Sujet : ETUDE ET MODELISATION DE LA STABILITE DES

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion.

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion. Statstques A) Vocabulare. Poulaton et ndvdu : La oulaton est l ensemble des ndvdus sur lequel vont orter les observatons. Caractère : Le caractère est la rorété étudée. Le caractère est qualtatf s l n

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait Edtons ENI Collecton Référence Bureautque Extrat Tableaux de données Tableaux de données Créer un tableau de données Un tableau de données, auss appelé lste de données (dans les ancennes versons d Excel),

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Indicateurs de compétitivité- prix et de performances à l exportation

Indicateurs de compétitivité- prix et de performances à l exportation Décembre 2009 Indcateurs de compéttvté- prx et de performances à Méthodologe Les ndcateurs présentés dans ce document vsent à mesurer en temps réel l évoluton des parts de marché des prncpaux exportateurs

Plus en détail

Feuilles de style CSS

Feuilles de style CSS Feulles de style CSS 71 Feulles de style CSS Les standards du web Les langages du web : le HTML et les CSS Depus la verson 4 de l'html (décembre 1999), le W3C propose les feulles de style en cascade, les

Plus en détail

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique:

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique: SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12 Phénomènes d nducton et converson électromécanque: 1/ Inductance propre et nductance mutuelle. 11/ Défntons et proprétés : 11a/ Défnr l'nductance propre L d un

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

Chap. B2 : fonctions usuelles (fin)

Chap. B2 : fonctions usuelles (fin) MPSI Semane 7, du 4 au 8 Novembre 6 Chap. B : fonctons usuelles (fn) IV Fonctons trgonométrques : ) Proprétés admses des fonctons sn et cos Vor appendce pour une constructon des fonctons sn et cos, c on

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

Virga. itunes 4. sous Mac et Windows. Éditions OEM (Groupe Eyrolles),2004, ISBN 2-7464-0503-2

Virga. itunes 4. sous Mac et Windows. Éditions OEM (Groupe Eyrolles),2004, ISBN 2-7464-0503-2 Vrga Tunes 4 et Pod sous Mac et Wndows Édtons OEM (Groupe Eyrolles),2004, ISBN 2-7464-0503-2 Synchronser l Pod avec l ordnateur L Pod connaît deux types de synchronsaton. L a synchronsaton de la musque

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail