2/19 1) E qu qu ion on di ff f érent n ielle 2) F on on tion on de rans an fert 3) E t E ude

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "2/19 1) E qu qu ion on di ff f érent n ielle 2) F on on tion on de rans an fert 3) E t E ude"

Transcription

1

2 2/9 ) 2) 3) Eude de rois exemles 4) 5) 6)

3 ) 3/9 Un sysème es di du remier ordre quand il es régi ar l équaion suivane : e() Consigne d enrée d s() τ + s() K e() s() Variable de sorie Consane de ems Gain saique

4 d s() 2) τ + s() K e() 4/9 Passons dans le domaine de Lalace en uilisan le héorème de la dérivaion : Noa : la foncion de radui l évoluion du sysème deuis une osiion d équilibre donc les condiions iniiales son nulles. τ S( + S( K E( FT ( ( + ) K E( S ( τ S( K E( +τ Gain saique Consane de ems

5 3) Eude de rois exemles 5/9 Premier exemle : TD de l asservissemen en haueur d un bac amon Bac amon h c () Consigne de haueur S K.C.B.A sorie dh() + h() h enrée c () h() Haueur de résenaion des ubes τ S K.C.B.A K FT( ) H( ) H ( ) S K C B A C +

6 Deuxième exemle : circui RC u R () 6/9 u e () R C u s () R : résisance élecrique (en Ohm) C : caacié du condensaeur (en Farad) q : charge du condensaeur (en Coulomb) q() C u dq() i() RC s () or i() ue ( ) τ RC K sorie dus () + us() C dus() u () + u () u e s enrée () R R i() u FT( s () + U U S e RC ( ( dus ( ) + RC

7 Troisième exemle : C mo () ω () liaison ivo avec froemen 7/9 Hyohèses : On néglige les froemens secs au niveau de la liaison ivo. On suose des froemens fluides au niveau de la liaison ivo (coefficien f ) froemens roorionnels à la viesse angulaire : () f ω () C rés On suose le cenre de gravié de l arbre sur l axe de roaion. On noera J l inerie de l arbre en roaion. ) Isolemen : on isole l arbre en roaion. 2) Bilan des acions mécaniques exérieures : Coule moeur Coule du oids Liaison ivo avec froemens fluides

8 C mo () ω () 8/9 3) Princie fondamenal de la dynamique : sorie enrée C mo () + 0 C rés () f ω () J dω ( ) τ FT( J f J f Ω( C ( dω ( ) mo + f J f + ω ( ) f C mo K f ()

9 4) d s() τ + s() K e() 9/9 Prenons d amliude A e() A u() Foncion d Heaviside Uilisons le héorème de dérivaion our asser dans le domaine de Lalace On cherche l évoluion d un sysème deuis une osiion d équilibre d s() τ + s() K les condiions iniiales son donc nulles e() τ S( + S( K A ( + ) S ( τ S( ( τ + )

10 S( ( τ + ) 0/9 On a vu dans le cours sur les ransformées de Lalace : L [ f()] ( + τ e τ s( ) e τ Noa : on eu rerouver ce résula différemmen en faisan une décomosiion en élémens simles de la forme : S( α + β τ + Degré du numéraeur inférieur de à celui du dénominaeur

11 S( ) α β α ( τ + ) + + τ + ( τ + ) α + Idenifions les consanes α e β du numéraeur : ( α τ + β ) ( τ + ) D où : α α.τ +β S( + τ 0 β + ( τ ) τ τ + S( β α. τ K s( ) τ e A τ /9 ( τ + )

12 5) de la réonse à s( ) e τ A En suosan K> Sorie s() Valeur finale Enrée e() A.u() 2/9 Noa : lim s( ) ( 0 ) K A K K < A A

13 Influence du gain saique K 3/9 Réonse indicielle (échelon de ) K,6 K,4 Enrée en échelon uniaire K,2 K,0 K 0,8 K 0,6 K 0,4 0 Si le gain saique diminue la valeur finale diminue aussi

14 Influence de la consane de ems τ Réonse indicielle (échelon de ) 4/9 2 τ Valeur finale τ 0 Enrée en échelon uniaire Si la consane de ems diminue la courbe «se redresse» 0

15 Caracérisiques s 5/9 FT ( S( E( K +τ A Tangene à l origine) 63% ici K> Valeur finale 95% Enrée e() A.u() τ 2τ 3τ Tems de réonse à 5%

16 6) Réonse imulsionnelle 6/9 FT ( S( E( K +τ K τ 0,37 0,05 K τ K τ τ 2τ 3τ

17 Influence du gain saique K 7/9 K 3 FT( K +2 K 2,3 K,6 Si le gain saique diminue l ordonnée iniiale diminue aussi K 0,9 K 0,2

18 Influence de la consane de ems τ 8/9 τ FT( 3 +τ τ 2 τ 3 Si la consane de ems diminue l ordonnée iniiale augmene τ 4 τ 5

19

L[f(t)] = F(p) = e. b) rampe. at e pt dt= F(p) = F(p) = [ ate pt. p ] F(p) = [ a e p. p a.0.e0. p t. e 1. F(p) = 1/ p ] F(p) = [ e pt p ] e 1.

L[f(t)] = F(p) = e. b) rampe. at e pt dt= F(p) = F(p) = [ ate pt. p ] F(p) = [ a e p. p a.0.e0. p t. e 1. F(p) = 1/ p ] F(p) = [ e pt p ] e 1. BTS CIM 2 LA TRANSFORMATION DE LAPLACE ) Définiion A oue foncion réelle du ems f(), on associe une foncion F() de la variable comlexe =σ+jω ar : L[f()] = f e d 2) Quelques ransformées de Lalace a) échelon

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de Transformée de Lalace : résoluion d équaions différenielles linéaires Méhode Résoluion de l équaions différenielles du remier ordre : T ds ( ) + s( ) = Ke( ). d Transformaion de l équaion différenielle

Plus en détail

Sciences de l Ingénieur. DS de Sciences de l Ingénieur, MPSI1, octobre 15. Corrigé sur le site :

Sciences de l Ingénieur. DS de Sciences de l Ingénieur, MPSI1, octobre 15. Corrigé sur le site : DS de, MPSI, ocobre 5 Durée : h Corrigé sur le sie : h://erso.numericable.fr/sarnaud/ Exercice.. Tracer la foncion e ( ( ). u( ) ( ). u( ) u( 4) e donner sa ransformée de Lalace.. Soi le sysème défini

Plus en détail

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé.

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé. NOM : Examen Final EL4 Noe : Durée : H4. Calcularice non auorisée car inuile. Aucun documen ersonnel n'es auorisé. Pour chaque réonse, on exliquera la démarche qui condui au résula roosé. Les exressions

Plus en détail

TP n 18 : étude par la simulation d'un moteur à courant continu.

TP n 18 : étude par la simulation d'un moteur à courant continu. TP n 18 : éude par la simulaion d'un moeur à couran coninu. Bu du TP : le bu de ce TP de seconde année es l'éude d'un moeur à couran coninu en uilisan un modèle du logiciel LTSPICE. On alimenera le moeur

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

Corrigé Exercice 1 : SYSTÈME DU 2 ÈME ORDRE CAS GÉNÉRAL.

Corrigé Exercice 1 : SYSTÈME DU 2 ÈME ORDRE CAS GÉNÉRAL. TD 06 corrigé - Comoremen emorel des SCI du ème ordre Page 1/10 Corrigé Exercice 1 : SYSTÈME DU ÈME ORDRE CS GÉNÉR Quesion 1 : Déerminer l ordonnée en + s(+) Conclure sur l influence des aramères caracérisiques,

Plus en détail

Traitement du signal

Traitement du signal Spé ψ 6- evoir n Traiemen du signal EXTAIT E E3A PSI Quesion 9 Analyse de l ALI enrée ( : v = par consrucion ; enrée ( : i = donc U v = I relaion enrée-sorie : l ALI es bouclé sur son enrée inverseuse

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

PCSI Les Ulis COURS Systèmes Linéaires Continus Invariants

PCSI Les Ulis COURS Systèmes Linéaires Continus Invariants PCSI Les Ulis COURS Sysèmes Linéaires Coninus Invarians Modélisaion des Sysèmes Linéaires Coninus Invarians SOMMAIRE INTRODUCTION A L AUTOMATISME ET AUX SYSTEMES ASSERVIS 2. INTRODUCTION A L AUTOMATISME

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

7.1 Système intégrateur Le système intégrateur est un système dont le schéma bloc est de la forme : s(t)

7.1 Système intégrateur Le système intégrateur est un système dont le schéma bloc est de la forme : s(t) 7 Réons morll L objcif d c chair s d éudir ls réonss dans l domain morl ds sysèms fondamnaux. Nous avons vu qu la modélisaion la mis n équaion ds sysèms linéairs coninus débouchn sur un équaion différnill

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Correction Devoir Surveillé 5

Correction Devoir Surveillé 5 orrecion Deoir Sureillé 5 Parie Quesion Les deux mobiliés enre le câssis du éicule ermean de réaliser une susension coérene son : ranslaion reciligne du carer/câssis suian la direcion y #### " ; roaion

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 2 MODÉLISATION DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS TRANSFORMÉE DE LAPLACE EXERCICES D APPLICATION D arès ressources

Plus en détail

STRUCTURE GENERALE D UN SYSTEME ASSERVI

STRUCTURE GENERALE D UN SYSTEME ASSERVI Drone élécommandé . STRUCTURE GENERALE D UN SYSTEME ASSERVI -----------------------------------------------------------------------------------------------.. Rael sur la srucure générale d un sysème asservi

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

CHAPITRE 4 TORSION SIMPLE

CHAPITRE 4 TORSION SIMPLE Cours de RD L1S1 CHAPTRE 4 TRSN SPLE Année universiaire 21-211 Réalisé par Elaief AHER 1. Définiion: Une poure es solliciée à la orsion simple si elle es soumise à deux momens opposés porés par la ligne

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2 Mécanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEMATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en

Plus en détail

CH 1 : MODELISATION DES ASSERVISSEMENTS

CH 1 : MODELISATION DES ASSERVISSEMENTS V. Cholle - Cour-auom-11-15/12/2011 page 1 1 INTRODUCTION 1.1 L AUTOMATIQUE CH 1 : MODELISATION DES ASSERVISSEMENTS L auomaique es la science ayan pour obje l éude des sysèmes auomaisés. Ne pas confondre

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

Licence Science de la Mer et de l Environnement. Physique Générale

Licence Science de la Mer et de l Environnement. Physique Générale Licence Science de la er e de l Enironnemen Physique Générale Chaire 9 :Dilaaion des gaz Raels mahémaiques : les dériées arielles Quand une foncion déend de lusieurs ariables, ar exemle f( x, x2, x3,...

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Introduction à l'étude des Systèmes Asservis Linéaires. Généralités

Introduction à l'étude des Systèmes Asservis Linéaires. Généralités Généraliés Sysèm d command Définiions Définiions Sysèm assrvi 3 Définiions Exml : command d la viss d roaion d un mour E - A u Indui Mour w Charg 4 Définiions Exml : assrvissmn d la viss d roaion d un

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

Signal 4 Les oscillateurs amortis

Signal 4 Les oscillateurs amortis Signal 4 Les oscillaeurs amoris Lycée Polyvalen de Monbéliard - Physique-Chimie - TSI 1-2016-2017 Conenu du programme officiel : Noions e conenus Circui RLC série e oscillaeur mécanique amori par froemen

Plus en détail

Ces phénomènes transitoires sont ainsi très généraux et surviennent dans bon nombre de domaines. En voici quelques exemples :

Ces phénomènes transitoires sont ainsi très généraux et surviennent dans bon nombre de domaines. En voici quelques exemples : On enend par phénomène ransioire une phase de durée limiée dans le emps. On peu opposer ainsi phénomène ransioire e phénomène permanen : Par exemple, on parlera de la phase de démarrage d un moeur comme

Plus en détail

Dès que l ordre de cette équation différentielle dépasse 2, la résolution en devient fort compliquée.

Dès que l ordre de cette équation différentielle dépasse 2, la résolution en devient fort compliquée. Inroducion Éan donné un circui linéaire, foncionnan en régime quelconque, les seuls moyens don nous disosons jusqu à résen, our en faire l éude son : - es lois des nœuds e des mailles. - es relaions couran-ension

Plus en détail

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système PGE A Marrakech Les sysèes asseris Traail roosé ar :LAAMIMI Dans cee conribuion, j ai résené deux séries d exercices our illusrer cerains conces héoriques concernan la hase de odélisaion des sysèes asseris

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

VITESSE - ACCELERATION

VITESSE - ACCELERATION CINEMATIQUE VITESSE - ACCELERATIN Mécanique Référence au programme S.T.I Référence au module - Cinémaique. Module 7 : :Cinémaique -1 Mouvemen relaif de deux solides en liaison glissière ou pivo -1. Caracérisaion

Plus en détail

Systèmes linéaires continus et invariants

Systèmes linéaires continus et invariants Cours - Sysèmes linéaires coninus e invarians Page /3 Sysèmes linéaires coninus e invarians ) INTRODUCTION : ES TROIS TYPES DE SYSTÈMES AUTOMATISÉS... 5 ) ES SYSTÈMES OGIQUES COMBINATOIRES... 5 ) ES SYSTÈMES

Plus en détail

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE Chapire n LES RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE T ale S I- Les esers )Formule générale Un eser comprend deux chaînes carbonées R e R séparées par la foncion eser : Rq. : Si les chaînes carbonées son

Plus en détail

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Minisère d éducaion e de Formaion D. R. E. Nabeul Lycée Secondaire Roue de la Plage SOLIMAN SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Classe : 4 ème Mahs Dae : Novembre - 216 Prof : Jalel

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE Cours 9 - Raidié des SLCI Lyée Bellevue Toulouse - CPGE MP Raidié des SLCI Uno I (Cone iniial) Uno III Le sooer Uno III es un arfai exemle de sysème asservi qui doi êre néessairemen sable our un bon fonionnemen.

Plus en détail

Aucune sortie définitive n est autorisée avant 12h

Aucune sortie définitive n est autorisée avant 12h PI 16/17 D 1 -- ysèmes linéaires (don élec PCI) - ALI (01/10/2016 4h) Exrai des Insrucions générales des concours Les candidas son inviés à porer une aenion pariculière à la rédacion : les copies illisibles

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Où μ et ν sont respectivement les viscosité dynamique et cinématique du fluide et ρ sa masse volumique. On peut adimensionner cette équation : .

Où μ et ν sont respectivement les viscosité dynamique et cinématique du fluide et ρ sa masse volumique. On peut adimensionner cette équation : . Licence de Phsique e Applicaions L3S5 Premier problème de Sokes Cours Année 9- Daniel Soluions eaces des équaions de Navier-Sokes er problème de Sokes : diffusion de quanié de mouvemen On considère le

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS ière Parie: VIRTIONS haire 5: Mouveen à lusieurs degrés de liberé Dr Fouad OUKI HENE E P S T T E M E N N N É E 5-6 Objecifs:. es équaions différenielles d un ouveen coulé. es différenes soluions du roblèe.

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

Chapitre 19 : Les lois de Newton

Chapitre 19 : Les lois de Newton Chapire 19 : Les lois de Newon Isaac Newon fu le premier à éablir les relaions enre mouemen d'un solide e forces qui lui son appliquées. Rappel : Un solide soumis à aucune force es di «isolé», s il es

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques B. OSCILLATIONS, ONDES ET LUMIERE 1. Inroducion Un oscillaeur es un sysème qui effecue des mouvemens d aller-reour de par e d aure d une posiion moyenne, par un mouvemen plus ou moins régulier. Si les

Plus en détail

SYSTEME SEQUENTIEL : LE GRAFCET

SYSTEME SEQUENTIEL : LE GRAFCET Lycée J HAAG AUTOMATIQUE STI SYSTEME SEQUENTIEL : LE GRAFCET -Dans un sysème séqueniel, l éa des sories dépend de la combinaison des variables d enrées de la parie commande mais aussi de l éa précéden

Plus en détail

1ère partie : Fonction retard + 5 V. Circuit I

1ère partie : Fonction retard + 5 V. Circuit I G. Pinson - Physique Appliquée Foncion Reard A23-TP / 1 A23- Eude d'un circui monosable Bu : on veu réaliser un disposiif logique généran une impulsion de sorie déclenchée par le fron monan d'une impulsion

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Ouvre portail. 1. Présentation du système

Ouvre portail. 1. Présentation du système Ouvre porail TD 1. Présenaion du sysème L ouvre-porail auomaisé éudié perme l ouverure e la fermeure d un porail chez les pariculiers de façon auomaique ou semiauomaique. L ouvre porail es ariculé sur

Plus en détail

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V Universié Mohammed Khidher Biskra A.U.: 204/205 Faculé des sciences e de la echnologie nseignan: Bekhouche Khaled Maière: lecronique Fondamenale Chapire 3 : La Diode 3.. Définiion, symbole e caracérisique

Plus en détail

Devoir de sciences physiques n 6 Classe de TS1 LES CALCULATRICES NE SONT PAS AUTORISEES. Partie Physique Principe d une minuterie (10 points) + C

Devoir de sciences physiques n 6 Classe de TS1 LES CALCULATRICES NE SONT PAS AUTORISEES. Partie Physique Principe d une minuterie (10 points) + C Devoir de sciences physiques n 6 lasse de TS1 LS ALULATIS N SONT PAS AUTOISS Parie Physique Principe d une minuerie (10 poins) 1. ÉTUD THÉOIQU D'UN DIPÔL SOUMIS À UN ÉHLON D TNSION. Le monage du circui

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

COFFRE MOTORISE DE 607 PEUGEOT

COFFRE MOTORISE DE 607 PEUGEOT Nom : Prénom : COFFRE MOTORISE DE 607 PEUGEOT 1 Présenaion du sysème. La 607 PEUGEOT, voiure hau de gamme, a éé doée après sa sorie, d'un équipemen supplémenaire desiné à simplifier la vie des uilisaeurs

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

PCSI Les Ulis COURS Systèmes Linéaires Continus Invariants

PCSI Les Ulis COURS Systèmes Linéaires Continus Invariants PCI Les Ulis COUR ysèmes Linéaires Coninus Invarians Modélisaion des ysèmes Linéaires Coninus Invarians OMMAIR INTRODUCTION A L AUTOMATIM T AUX YTM ARVI INTRODUCTION A L AUTOMATIM NOTION D COMMAND 3 YTM

Plus en détail

Cours 02 Modélisation des systèmes asservis en SLCI et réponses temporelles

Cours 02 Modélisation des systèmes asservis en SLCI et réponses temporelles Cours Modélisaion des sysèmes asservis en SLCI e réonses emorelles Modélisaion des sysèmes asservis en SLCI e réonses emorelles Exemles de sysèmes asservis de la salle de TP SII Robo jockey, Direcion Assisée

Plus en détail

Amplificateur opérationnel

Amplificateur opérationnel ROYAUME DU MAROC MINISTERE DE L EDUCATION NATIONALE Académie de Casablanca DÉLÉGATION DE MOHAMMEDIA Lycée Technique Maière : Science de l Ingénieur A.T.C Pr.MAHBAB Secion : Sciences e Technologies Élecriques

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

EXERCICES : TORSION (Version du 23 mai 2016 (10h48))

EXERCICES : TORSION (Version du 23 mai 2016 (10h48)) EXERCICES : TORSION (Version du mai 016 (10h48))! 6.01. Déerminer le diamère d de l arbre d une machine de 149. kw ournan à la viesse de 10 /min. On suppose que la conraine d uilisaion en orsion 0 N mm.

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

Ch.1 : Introduction aux systèmes asservis

Ch.1 : Introduction aux systèmes asservis AUTOMATIQUE C es l ar d analyser, modéliser, commander les sysèmes, de prendre des décisions en foncions d évènemens exérieurs au sysème. Quelques daes e exemples : ~ 5 av JC : compage du emps (clepsydre

Plus en détail

2. Performances d'un Système : Stabilité - Précision - Rapidité

2. Performances d'un Système : Stabilité - Précision - Rapidité . Performanes d'un Sysème : Sabilié - Préision - Raidié STBILITE Condiion générale de sabilié Sabilié au sens sri (sysème asymoiquemen sable, sabilié au sens de Lyaunov) Il y a reour à l'équilibre arès

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

Fonction «Génération de signaux non sinusoïdaux»

Fonction «Génération de signaux non sinusoïdaux» Foncion «Généraion de signaux non sinusoïdaux» Générer un signal élecrique consise à produire des variaions de ension don les caracérisiques de forme, d ampliude e de fréquence son connues. Les signaux

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE Session 2014 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE E3 Sciences Physiques U-32 PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficien : 2,5 Maériel auorisé : - Toues les calcularices

Plus en détail

TP de traitement numérique du signal

TP de traitement numérique du signal Stage de hysique aliquée /9 B. Pontalier TP de traitement numérique du signal Filtrage numérique. Filtres synthétisés ar la imulsionnelle: imusion de Dirac imusion de Dirac modèle T( FT du filtre # T(

Plus en détail

Plan. Le timer Présentation. Présentation. _ Présentation. _ Caractéristique statique. _ Montage en monostable ou monovibrateur

Plan. Le timer Présentation. Présentation. _ Présentation. _ Caractéristique statique. _ Montage en monostable ou monovibrateur Le imer 555 Plan _ Présenaion _ aracérisique saique _ Monage en monosable ou monovibraeur _ Monage en asable ou mulivibraeur ours d Elecronique, IG2I, ENI2 Le imer 555 2 Descripion Présenaion ircui minuerie

Plus en détail

1 Analyse des systèmes asservis

1 Analyse des systèmes asservis i TABLE DES MATIÈRES Analyse des sysèmes asservis. Caracérisaion des sysèmes asservis......................................... Srucure des sysèmes asservis.........................................2 Caracérisiques

Plus en détail

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH. Épreuve de Sciences Industrielles PSI. Durée 5 h AVERTISSEMENT

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH. Épreuve de Sciences Industrielles PSI. Durée 5 h AVERTISSEMENT 159 CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH Épreuve de Sciences Indusrielles PSI Durée 5 h Si, au cours de l épreuve, un candida repère ce qui lui semble êre une erreur d énoncé, d une par

Plus en détail

Lycée Hoche Versailles Automatique Asservissement 3

Lycée Hoche Versailles Automatique Asservissement 3 Auomaique Asservissemen Idenificaions emporelles Lycée Hoche Versailles Auomaique Asservissemen Philippe Bourzac Auomaique Asservissemen Idenificaions emporelles ASSERVISSEMENT IDENTIFICATIONS TEMPORELLES.

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR acroéconomérie II. Aroche alernaive aux mécanismes dynamiques : la modélisaion VAR Claudio Araujo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org h://www.cerdi.org/claudio-araujo/erso/.

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V EL 0 - TD N 1 Exercice 1 : Que vau la résisance vue enre A e B, soi AB? Exercice : Quelle es la valeur de la résisance vue enre A e B, soi AB? Exercice 3 : Déerminez l équivalen de Thévenin du monage suivan

Plus en détail