Le décisionnel et la culture des données à AF KL

Dimension: px
Commencer à balayer dès la page:

Download "Le décisionnel et la culture des données à AF KL"

Transcription

1 Le décisionnel et la culture des données à AF KL - & Perspectives - 5 Décembre 2013 CUSI Xavier Henderson

2 2 Prolégomènes

3 3 Objectifs Présenter l exemple de AFKL Présenter les métiers «données» Sensibiliser à la culture «données» Illustrer les bénéfices Présenter la demande des entreprises aujourd hui et demain

4 4 Agenda 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective ANNEXES

5 5 Agenda Historique 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

6 6 Historique décisionnel AF Couverture Aujourd hui Nombreux débats Croissance forte et continue Des résistances (infocentres..) Un existant facilitateur Démarrage difficile Operational BI Temps Air inter /11 SRAS Référentiels & infocentres BICC Fusions (Air Inter, UTA) & SI intégré, SOA Recherche opérationnelle KLM JV Alitalia, Delta 2013

7 7 Historique décisionnel AF Couverture PLUS DE Aujourd hui X15 (+25%/an) - Domaines & applications - Données - Usage - Types «d Analytics» - Fonctionnalités outils - Efficience - Ergonomie - Performance - QDS - Réactivité Operational BI Temps Air inter /11 SRAS BICC KLM JV Alitalia, Delta 2013

8 8 Débats historiques Organisation & méthode Fonctionnel Technique Culture Politique

9 9 Culture données AF Mise en œuvre de référentiels Équipes dédiées d administration de données «Predictive Analytics», Recherche Opérationnelle, Revenue Management (go show, no show ) Suites SAP, CRM avec référentiels intégrés Services «SOA» middleware Data Warehouse d Entreprise depuis ~ 2000 «La richesse réside dans les contenus, dans leur organisation, dans leur communication» - Yannis Delmas

10 10 Agenda Couverture fonctionnelle 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

11 11 Petit Exemple de données du DW AF/KL Référentiels Individu Données AF - KL - JV DL - JV AZ CRM Cartes Payantes Fidélisés Flying Blue Catering Réclamations Recettes diverses - operating, marketing Bagages Ponctualité Exploitation Programme prévu et réalisé Concurrence (MIDT, OAG) Logs web AF Billets Dossiers Passagers Agences Firmes Revenue Management BIEN D AUTRES..

12 12 Couverture fonctionnelle Plus de 2/3 des sous-domaines couverts Exceptions: ce qui ressort de SAP finance/achats & ce qui restera départemental il reste < 10% à conquérir Plus de 80% données potentielles en volume Plus de 1/3 domaines ont des données AF et KLM Rythme dicté par l alignement des processus, des référentiels, des applications, et des obligations réglementaires ou métiers Poids des historiques de données, et culturels

13 13 Marketing, RM & Réseau Ventes PASSAGER Services Sol Opérations Vol CARGO Flight INDUSTRIEL MÉTIERS CORPORATE Finance Financial Services Ressources Humaines Strategic HR HR Administration Revenue Accounting Informatique Domaining 2011 Couvert Grandement Couvert Peu Couvert

14 14 Agenda Positionnement du EDW 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

15 15 Positionnement EDW App. Transac. Externe Flux données batchs & services s t a g i n g DECISIONNEL «STANDARD» EDW/BI DM 1 DW 1 DM 2 DW 2 CRM, ERP Décisionnel intégré dans les applications (1) Cas général TRANSACTIONNEL Décisionnel Prédictif & Advanced Analytics (2) (1) Ex: tableaux de bords dans gestion de contrats firmes, CRM (2) Ex: recherche opérationnelle, CCO + data mining (3) Arbitrage : solutions «data mart» d Operational Intelligence

16 16 Solution Décisionnel «standard» AFKL Quelques Repères TERADATA ~ objets (dont tables) scripts 148 To RAID1 dont 38 To de données utiles compressées Les tables les plus volumineuses : 1.3 To 331 attributs millions de lignes Personnel 2 équipes développement ~45 internes 1 équipe Production ~10 internes 130 applications, avec : 250+ univers BO 300 batch jobs (y compris Informatica) 7 applications autres techno (Java, SAS) 5+ applications QlikView utilisateurs déclarés, dont ~900 KLM se connectent 1fois+/mois Données de tous les métiers de l entreprise + KLM

17 CRYSTAL Population d utilisateurs 17 Positionnement des outils IT AFKL BI traditionnel Petite Utilisation statique dynamique Legende: Reporting and querying OLAP (MSAS, ESSBASE) Analysis Qlikview Outils maison Enrichissements possibles (cf prospectives) Large Faible Efficacité de l analyste Elevée En tant que composant intégré OEM

18 18 Agenda Exemples 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

19 19 Analyse Comparative des primes et contrats flying blue vs recette

20 20 Dashboard des Commerciaux - Croisement de données Firmes contrats - agences

21 21 Informations passager ou soute Dossiers passagers ou Soutes 2 ans, grain événement Gain productivité 2h/pers/jr BABAR RATAXES BABAR RATAXES Délai de mise à disposition données très rapide Temps de réponse: < 1sec Milliards d enregistrements BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR BABAR RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES RATAXES

22 22 Et encore Pilotage Recettes Annexes Bagage (DW+BO) Facturation excédent bagage en Escale Facturation inter-cies gestion bagages Analyse PNR pour Revenue Integrity (DW+BO) Identification de faux noms-prénoms et de réservations abusives; Analyse des fraudes

23 23 KARMA ADT - DI.IZ Traitement Schedule + Réservations (RM) Milliards de lignes à traiter Temps de calcul ramené de 3 semaines à 2h45 Réseau 10 Gb Big Data Hadoop 3 To NFS partagé Map/Reduce 14 serveurs = 112 coeurs

24 24 Module Web d analyse dynamique («Voice of the Customer»)

25 25 Agenda Organisation 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

26 26 Schéma Général Propritaire «métier» «utilisateur final» Assistance à Maîtrise d Ouvrage (AMO) Porte parole IT et métier Informatique (IT) Exprime un besoin Formalise Valide les solutions IT Spécifs Livraison & opérations

27 27 Le BICC position relative AMO PN AMO / BIZ Métier Métier exploit. Sol AMO Process AMO Déci. Support «Front Office BI» BICC Dev IT 1 Dev et support util. Support dev. Dev IT 2 Dev IT N Production

28 28 Agenda Acteurs 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

29 29 Dimensions des postes 12 dimensions spécifiques: Centré sur les données ou sur les outils ou sur le fonctionnel Intégré au métier ou IT Front end ou IT back end Selon le type de pratiques données: administration/stewardship, visualisation, Voir annexe Autres dimensions habituelles Caractéristiques personnelles: communication...«soft skills» Du débutant à l expert au super expert polyvalent (data scientist) Multi niveaux hiérarchiques et managériaux

30 30 Synthèse de fonctions Fonction Nb où Métiers à dominante managériale C Dir. Métier - AMO - IT Métiers à dominante analytique B/C Dir. Métier Métiers à dominante données/information B Dir. Métier - IT Métiers à dominante normative (Méthodologie, standards, normes) A IT Métiers à dominante outils (Back End + admin front end) C IT Métiers à dominante outils (Front End) A/B (1) Dir. Métier - AMO - IT Métiers à dominante projet/maintenance C surtout AMO-IT si tradi, sinon Dir Métier - IT si agile Métiers à dominance support B/C Selon nature du support architecture (en coordo avec tous les acteurs) A/B (2) Métiers IT en vue de Monter et Opérer l'éco-système DW + BI B (3) IT ou Dir. Métier IT Gestionnaire de fournisseurs (IT, données, hébergement, clé en main, cloud) A (3) Métiers chez les consultants, SSII, SSCI, free lance N/A N/A IT Nombre de fonctions: - A : 1 à 5 - B: 5 à 10 - C: plus de 10 Nombreuses fonctions, nombreuses opportunités (1) par outil (2) selon complexité de l'installation (3) fonctions souvent mutualisées

31 31 Agenda Forces et facteurs de succès 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

32 32 Forces et facteurs de succès Bon Fond de «culture données» Soutien Directions Métiers et IT Vision, stratégie, feuille de route décisionnelle (IT) Architecture et Infrastructure «état de l art» Équipes dédiées: BICC IT, AMO dédiés, admin. de données Démarche incrémentale «pseudo-agile» en spirale Performances opérationnelles du socle teradata Couverture, accessibilité et disponibilité données Déploiement large

33 33 Forces et facteurs de succès Assez bonne proximité IT <> métier Fluidité et agilité Ergonomie & autonomie utilisateur (outils, méthodes, formation) Opérational BI et DW Développer une communauté entre utilisateurs clés, IMO et IT Développer le Self Service BI (SSBI) Intégrer les évolutions des dernières années Développer la maîtrise du contenu des données et des metadonnées

34 34 Agenda Défis 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

35 35 Défis Toujours plus flexible, rapide et concret; Plus d agilité Structurer notre approche pour être encore plus orienté données Raz de marée d évolutions, changements profonds Appréhender la nature de la donnée L homme intemporel Ubik Être c'est être perçu ou percevoir L homme multidimensionnel 1984 Voir Annexes pour vision détaillée

36 36 Agenda Évolutions, prospective 1. Historique 2. Couverture fonctionnelle 3. Positionnement du EDW 4. Exemples 5. Organisation 6. Acteurs 7. Forces et facteurs de succès 8. Défis 9. Évolutions, prospective

37 37 Tendances du Marché CRM Web

38 38 Prospective Air France KLM est dans le peloton de tête aérien Mais d autres sont en avance surtout aux USA et Allemagne: Web, High Tech, Telecoms, Banques et Assurances, Retail, R&D Tendances Nb items Utilisation 13 - SSBI - Operational BI Principaux items Technique IT 8 - En phase avec nouveaux usages - Zoo Big Data Opportunités AFKL Nombreuses Nombreuses Développement 7 - Agile BI Nombreuses Organisation 7 - Gouvernance des informations Très Nombreuses Gestion des Infos 4 - Qualité des informations - Metadata Management Très Nombreuses Voir Annexes pour vision détaillée

39 39 Prospective zoom sur Opportunités Données Transactional & Application Data Volume - Données structurées - Débit Machine Data Vélocité/Faible latence - Semi-structurées - Ingestion Social Data Variété - Non Structurées - Véracité Enterprise Content Variété - Non Structurées - Volume Source : IBM Solconnect13 (2013)

40 40 Ce qui est en train de se passer Le Big Data redynamise le BI Exploration Analyse opérationnelle: capteurs avion, RFID Extension analytique Source : IBM Solconnect13 (2013) Secteurs à fort investissement DW/BI/analytics Les compagnies innovantes Les compagnies et organismes où beaucoup d argent est en jeu Les compagnies et organismes où la vie est en jeu Cf annexe pour détails

41 41 En conclusion: Un beau présent et un meilleur avenir Besoins qui explosent, durables, Relative immaturité dans les entreprises et du secteur Le savoir-faire «contenu données» est préservé car difficile à copier Nombreuses fonctions très variées, IT et hors IT Possibilité d innover (data scientist, entrepreneur, start-up)

42 42 Questions?

43 43 Agenda ANNEXES 1. Air France KLM éléments clés 2. Composants DW & Big Data 3. Échelle de maturité décisionnelle 4. Types de BICC 5. Types d utilisateurs et d utilisation, fonctions 6. Détail défis et prospectives & directives QI 7. Qui investit beaucoup? 8. Glossaire 9. Références

44 44 ANNEXES Air France - KLM Source: Assemblée Générale 2013 NB: Les indicateurs évoluent selon l activité et le contexte économique

45 45 Air France KLM éléments clés Source: Assemblée Générale 2013

46 46 +60% de nos ventes sont réalisées à l international Source: Assemblée Générale 2013

47 47 Les métiers d Air France KLM Passage Cargo Maintenance Loisirs Catering Source: Assemblée Générale 2013

48 48 Services (janvier 2013) (avril 2013)

49 49 ANNEXES COMPOSANTS

50 50 Schéma générique décisionnel standard Staging EDW Marts Operational Business Intelligence Sources Information Integration Reporting & Performance Management Modeling, Analytics & Simulation Decision Support Data Governance & Security Master Data Management Metadata Repository Data Management

51 51 Cible Infrastructure BI (réflexion en cours feb 2013) Application entry points Operational services Business Portal : One multi-channel access point Reporting / Exploration / Dashboard over SAP and non SAP data Business Objects 4 Analysis /Explorer/ Dashboard / Webi / Crystal OLAP Expl. Tbc Executive viewer Service Qlikview Service Advanced analytics xxx tools WAS appl SAP queries Ad hoc query Enterprise reporting Olap Exploration Dynamic Analysis Statistical Analysis xxx SAP/BW Engine (Sap data only) BO Universes Cube Olap (MSAS -Essbase) QV files Transactional applications SAP Zos / DB2 Unix / Oracle Natural/Adabas. Data integration Informatica/Tibco TERADATA

52 52 Composants d une architecture Big Data (IBM) Sources Techniques Device Logs Données Traditionnelles Données Externes Ingestion and Real-time Analytic Zone Ingest Filter, Transform Correlate, Classify Ingest Extract, Annotate Landing & Historical Analytic Zone Analytics MapReduce Documents In Variety of Formats Hive/HBase Col Stores Indexes, facets Models Data Sinks Data Management Warehousing Zone Data Warehouse Analytics Appliance Data Marts Governance & Integration Zone Analytics and Reporting Zone Query Engines Cubes Descriptive, Predictive Models Discovery, Visualizer Search MDM, Metadata, Workbench, Intégration BI / Reporting Exploration / Visualization Functional App Industry App Predictive Analytics Content Analytics Analytic Applications Source : IBM Solconnect13 (2013)

53 53 ANNEXES ECHELLE DE MATURITE DW/BI

54 54 Echelle de maturité décisionnelle Source: «Business Intelligence Strategy» Boyer, Frank, Green, Harris, Van De Vanter - sept 2010 MC Press

55 55 ANNEXES TYPES DE BICC

56 56 Type d organisation BICC Source: «Business Intelligence Strategy» Boyer, Frank, Green, Harris, Van De Vanter - sept 2010 MC Press Repris de «Building a BI Competency Center» IBM 2009

57 57 ANNEXES POSTES & FONCTIONS

58 58 Type d utilisateurs et de solutions IT Users (2% headcount) 98% producer 2% consumer IT Data Mining Application Development Metadata Design Power Users (5% headcount) 85% producer 15% consumer Power Users Ad-hoc Query + OLAP Statistical Analysis Analytic Reporting Business Users Business Users (25% headcount) 15% producer 85% consumer Analytic Apps Scorecards Business Reporting Casual Users Casual Users (30% headcount) 5% producer 95% consumer Extended Enterprise Users Enterprise Reporting In-line Analytics Dashboards Ext Enterprise Users (38% headcount) 1% producer 99% consumer Mobile/ Wireless Extranets/ B2B B2C

59 59 Particularités du Décisionnel Fluidité entre métier AMO IT Des fonctions de l un peuvent se retrouver chez l autre surtout pour le front-end Les data scientists peuvent être intégrés dans certains métiers Recouvrements limités à AF Varie selon les compagnies et les cultures Besoin de proximité données + processus métiers + solutions informatiques Situation évolutive Le back end restera IT ainsi que les parties très techniques et la production Le front end migre de plus en plus vers les directions métiers

60 60 Dimensions des postes 1/2 Remarque: pour l IT, c est plutôt «back-end» Mécanicien ou pilote, constructeur ou utilisateur? Contenu ou contenant, signifiant ou signifié? Du focalisé au global; multi domaine ou spécifique fonctionnel; Spécialisé ou polyvalent IT; Explorateur, «mineur», fermier ou touriste (consommateur de données); Créateur/producteur de données et analyse au simple consommateur? Front end (IT ou métier) ou back end (IT)? Cœur de métier/opérationnel ou support côté métier ou IT? Quel degré de technicité IT? Quel degré de technicité données; quelle connaissance des informations? Quel degré de technicité métier; quelle expertise processus? Selon quelles caractéristiques personnelles (communication «soft skills» etc)? Avec quel niveau de compétences; Du débutant à l expert au super expert polyvalent (data scientist)? A quel niveau hiérarchique et managérial?

61 61 Dimensions des postes 2/2 Dans quel pratique donnée évoluer? MDM, Gouvernance des Informations, Qualité des Informations Administration/Stewardship, Metadata management, Sécurité, Confidentialité Développement, Support accompagnement, formation, assistance Production, SOA & Integration, DW modélisation, SQL, optimisation, stockage et accès, EIM, BI - analytics: reporting, dashboard, scorecard, ad hoc query, predictive, prescriptive, Data mining, Text mining, Statistiques, Algorithmique Impacts et applications big data, ECM, document management Visualisation, NLP, Machine learning,

62 62 Types de fonctions 1/4 Nombre de fonctions: - A : 1 à 5 - B: 5 à 10 - C: plus de 10 Fonction Nb où Métiers à dominante managériale C Dir. Métier - AMO - IT Métiers à dominante analytique B/C Dir. Métier Utilisateur données (touriste, fermier) Dir. Métier producteur données ( explorateur) Dir. Métier collaborateur données Dir. Métier data scientists, statisticiens, data miner, text miner, predictive analytics, prescriptive analytics Dir. Métier expert analytique (en relation avec expert outil front end) Dir. Métier Métiers à dominante données/information B Dir. Métier - IT Chief data officer (CDO) Dir. Métier Conseil de gouvernance des informations Dir. Métier - IT Administrateur fonctionnel de données (propriétaire, dépositaire, gestionnaire des Données,; en charge des habilitations, de la qualité D., de la confidentialité; en charge des métadonnées fonctionnelles) - MDM (contenu) et Dir. Métier Metadata Management (fonctionnel) Admnistrateur technique des données (metadonnées techniques, traçabilité, auditabilité) - MDM (outil et support) et Metadata Management (admin et metadonnées tech) Expert données fonctionnel (contenu, sémantique, finalité, contexte d'usage) Expert données IT (format, syntaxe, flux, traçabilité, vision SI) Sécurité, confidentialité, habilitation (en relation avec équipes sécurité) utilisateurs ECM (bibliothécaire..) IT Dir. Métier IT Dir. Métier - IT Dir. Métier

63 63 Types de fonctions 2/4 Nombre de fonctions: - A : 1 à 5 - B: 5 à 10 - C: plus de 10 Fonction Nb où Métiers à dominante normative (Méthodologie, standards, normes) A IT Métiers à dominante outils (Back End + admin front end) C IT experts ETL, Informatica, batchs, chargement, extraction, virtualisation données, SOA etc - en projet et en support experts Base de données, Teradata, etc - en proj et en support experts ordonnancement, etc - en projet et en support modélisateur expert optimisation équipe exploitation, monitoring IT IT IT IT IT IT Métiers à dominante outils (Front End) experts BO, Qlikview etc en projet, support, usage régulier ergonome expert visualisation expert requêtes, dashboard, scorecard, traduction besoin et ensemble de solution front end (1) par outil A/B (1) Dir. Métier - AMO - IT Dir. Métier - AMO - IT Dir. Métier - AMO - IT Dir. Métier - AMO - IT Dir. Métier - AMO - IT

64 64 Types de fonctions 3/4 Nombre de fonctions: - A : 1 à 5 - B: 5 à 10 - C: plus de 10 Fonction Nb où Métiers à dominante projet/maintenance C surtout AMO-IT si tradi, sinon Dir Métier - IT si agile cf profils projet habituels + métiers outils + construire des scenari focus front end base données (dimensions, données, modélisation, règles données, metadonnées, sans processus) focus back end (chargement et transformation des données, qualité des données, stockage, intégration, mutualisation données, modélisation, architecture, dimensionnement) AMO - IT Dir. Métier - AMO AMO - IT IT Métiers à dominance support expert conseil réalisateur / auditeur sur chaque outil Formateur expert conseil méthodes, démarche, interlocuteurs expert sur données, indicateurs, modèles de données et relation avec processus Help-Desk, accompagnement, gestion changement Formation, Front office BI, "service bureau" formateurs B/C Selon nature du support IT AMO IT Dir. Métier - IT AMO - IT Dir. Métier - AMO - IT

65 65 Types de fonctions 4/4 Nombre de fonctions: - A : 1 à 5 - B: 5 à 10 - C: plus de 10 Fonction Nb où architecture (en coordo avec tous les acteurs) A/B (2) IT ou Dir. Métier architecte DW & BI IT equipe architectes données (domaining, flux, metadonnées, macro modèles) IT architecte Unified Information Access, ECM IT architecte Big Data IT architecte NLP, Machine learning, Intelligence artificielle IT architecte fonctionnel/domaine/entreprise Dir. Métier Métiers IT en vue de Monter et Opérer l'éco-système DW + BI B (3) Dimensionner, faire évoluer, exploiter, intervenir à froid/à chaud, administrer les infra et les logiciels, gestion d'incidents Gestionnaire du SLA (Service Level Agreement) et Qualité de Service (Définition contrat, indicateurs, tableaux de suivi, boucle d'amélioration, évolution, instruire le Traitement d'anomalies IT IT IT Gestionnaire de fournisseurs (IT, données, hébergement, clé en main, cloud) A (3) IT Métiers chez les consultants, SSII, SSCI, free lance N/A N/A (2) selon complexité de l'installation (3) fonctions souvent mutualisées

66 66 ANNEXES DETAILS DEFIS ET PROSPECTIVES

67 67 Défis 1/2 Toujours plus flexible, rapide et concret; Plus d agilité Structurer l approche données et l intégrer dans les métiers & AMO+IT Structurer la Gouvernance de l information, «Chief Data Officer» Qualité de l information appliquée de façon permanente Upgrade organisation, contenu et outils autour des référentiels et de la QI «Data scientists», mathématiques et sachant communiquer Être responsable et respectueux de la réglementation, la sécurité, de la vie privée

68 68 Défis 2/2 Raz de marée d évolutions, changements profonds Culture, technologies, méthodes, déluge d informations, variété internationale, ubiquité, virtualisation, digitalisation, pérennisation des traces Mathématiques, informatique, Intelligence Artificielle, NLP, Machine Learning Former et se tenir informé. Devancer? Appréhender la nature de la donnée Linguistique, théorie de la communication, théorie de la connaissance, enjeux sociaux et juridiques

69 69 Prospective 1 / 4 - Utilisation Tendances d utilisation 1. Solutions personnalisées 2. Boîte à Outils de standards de solutions BI 3. SSBI, Front Line BI, rapprocher IT utilisateur final 4. Operational BI & BI incrustée ( embedded BI ), stream analytics 5. Analyses avancées ( advanced analytics, predictive analytics ) 6. Mobile BI 7. Simulations, CPM (Corporate Performance Mgt) 8. Analyses en bac à sable ( data as is ) 9. Exploration et découverte 10. Content analytics, text analytics 11. Social media analytics 12. Enhanced visualisation 13. Big data BI

70 70 Prospective 2 / 4 - Technique Tendances Techniques 1. Cf utilisation: Pervasive BI et SSBI, Mobilité: BI/ipad, iphone etc., Operational BI, Exploration, bacs à sable, 2. Java 3. Appliances, in memory, 4. Cloud BI (externe) vs Cloud BI (interne) vs installations sur site 5. Data Virtualisation, Data Federation 6. SGBD spécifiques (NoSQL, SGBD colonne, SGBD graphe) 7. Big data zoo: Hadoop, Map reduce families Event Analytics, Complex Event Processing (CEP)

71 71 Prospective 3 / 4 - développement Tendances dévelopt 1. Agile BI 2. Réduire le time to market & réactivité 3. Composants réutilisables 4. Référentiels Centralisés 5. Prototypages 6. Mashups (mixer à la volée des données multi-formats / sources) 7. Adaptations méthodologies et techniques (cf diapos précédentes)

72 72 Prospective 4 / 4 Organisation et Données Tendances organisation 1. Mettre en place un BICC commun IT+ Business 2. Mettre en place un CIF Corporate Information Factory flexible 3. Mettre en place une Gouvernance des Informations Tendances données 4. Généraliser les data architects 5. Généraliser les experts technico-métier intégrés aux métiers 6. Généraliser les experts données technico-métier 7. Accompagner les utilisateurs (Held Desk, réseau utilisateurs clés..) 1. Développer la qualité des informations 2. Développer le Master data Management 3. Développer le Metadata Management fonctionnel 4. Mettre en place un eco-système d accès unifié à l information ( unified information Access ) à la Google

73 73 12 Directives for Data Quality Directive 1: Obtain Management Commitment to Data Quality Directive 2: Treat Data as an Asset Directive 3: Apply Resources to Focus on Quality Directive 4: Build Explicit Knowledge of Data Directive 5: Treat Data as a Product of Processes which can be Measured and Improved Directive 6: Recognize Quality is Defined by Data Consumers Directive 7: Address the Root Causes of Data Problems Directive 8: Measure Data Quality, Monitor Critical Data Directive 9: Hold Data Producers Accountable for the Quality their Data Directive 10: Provide Data Consumers with the Knowledge the Require for Data Use Directive 11: Data will continue to evolve Plan for evolution Directive 12: Data Quality goes Beyond the Data Build a Culture Focused on Data Quality Source: «A Strategic Approach To Data Quality: A Dataversity Webinar» Laura Sebastian-Coleman 15 octobre 2013

74 74 ANNEXES QUI INVESTIT BEAUCOUP?

75 75 Investisseurs en décisionnel (au sens large) Les secteurs à fort investissement sont : Compagnies du web : Google, Amazon, Apple, Facebook (GAAF), media sociaux et start-ups Télécoms Banques et Assurances, Finance Energie: prospection énergies fossiles Retail vente grande distribution Gouvernement «sanctuarisé»: Défense et RG, Impôts, URSAFF R&D sub atomique, astronomie, CERN, génomique Santé privé et public Ce qui a trait à la résolution de litiges (et amendes) Sécurité, confidentialité, Juridique

76 76 ANNEXES GLOSSAIRE

77 77 Glossaire 1/2 Souvent possibilité d interchanger les termes «Knowledge» «Data» «Information» et leur traduction en français S applique surtout aux fonctions Dwglossary.pdf COURS_SI_decisionnel_glossaire.pdf chez de jchambon.fr/textes/ Nombreux glossaires à la fin d ouvrages de référence

78 78 Glossaire 2/2 OLAP et MOLAP; cube, agrégation et calcul à la volée Data Warehouse et Data Mart; dénormalisation, dimension et faits, conformed dimension, derived column, hiérarchie; drill-down; indicateurs et KPI, métriques ODS et Infocentre opérationnel Modèle de données relationnel, en étoile, en flocon; données structurées, non structurées, documents, video, audio, xml Scalability, shared nothing, NoSQL, BD vectorielle, en colonne, MPP, MapReduce, HDFS, GFS, NFS, BigData, Hadoop Métadonnées (techniques, métier, processus), qualité de données, gouvernance de données ETL, ELT et intégration de données; virtualisation, CDC, operational BI; Middleware, SOA, web services Data mining, text mining Analytics, advanced analytics, predictive analytics, prescriptive analytics Business Intelligence, BI, dashboards, requêtes ad hoc, Visualisation, SLA, QoS et qualité de service

79 79 ANNEXES REFERENCES

80 80 Références Sites Web 1/3 Réseaux sociaux - Nombreux groupes linkedin, Facebook etc Sites de SSII et de grands éditeurs (IBM, Oracle, Teradata, SAS) dont Informatica, SAS, Business Objects, Microstrategy, Pentaho, Qlikview, Tableau Souvent une version française est disponible Sites d auteurs (cf diapo auteurs, par ex ) Google scholar Pour big data: Les grands noms de la BI et du DW, Alteryx, Attivio, Cloudera, Couchbase, Greenplum, Hortonworks, Karmasphere, Lavastorm, MapR, Mongo, Salesforce, Splunk, Vertica, Aster, Les précurseurs: Google, Amazon, Yahoo, Facebook Académies Toutes ces sources sont précieuses

81 81 Références Sites Web 2/3 MOOC (Massive Open Online Courses) Open Courseware déclinable sur plusieurs universiés Ted Ed online https://www.coursera.org/ Coursera Slideshare Open Study Desire2learn Knewton Sites Blackboard (dont nombreuses institutions françaises), Grockit, etc. Youtube Académies et universités: Oregon, MIT, Stanford, Oklahoma, Arizona, Arkansas, Carnegie-Mellon, St Gallen et beaucoup d autres Toutes ces sources sont précieuses

82 82 Références Sites Web 3/3 Sites (white paper, webinars, entretiens, podcasts, de nombreux blogs et Expert Channel (aussi BI Journal, What Works..) (inside analysis, white papers, The briefing room) (DM Radio) https://www.sei.cmu.edu/ sentialguide/guide-to-big-data-analytics-toolstrends-and-best-practices The MDM institute (Aaron Zornes) (français) (français) et (français) (français) Les sites les plus riches sont en gras

La valeur du big data pour Air France - KLM

La valeur du big data pour Air France - KLM La valeur du big data pour Air France - KLM - Réalisations & Perspectives - 2 octobre 2014 CUSI Xavier Henderson xahenderson@airfrance.fr 2 Prolégomènes Statistiques, Corrélation & interprétation Fiabilité

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm. WEB15 IBM Software for Business Process Management un offre complète et modulaire Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.com Claude Perrin ECM Client Technical Professional Manager

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009 Simplifier l accès et la mise à disposition de l information en temps réel dans l entreprise: Les exemples de Ford, NYC Dept. of Health, Police de la ville de Richmond Jean-Pascal Ancelin Directeur Commercial

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull BI Haute performance Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull Bull aujourd'hui - La seule expertise 100% européenne des infrastructures et des applications critiques - Une

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Outils de reporting : Business Object (Xi2,Xi3,6.5, Deski et Designer) BigData : Hadoop, HDFS, Cloudera, Hive, Impala, Flume

Outils de reporting : Business Object (Xi2,Xi3,6.5, Deski et Designer) BigData : Hadoop, HDFS, Cloudera, Hive, Impala, Flume CONSULTANT INFORMATICA/ BUSINESS OBJECT 8 ans M.K FORMATIONS & LANGUES 02/05/2016 FORMATIONS : 2008 - Master 2 MIAGE (Méthodes Informatiques Appliquées à la Gestion des Entreprises). Spécialité : Informatique

Plus en détail

Malgré la crise, Le décisionnel en croissance en France

Malgré la crise, Le décisionnel en croissance en France Malgré la crise, Le décisionnel en croissance en France 11 juin 2009 www.idc.com Cyril Meunier IDC France Consulting Manager Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

Conseil et Ingénierie des Systèmes d Information d Entreprise

Conseil et Ingénierie des Systèmes d Information d Entreprise Conseil et Ingénierie des Systèmes d Information d Entreprise Le Groupe Khiplus SAS KHIPLUS Management Société holding animatrice du groupe SAS KHIPLUS Advance Conseil et ingénierie de Systèmes d Information

Plus en détail

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Fusion : l interopérabilité chez Oracle

Fusion : l interopérabilité chez Oracle Standardisation et interopérabilité Fusion : l interopérabilité chez Oracle Lionel Dubreuil,, Applications Technology Product Manager, Oracle France, lionel.dubreuil@oracle.com 29/03/2006 Page : 1 Oracle

Plus en détail

Offre CRM Analytique Logiciels pour une meilleure performance commerciale, 2011

Offre CRM Analytique Logiciels pour une meilleure performance commerciale, 2011 Offre CRM Analytique Logiciels pour une meilleure performance commerciale, 2011 Notre Métier Le Client L intégrateur = AGI Distribution Installation, Paramétrage, Formation, Support L éditeur de logiciel

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Facilité d'exécution IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Data Quality Data Integration MDM Product Data MDM Customer Data Data Masking Data monitoring

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Business Intelligence

Business Intelligence Business Intelligence Enjeux, Projets, Données, Indicateurs Gilles FONTANINI g.fontanini@decision-network.eu +33 (0)6 11 21 24 53 2? Gilles Fontanini Consultant et Administrateur d un GIE d experts en

Plus en détail

Partie I Organisations, management et systèmes d information... 1

Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise............................................................ Liste des figures..................................................................... Liste des tableaux...................................................................

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Gilles HANUSSE Responsable services Monitor & Operate Sanofi Global Infrastructure Services

Plus en détail

Master Data Management

Master Data Management Master Data Management TA11: Libérez et fluidifiez vos données fondamentales au travers du SOA avec le Master Data Management Jean MINA Information Management IBM Software Group 1 Les Challenges de l Information

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers Présentation de l offre BI CONSULTING La Synthèse et le Pilotage en réponse aux besoins des métiers Mai 2013 Valeur ajoutée 100% Banque Assurance 100% Systèmes de synthèse & de pilotage Des expertises

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Qui sommes-nous? Expertises. Chiffres clé. Premier intégrateur mondial des technologies Microsoft. Références. 2015 Avanade Inc. All Rights Reserved.

Qui sommes-nous? Expertises. Chiffres clé. Premier intégrateur mondial des technologies Microsoft. Références. 2015 Avanade Inc. All Rights Reserved. Qui sommes-nous? Chiffres clé Expertises Premier intégrateur mondial des technologies Microsoft Références 2015 Avanade Inc. All Rights Reserved. 1 Avanade en quelques chiffres Plus de 25 000 collaborateurs

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

Rendez-vous la liberté avec Rational Quality Manager

Rendez-vous la liberté avec Rational Quality Manager IBM Software Group RAT02 Rendez-vous la liberté avec Rational Quality Manager Bernard Dupré IBM Rational IT Specialist 2008 IBM Corporation Envisager une plateforme qui change la production de logiciels

Plus en détail

La SOA était une mode. Nous en avons fait un standard.

La SOA était une mode. Nous en avons fait un standard. La SOA était une mode. Nous en avons fait un standard. Agenda 1 Présentation 2 Les solutions it-toolbox 3 Notre valeur ajoutée 4 Le centre d excellence 5 Equipe et démarche 6 Références et plateformes

Plus en détail

Master Data Management

Master Data Management Master Data Management Darren Cooper Master Data Management 27/08/2009 Objectifs Comprendre les objectifs des projets Master Data Management (MDM) Voir des cas réels de projets et leur retour sur investissement

Plus en détail

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com #solconnect13 IM01P2: Le Big Data pour enrichir, complémenter et travailler en synergie avec vos Warehouses Corinne BARAGOIN c_baragoin@fr.ibm.com 2 Le succès du Big Data est lié au fait que la technologie

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Systèmes et réseaux d information et de communication

Systèmes et réseaux d information et de communication 233 DIRECTEUR DES SYSTÈMES ET RÉSEAUX D INFORMATION ET DE COMMUNICATION Code : SIC01A Responsable des systèmes et réseaux d information FPESIC01 Il conduit la mise en œuvre des orientations stratégiques

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Orange Nouvelle Expérience (ONE) Zoom sur les solutions SI

Orange Nouvelle Expérience (ONE) Zoom sur les solutions SI «Le service Orange, satisfait quand vous l'êtes» Orange Nouvelle Expérience (ONE) Zoom sur les solutions SI Stéphane Guérin Orange DSI Orange France Directeur Centre de Compétences Relation Client Août

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business L IT, l Immatérielle Transformation Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business PLUS D INNOVATION, PLUS DE SIMPLICITE ET UN MARCHE IT SOUS TENSION Des

Plus en détail

Système d information : démystification, facteur de croissance et conduite du changement

Système d information : démystification, facteur de croissance et conduite du changement Système d information : démystification, facteur de croissance et conduite du changement Patrick CONVERTY Directeur Commercial www.cibeo-consulting.com Approche globale de la performance Stratégie Système

Plus en détail

Mise en œuvre. Gestion de projet et conduite du changement. Denis MEINGAN Gilles BALMISSE. Préface de Alain CROZIER, Président de Microsoft France

Mise en œuvre. Gestion de projet et conduite du changement. Denis MEINGAN Gilles BALMISSE. Préface de Alain CROZIER, Président de Microsoft France Mise en œuvre d Office 365 Gestion de projet et conduite du changement Préface de Alain CROZIER, Président de Microsoft France Denis MEINGAN Gilles BALMISSE Table des matières 1 Préface Avant-propos Partie

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

GOUVERNANCE DES ACCÈS,

GOUVERNANCE DES ACCÈS, GESTION DES IDENTITÉS, GOUVERNANCE DES ACCÈS, ANALYSE DES RISQUES Identity & Access Management L offre IAM de Beta Systems Beta Systems Editeur européen de logiciels, de taille moyenne, et leader sur son

Plus en détail

Business Intelligence : le pilotage du cabinet 2.0. - Plénière 2 -

Business Intelligence : le pilotage du cabinet 2.0. - Plénière 2 - Business Intelligence : le pilotage du cabinet 2.0 - Plénière 2 - Business Intelligence : le pilotage du cabinet 2.0 Apprivoiser la Big Data : du conseil juridique & fiscal à l appui stratégique à l Entreprise

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

Drive your success. «Un écosystème complexe implique une capacité de gestion temps réel des aléas» www.imagina-international.com

Drive your success. «Un écosystème complexe implique une capacité de gestion temps réel des aléas» www.imagina-international.com Drive your success «Un écosystème complexe implique une capacité de gestion temps réel des aléas» www.imagina-international.com ATEN, dix avantages au service de votre entreprise Qualité de mise en œuvre

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Offre INES CRM + BI MyReport. Logiciels pour une meilleure performance commerciale

Offre INES CRM + BI MyReport. Logiciels pour une meilleure performance commerciale Offre INES CRM + BI MyReport Logiciels pour une meilleure performance commerciale Notre Métier Le Client L intégrateur = AGI Distribution Installation, Paramétrage, Formation, Support L éditeur de logiciel

Plus en détail

La maturité du décisionnel au service de l'innovation stratégique

La maturité du décisionnel au service de l'innovation stratégique La maturité du décisionnel au service de l'innovation stratégique 8 décembre 2010 Marc-Eric Francé Information Manager Business Intelligence Commercial mefrance@airfrance.fr mefrance@free.fr Ordre du jour

Plus en détail

Actuate, les Hommes à l Origine de BIRT

Actuate, les Hommes à l Origine de BIRT 1 Actuate, les Hommes à l Origine de BIRT BIRT est le projet Open Source qui a révolutionné le domaine de la Business Intelligence BIRT: Business Intelligence and Reporting Tools Une solution Open Source

Plus en détail

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets

Plus en détail

Jean-Philippe VIOLET Solutions Architect

Jean-Philippe VIOLET Solutions Architect Jean-Philippe VIOLET Solutions Architect IBM Cognos: L' Expertise de la Gestion de la Performance Acquis par IBM en Janvier 08 Rattaché au Brand Information Management Couverture Globale 23,000 clients

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats IBM InfoSphere Master Data Management Server 9.0 Des données fiables pour de meilleurs résultats Les entreprises génèrent et collectent chaque jour une multitude de données : informations sur les comptes,

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA

Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA L e Big Data est une opportunité à saisir à laquelle la technologie Hadoop répond bien. Reste à éviter les écueils, souvent plus culturels que

Plus en détail

Réussir un projet Intranet 2.0

Réussir un projet Intranet 2.0 Frédéric Créplet Thomas Jacob Réussir un projet Intranet 2.0 Écosystème Intranet, innovation managériale, Web 2.0, systèmes d information, 2009 ISBN : 978-2-212-54345-2 Sommaire Démarche générale de l

Plus en détail

Table des matières. Partie I Organisations, management et systèmes d information... 1

Table des matières. Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise...................................................... Liste des figures.................................................................. Liste des tableaux...............................................................

Plus en détail

BI Managed by Business

BI Managed by Business BI Managed by Business Introduction Après avoir enregistré une forte croissance au cours de ces dernières années, la Business Intelligence se popularise dans les entreprises pour devenir un élément stratégique

Plus en détail

Septembre 2015. Résultats du Baromètre DSI 2015 des projets et investissements informatiques

Septembre 2015. Résultats du Baromètre DSI 2015 des projets et investissements informatiques Septembre 2015 Résultats du Baromètre DSI 2015 des projets et investissements informatiques Etude VoxDI 2015: La 3 ème édition de l étude VoxDI, la voix des Décideurs Informatiques, a pour objectif d établir

Plus en détail

ELABORATION D'UN AUDIT ET DU SCHÉMA DIRECTEUR DU SYSTÈME D INFORMATION DE LA CNOPS

ELABORATION D'UN AUDIT ET DU SCHÉMA DIRECTEUR DU SYSTÈME D INFORMATION DE LA CNOPS ELABORATION D'UN AUDIT ET DU SCHÉMA DIRECTEUR DU SYSTÈME D INFORMATION DE LA CNOPS Présentation à la journée des cadres de la CNOPS Hicham El Achgar Version 1.0 Rabat, le 26 mars 2011 1 Le sommaire Synthèse

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement La transformation digitale 1. Introduction 13 2. La transformation digitale 13 2.1 Les premières analyses 13 2.2 Les analyses actuelles 18 2.3 Les perspectives 28 3. Présentation d Office 365 29 3.1 Présentation

Plus en détail

Développement logiciel pour l Architecture Orientée Services avec IBM Rational Software Development Platform

Développement logiciel pour l Architecture Orientée Services avec IBM Rational Software Development Platform IBM Software Group Développement logiciel pour l Architecture Orientée Services avec IBM Rational Software Development Platform Thierry Bourrier, Techical Consultant thierry.bourrier@fr.ibm.com L Architecture

Plus en détail

L offre IBM Software autour de la valeur métier

L offre IBM Software autour de la valeur métier IBM Frame Mai 2011 L offre IBM Software autour de la valeur métier Hervé Rolland - Vice Président, Software Group France Milestones that Matter: IBM Software Acquisitions Milestones that Matter: IBM Software

Plus en détail

Business Process Management

Business Process Management Alain Darmon Responsable Avant-Vente BPM, IBM 1 er mars 2011 Business Process Management Améliorez l agilité de l entreprise avec la gestion des processus métier Les processus sont partout! Ouverture de

Plus en détail

Pilotez, ajustez et optimisez votre portefeuille de projets

Pilotez, ajustez et optimisez votre portefeuille de projets Pilotez, ajustez et optimisez votre portefeuille de projets Intervenants 2 octobre 2014 Marianne Delétang Consultante Sénior Atos Grégory Sabathé Responsable Marketing NQI La solution web collaborative

Plus en détail

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours Faculté des sciences Centre de formation en technologies de l information Plan de cours Cours : INF 735 Entrepôt et forage de données Trimestre : Hiver 2015 Enseignant : Robert J. Laurin 1. Mise en contexte

Plus en détail

ELCA Forum 2014 BIG DATA

ELCA Forum 2014 BIG DATA ELCA Forum 2014 BIG DATA Jérôme Berthier, Head of Division Christian Nançoz, BI Consultant September 2014 SPEAKER Jérôme Berthier Head of Division Topics: Business Intelligence Data Warehouse Big Data

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web»

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» «La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» Social Computing est spécialisé dans les domaines de l accès à l information, des réseaux

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Agenda. Salon du BI, 9 avril 2008

Agenda. Salon du BI, 9 avril 2008 Salon du BI, 9 avril 2008 Guy Bourassa SSQ Groupe financier Architecte en entrepôt de données Développement et intégration des systèmes - Assurance collective Agenda SSQ en deux mots L historique du BI

Plus en détail

BI2B est un cabinet de conseil expert en Corporate Performance Management QUI SOMMES-NOUS?

BI2B est un cabinet de conseil expert en Corporate Performance Management QUI SOMMES-NOUS? SOMMAIRE Qui sommes nous? page 3 Notre offre : Le CPM, Corporate Performance Management page 4 Business Planning & Forecasting page 5 Business Intelligence page 6 Business Process Management page 7 Nos

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Comment booster vos applications SAP Hana avec SQLSCRIPT

Comment booster vos applications SAP Hana avec SQLSCRIPT DE LA TECHNOLOGIE A LA PLUS VALUE METIER Comment booster vos applications SAP Hana avec SQLSCRIPT 1 Un usage optimum de SAP Hana Votre contexte SAP Hana Si vous envisagez de migrer vers les plateformes

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail