Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Dimension: px
Commencer à balayer dès la page:

Download "Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant"

Transcription

1 Organiser vos données - Big Data Patrick Millart Senior Sales Consultant

2 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle s products remains at the sole discretion of Oracle.

3 Big Data en Action DECISION ANALYSE ACQUISITION ORGANISATION Prendre de Meilleures Décisions en Utilisant Big Data

4 Big Data en Action DECISION ANALYSE ACQUISITION ORGANISATION Organiser et Répartir vos Big Data en utilisant une architecture massivement parallèle

5 Nouvelles sources de données

6 Utilisation des données Challenge Nouvelles sources Transformation Comprendre l activité en ligne d un site web Logs Web «Sessionization» Comprendre les causes de défaillance Prioriser les réponses aux clients Mesures de capteurs Medias Sociaux Identifier les exceptions, les tendances Analyse des sentiments

7 Architecture Hadoop Management/Monitoring Système de fichiers distribué MapReduce Paradigme de programmation Map/Reduce Traitement des données hautement scalable Hadoop Distributed File System (HDFS)

8 Exemple de traitement MapReduce SHUFFLE /SORT

9 Utilisation de Map/Reduce pour lire les données INPUT 1 OUTPUT 1 SHUFFLE /SORT SHUFFLE /SORT INPUT 2 SHUFFLE /SORT SHUFFLE /SORT SHUFFLE /SORT OUTPUT 2

10 Analyse des sentiments Conversion d un fichier Sentiment Semaine Fréquence Positif 17 3 Positif 18 5 Négatif 18 8

11 Analyse de la tendance hebdomadaire des sentiments Parcourir tous les fichiers Pour chaque fichier, une liste de sentiments ainsi que leur fréquence sont exprimés par semaine Parcourir la liste des mots avec leur occurrence Pour chaque nœud, une liste de sentiments ainsi que le nombre d occurrences exprimés par semaine Parcourir tous les noeuds Une liste des sentiments et leur fréquence sont exprimés par semaine pour l'ensemble du cluster

12 Oracle Loader pour Hadoop Utilise les ressources du cluster Big Data ORACLE LOADER POUR HADOOP SHUFFLE /SORT Dernière étape dans le workflow MapReduce Tables standards et partitionnées SHUFFLE /SORT Chargement direct ou en mode déconnecté

13 Oracle Direct Connector pour HDFS Accès direct depuis la base de données Oracle HDFS Oracle Database Table Externe Requête SQL SQL accès pour HDFS Table externe Oracle Requête SQL ou import Infini Band DCH DCH DCH HDFS Client

14 Compétences requises pour développer des traitements MapReduce Java Environnement Hadoop Algorithmes parallèles

15 Oracle Data Integrator - ODI Simplifier MapReduce Oracle Data Integrator Oracle Loader pour Hadoop Génère automatiquement le code MapReduce Gère le processus Charge les données dans votre Data Warehouse

16 Oracle Data Integrator - ODI Interface graphique Modélisation graphique des flux de bout en bout Utilisation de modules de connaissance (templates fournis) pour générer automatiquement le code MapReduce

17 Plate-forme Oracle Big Data Big Data Appliance Exadata Exalytics Oracle Big Data Connectors ACQUISITION ORGANISATION ANALYSE DECISION

18 Oracle Big Data Appliance Hardware: 216 intel cores, 864 GB RAM, 648 TB disk 40 Gb/s InfiniBand, inter-rack, node connectivity 10 Gb/s Ethernet, data center connectivity System Software: Oracle Linux, Oracle Java Hotspot VM Oracle NoSQL Database Community Edition Cloudera s Distribution including Apache Hadoop Oracle Big Data Connectors and ODI * Open-source R distribution

19 Organiser Big Data Organiser les données Big Data avec Hadoop Simplifier le développement Simplifier le déploiement Découvrir de la valeur par l analyse

20

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Copyright 2013, Oracle and/or its affiliates. All rights reserved. 1 Les achats 2.0 Procurement Service Julien LAFORET Consultant Achats Gilles PATRIS DE BREUIL Consultant Achats François GENIN Directeur Solutions ERP EMEA 2 Safe Harbor Statement The following is intended

Plus en détail

Sécurité de bout en bout Une solution complète pour protéger les données et prévenir les risques

Sécurité de bout en bout Une solution complète pour protéger les données et prévenir les risques Sécurité de bout en bout Une solution complète pour protéger les données et prévenir les risques Michel Mariet, Oracle The following is intended to outline our general product direction. It is intended

Plus en détail

GESTION DES APPLICATIONS ORACLE. Application Management Suites

GESTION DES APPLICATIONS ORACLE. Application Management Suites GESTION DES APPLICATIONS ORACLE Application Management Suites 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

EXALOGIC ELASTIC CLOUD MANAGEMENT

EXALOGIC ELASTIC CLOUD MANAGEMENT EXALOGIC ELASTIC CLOUD MANAGEMENT Jean-Marc Digne Ingénieur Avant Vente Oracle France 1 The following is intended to outline our general product direction. It is intended for information purposes only,

Plus en détail

Engineered for Business: Oracle Hardware for Oracle Database

Engineered for Business: Oracle Hardware for Oracle Database Engineered for Business: Oracle Hardware for Oracle Database 1 Engineered for Business: Oracle Hardware for Oracle Database Consolidez vos données et optimisez

Plus en détail

ADMINISTRATION EXADATA

ADMINISTRATION EXADATA ADMINISTRATION EXADATA Abel Afonso Avant Vente abel.afonso@oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS)

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS) FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE Database as a Service (DBaaS) 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may

Plus en détail

GESTION DU CYCLE DE VIE. Albert Amar Avant-vente Middleware

GESTION DU CYCLE DE VIE. Albert Amar Avant-vente Middleware GESTION DU CYCLE DE VIE Albert Amar Avant-vente Middleware 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

ENTERPRISE MANAGER 12C TOTAL CLOUD CONTROL

ENTERPRISE MANAGER 12C TOTAL CLOUD CONTROL ENTERPRISE MANAGER 12C TOTAL CLOUD CONTROL Grand Tour Découverte de l offre Jean-Philippe PINTE jean.philippe.pinte@oracle.com 1 The following is intended to outline our general product direction. It is

Plus en détail

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Copyright 2013, Oracle and/or its affiliates. All rights reserved. 1 Moderniser votre back office Finance Oracle Finance Cloud Guy Aguera, Deloitte Partner Valérie Vinges, Oracle Sales Consultant 2 Safe Harbor Statement The following is intended to outline our general

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Déployer et sécuriser des applica1ons mobiles dans votre SI / Cloud

Déployer et sécuriser des applica1ons mobiles dans votre SI / Cloud Déployer et sécuriser des applica1ons mobiles dans votre SI / Cloud Roadmap 12c Event Janvier 2015 Eric De Smedt Middleware Sales ConsulIng Director Safe Harbor Statement The following is intended to outline

Plus en détail

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

Plus en détail

ORACLE PAAS CLOUD MANAGEMENT

ORACLE PAAS CLOUD MANAGEMENT ORACLE PAAS CLOUD MANAGEMENT Jean-Marc Digne Ingénieur Avant-Vente Oracle France 1 The following is intended to outline our general product direction. It is intended for information purposes only, and

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

La famille Symphony. Click to add text. Vincent Perrin IBM Collaboration Solutions Architect. 2011 IBM Corporation

La famille Symphony. Click to add text. Vincent Perrin IBM Collaboration Solutions Architect. 2011 IBM Corporation La famille Symphony Click to add text Vincent Perrin IBM Collaboration Solutions Architect 2011 IBM Corporation Agenda Les nouveautés de Lotus Symphony 3 Démonstrations de quelques nouveautés LotusLive

Plus en détail

GESTION DE LA PERFORMANCE. Albert Amar Avant-vente Middleware

GESTION DE LA PERFORMANCE. Albert Amar Avant-vente Middleware GESTION DE LA PERFORMANCE Albert Amar Avant-vente Middleware 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

L offre Oracle Complete Hardware + Software

L offre Oracle Complete Hardware + Software L offre Oracle Complete Hardware + Software Interview de Jean-Yves Migeon du 13 mars 2012 Postée sur http://itplace.tv Jean-Yves Migeon, Business Development Manager, BU Hardware Stephan Schreiber, Journaliste

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

PERFORMANCE BASE DE DONNÉES

PERFORMANCE BASE DE DONNÉES PERFORMANCE BASE DE DONNÉES Abel Afonso Avant Vente abel.afonso@oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not

Plus en détail

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Build modern business applications with Oracle Cloud s Platform and Infrastructure Services Eric Bezille Chief Technologist Oracle Systems France 2 Safe Harbor Disclaimer The following is intended to

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Safe Harbor Statement

Safe Harbor Statement Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

Webcast user group: 9.0 Distribution / Production

Webcast user group: 9.0 Distribution / Production Webcast user group: 9.0 Distribution / Production Thierry GRANDPERRIN SCM Solution Consultant SOX DISCLAIMER The following is intended to outline our general product direction. It

Plus en détail

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com 18 Mars 2015 Big data et le z 2015 IBM Corporation Agenda Contexte Cas d utilisation DB2 z/os et Hadoop Connecteurs z pour Hadoop 2

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

Exadata Storage Server et DB Machine V2

<Insert Picture Here> Exadata Storage Server et DB Machine V2 Exadata Storage Server et DB Machine V2 Croissance de la Volumétrie des Données Volumes multipliés par 3 tous les 2 ans Evolution des volumes de données 1000 Terabytes (Données) 800

Plus en détail

Gestion de clusters de calcul avec Rocks

Gestion de clusters de calcul avec Rocks Gestion de clusters de calcul avec Laboratoire de Chimie et Physique Quantiques / IRSAMC, Toulouse scemama@irsamc.ups-tlse.fr 26 Avril 2012 Gestion de clusters de calcul avec Outline Contexte 1 Contexte

Plus en détail

Retour d Oracle OpenWorld 2012

Retour d Oracle OpenWorld 2012 Retour d Oracle OpenWorld 2012 Didier Faure Responsable Avant Vente JD Edwards Europe 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification

Plus en détail

Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet

Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet 1 SOMMAIRE Le calcul scientifique au CNES Le BigData au CNES, le cas Gaïa HPC et BigData

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite.

Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite. Rational ClearCase or ClearCase MultiSite Version 7.0.1 Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite. Product Overview IBM Rational

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

Gestion de gros volumes de données

Gestion de gros volumes de données Gestion de gros volumes de données Cas des projets CEDAR et PetaSky Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

W4 - Workflow La base des applications agiles

W4 - Workflow La base des applications agiles W4 - Workflow La base des applications agiles, W4 philippe.betschart@w4global.com Vous avez dit «workflow»? Processus : Enchaînement ordonné de faits ou de phénomènes, répondant à un certain schéma et

Plus en détail

Accélérez vos tests et développements avec le Cloud, découvrez SoftLayer, la dernière acquisition Cloud d'ibm

Accélérez vos tests et développements avec le Cloud, découvrez SoftLayer, la dernière acquisition Cloud d'ibm Accélérez vos tests et développements avec le Cloud, découvrez SoftLayer, la dernière acquisition Cloud d'ibm Matthieu Gross Senior Architect services d infrastructure IBM Cloud: Think it. Build it. Tap

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Les pratiques agiles avec Rational : De la définition d exigences au déploiement d application

Les pratiques agiles avec Rational : De la définition d exigences au déploiement d application Les pratiques agiles avec Rational : De la définition d exigences au déploiement d application Philippe Leblanc Technical Sales & Solutions IBM Rational 2 Agenda L'agilité implique une équipe multidisciplinaire

Plus en détail

Offre formation Big Data Analytics

Offre formation Big Data Analytics Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une

Plus en détail

Change the game with smart innovation

Change the game with smart innovation Change the game with smart innovation Master Thesis 2013 2014 Faculty of Science engineering 12/08/2012 Master Thesis proposal for the academic year 2013. TABLE OF CONTENTS Section Un Introduction... 3

Plus en détail

Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source JShaft

Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source JShaft Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source Jérôme Petit, Serge Petit & Serli Informatique, ITMatic Jérôme Petit, Serge Petit & SERLI & ITMatic Serli : SSII

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

en SCÈNE RATIONAL Rational Démonstration SDP : automatisation de la chaîne de développement Samira BATAOUCHE sbataouche@fr.ibm.com

en SCÈNE RATIONAL Rational Démonstration SDP : automatisation de la chaîne de développement Samira BATAOUCHE sbataouche@fr.ibm.com Rational Démonstration SDP : automatisation de la chaîne de développement Samira BATAOUCHE sbataouche@fr.ibm.com Fabrice GRELIER fabrice.grelier@fr.ibm.com RATIONAL en SCÈNE 2007 IBM Corporation Objectif

Plus en détail

Thomas Loubrieu (Ifremer) Small to Big Data. http://wwz.ifremer.fr/bigdata. 26 Novembre 2013, Ifremer, Brest

Thomas Loubrieu (Ifremer) Small to Big Data. http://wwz.ifremer.fr/bigdata. 26 Novembre 2013, Ifremer, Brest Thomas Loubrieu (Ifremer) Small to Big Data 26 Novembre 2013, Ifremer, Brest http://wwz.ifremer.fr/bigdata Small to Big data IFREMER/IDM/ISI T. Loubrieu Résumé A partir d'expériences en gestion de données

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

Technologies du Web. Ludovic DENOYER - ludovic.denoyer@lip6.fr. Février 2014 UPMC

Technologies du Web. Ludovic DENOYER - ludovic.denoyer@lip6.fr. Février 2014 UPMC Technologies du Web Ludovic DENOYER - ludovic.denoyer@lip6.fr UPMC Février 2014 Ludovic DENOYER - ludovic.denoyer@lip6.fr Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Fouille de données massives avec Hadoop

Fouille de données massives avec Hadoop Fouille de données massives avec Hadoop Sebastiao Correia scorreia@talend.com Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Mr Romaric SAGBO Ministère de l'economie et des Finances (MEF), Bénin SWD Technologies Email : rask9@yahoo.fr Tél : +229 97217745

Plus en détail

LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER. François BOTTON Product Marketing Manager

LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER. François BOTTON Product Marketing Manager LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER François BOTTON Product Marketing Manager LES PRIORITÉS DES DSI UNE MEILLEURE AGILITÉ Le déploiement rapide d'applications

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

Circuits électroniques au service de l'optimisation multi-requêtes

Circuits électroniques au service de l'optimisation multi-requêtes Ecole Nationale de Mécanique et d Aérotechnique Laboratoire d Informatique et d Automatique pour les Systèmes Circuits électroniques au service de l'optimisation multi-requêtes Ahcène BOUKORCA Sous la

Plus en détail

Pascale Borla-Salamet Consultante Avant Vente Oracle France. Oracle Exadata Performance et Optimisation de votre Datawarehouse

Pascale Borla-Salamet Consultante Avant Vente Oracle France. Oracle Exadata Performance et Optimisation de votre Datawarehouse Pascale Borla-Salamet Consultante Avant Vente Oracle France Oracle Exadata Performance et Optimisation de votre Datawarehouse Agenda Les nouveaux challenges Exadata Storage Server Oracle Database Machine

Plus en détail

SAP HANA: note de synthèse

SAP HANA: note de synthèse Préface: Au cœur des nombreux défis que doivent relever les entreprises, l informatique se doit de soutenir les évolutions, d aider au développement de nouveaux avantages concurrentiels tout en traitant

Plus en détail

PACKZ System Requirements. Version: 2015-05-27. Version: 2015-05-27 Copyright 2015, PACKZ Software GmbH. 1

PACKZ System Requirements. Version: 2015-05-27. Version: 2015-05-27 Copyright 2015, PACKZ Software GmbH. 1 PACKZ System Requirements Version: 2015-05-27 Copyright 2015, PACKZ Software GmbH. All rights reserved.this manual may not be copied, photocopied, reproduced, translated, or converted to any electronic

Plus en détail

Solaris pour la base de donnés Oracle

<Insert Picture Here> Solaris pour la base de donnés Oracle Solaris pour la base de donnés Oracle Alain Chéreau Oracle Solution Center Agenda Compilateurs Mémoire pour la SGA Parallélisme RAC Flash Cache Compilateurs

Plus en détail

FUJITSU WORLD TOUR 2014 Paris

FUJITSU WORLD TOUR 2014 Paris FUJITSU WORLD TOUR 2014 Paris Bienvenue... Considérez les données différemment : de la protection du patrimoine à sa valorisation Cyrille Boulletier, COO du Groupe Pierre et Vacances Center Parcs Patrick

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm. WEB15 IBM Software for Business Process Management un offre complète et modulaire Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.com Claude Perrin ECM Client Technical Professional Manager

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma Ecole Mohammadia d Ingénieurs Systèmes Répartis Pr. Slimane Bah, ing. PhD G. Informatique Semaine 24.2 1 Semestre 4 : Fev. 2015 Grid : exemple SETI@home 2 Semestre 4 : Fev. 2015 Grid : exemple SETI@home

Plus en détail

Kick Off SCC 2015. EMC l offre EXTREMIO. fmarti@fr.scc.com Philippe.rolland@emc.com. Vers de nouveaux horizons

Kick Off SCC 2015. EMC l offre EXTREMIO. fmarti@fr.scc.com Philippe.rolland@emc.com. Vers de nouveaux horizons Kick Off SCC 2015 EMC l offre EXTREMIO fmarti@fr.scc.com Philippe.rolland@emc.com Vers de nouveaux horizons Context Marché Les baies de stockages traditionnelles ont permis de consolider fortement Les

Plus en détail

Une nouvelle génération de serveur

Une nouvelle génération de serveur Séminaire Aristote 27 Mars 2013 Une nouvelle génération de serveur Sommaire L'équipe État de l'art et vision Présentation de l'innovation Les points forts de la solution Cas d'usage Questions? 2 L'équipe

Plus en détail

Intel Corporation Nicolas Biguet Business Development Manager Intel France

Intel Corporation Nicolas Biguet Business Development Manager Intel France Les serveurs pour l Entreprise Intel Corporation Nicolas Biguet Business Development Manager Intel France 1 Les orientations stratégiques Clients Réseaux Serveurs Fournir les les éléments de de base des

Plus en détail

Plug into the Cloud with Oracle Database 12

Plug into the Cloud with Oracle Database 12 An Oracle White Paper, June 2013 - traduction française du 12 septembre 2013. Plug into the Cloud with Oracle Database 12 Disclaimer: The following is intended to outline our general product direction.

Plus en détail

M2 GL UE DOC «In memory analytics»

M2 GL UE DOC «In memory analytics» M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

Virtualisation avancée de stations de travail Windows en environnement libre avec Linux KVM

Virtualisation avancée de stations de travail Windows en environnement libre avec Linux KVM Jean-Marc LIGER Mardi 7 juillet 2015 Virtualisation avancée de stations de travail Windows en environnement libre avec Linux KVM le choix de la solution hôte sous Linux LE CONTEXE D UTILISATION : - Nous

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata!

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! R+Hadoop = Rhadoop* * Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! 27 Janvier 2014 / Université Paul Sabatier / DTSI / David Tsang-Hin-Sun Big

Plus en détail

CALENDRIER FORMATIONS

CALENDRIER FORMATIONS CALENDRIER FORMATIONS SÉMINAIRES STRATÉGIE DIGITALE SLGDW - Les Géants du Web / 2 jours SDIGI - Transformation digitale / 2 jours 16 nov. 2015 SBDDS - Big Data & Data Science : mythe ou réalité? / 2 jours

Plus en détail

ACCOMPAGNER L EXPLOSION DES VOLUMES DE DONNEES : LES NOUVEAUX ENJEUX DU STOCKAGE

ACCOMPAGNER L EXPLOSION DES VOLUMES DE DONNEES : LES NOUVEAUX ENJEUX DU STOCKAGE Livre Blanc ACCOMPAGNER L EXPLOSION DES VOLUMES DE DONNEES : LES NOUVEAUX ENJEUX DU STOCKAGE Abstract En 2012, l explosion des volumes de données n est plus une hypothèse lointaine mais bien une réalité.

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com Cloud Privé / Public / Hybrid Romain QUINAT vente-privee.com Vente-privee.com Société Française implantée dans 8 pays : FR, DE, ES, IT, BE, AU, NL, UK (+US en joint-venture avec American Express) 1700

Plus en détail

ORACLE EXADATA DATABASE MACHINE X2-8

ORACLE EXADATA DATABASE MACHINE X2-8 ORACLE EXADATA DATABASE MACHINE X2-8 CARACTERISTIQUES ET AVANTAGES CARACTERISTIQUES 128 cœurs de CPU et 2 TO de mémoire pour le traitement des bases de données 168 cœurs de CPU pour le traitement du stockage

Plus en détail

Programme New BI. Décember 2014. Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran)

Programme New BI. Décember 2014. Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran) Programme New Décember 201 Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran) 1. Présentation du programme New 2. Le projet et la technologie 3. Résultats. Questions

Plus en détail