NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)"

Transcription

1 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche d information sur le web, moteurs type Google, Yahoo, données des réseaux sociaux,... I Besoin de stockage d énormes masses de données. Twitter par exemple reçoit plusieurs Tera-octets de données par jour. I I table d associations - Map - de couples (clef,valeur) I Di érentes approches, rangées dans la famille. 3/30 4/30 Bibliographie Le cours d aujourd hui utilise I le livre de Serge Abiteboul et al, Web Data Management I le livre blanc de Smile sur : I le livre de Eric Redmond et Jim R. Wilson, Seven Databases in Seven Weeks I le livre de Nick Dimiduk et Amandeep Khurana, HBase in Action Pourquoi ces technologies sont passées des acteurs du web au grand public? I Big Data =) Volume, Variété, Vélocité I Exploitation de données externes ajoutées aux données internes, quelles soient structurées (relationnelles, multidimensionnelles) ou non (e.g. documentaires) I Quelques exemples de Big Data : I Service marketing : informatique décisionnelle classique (données structurées), couplée avec l exploitation de mails (données internes non structurés), et des réseaux sociaux (données externes non structurées). I Recherche Scientifique : capteurs qui ramènent énormément de données numériques (accélérateur de particules, télescope,...) ou nécessité de partager des données très volumineuses (génomique,...) I n est qu une partie de cette vaste problématique du Big Data.

2 Recherche sur le web 5/30 Recherche sur le web 6/30 Un cas d utilisation : Recherche sur le Web Inverted File I collecter les documents publiés sur le web = web crawling. + détecter des changements sur un document déjà parcouru. I traiter ces documents pour extraire l information qu ils contiennent : mots significatifs I construire un index permettant de retrouver les documents les plus pertinents pour 1 mot clef ou un ensemble de mots clefs = inverted files I comme le glossaire d un livre I à 1 mot clef on associe une collection de documents qui contiennent ce mot Recherche sur le web 7/30 8/30 Inverted File - structure I on connaît le nombre de documents n i associés à un terme t i. I on donne un poids w k à chaque document d k associé au terme t i.le poids traduit la pertinence du document pour ce terme. I = système logiciel qui permet de coordonner plusieurs ordinateurs. Généralement, cette coordination se fait par envoi de messages via un réseau auquel sont reliés ces ordinateurs. I Pourquoi? parce qu on manipule un très grand volume de données. Sans distribution, on n a pas d application scalable. I On peut imaginer 2 scenarii de traitement des données : 1. On dispose d un grand ensemble de données, et on doit leur appliquer des traitements disponibles sur des sites distincts. Il faut donc envoyer les données aux endroits appropriés, et enchaîner les exécutions distantes. C est un scénario de type Workflow, que l on peut implémenter avec des web services. ) Traitements distribués. 2. Les données sont distribuées sur un certain nombre de serveurs, et on pousse les programmes vers ces serveurs. Il est en e et plus e cace de transférer un petit programme sur le réseau plutôt qu un grand volume de données. ) Données distribuées. On verra aujourd hui l algorithme MapReduce qui utilise cette approche.

3 9/30 10 / 30 Exemple : Data Centers de Google I Utilise des LANs (Local Area Networks). On distingue 3 niveaux de communication : 1. Les serveurs sont regroupés en racks. Liaison réseau rapide, environ 1Go/sec. 2. Un data center consiste en un grand nombre de racks, interconnectés par des routeurs (switches). Liaison à 100 Mo/sec. 3. Entre di é r e n t s d a t a c e n t e r s, i l y a a u s s i u n e p o s s i b i l i t é d e communication mais par liaison assez lente (internet Mo/sec) I Les serveurs communiquent par envoi de messages, Ils ne partagent pas de disque ni de ressource de traitement. = architecture shared nothing. I Début 2010 : 1 data center Google contient entre 100 et 200 racks, chacun contenant 40 serveurs. Environ 5000 serveurs par data-center pour un total de 1 millions de serveurs (estimation d après la consommation électrique). Schéma : LAN/data center 11 / / 30 Le théorème CAP Aucun système distribué ne peut fournir les 3 propriétés suivantes : 1. Consistency (cohérence) : tous les noeuds voient exactement les mêmes données en même temps 2. Availability (disponibilité) : L échec d un noeud n empêche pas les survivants de continuer à fonctionner 3. Partition tolérance (résistance au partitionnement) : Le système continue à fonctionner malgré la perte d un message du à une panne. Autrement dit, en cas de morcellement du réseau, chaque sous-réseau doit pouvoir fonctionner de façon autonome. pendant l envoi du message M, d 0 6= d I en général, la résistance au partitionnement n est pas discutable dans un système distribué : on doit choisir en A+P ou C+P I Un SGBD relationnel classique va privilégier C+P, avec un système transactionnel distribué et la vérification des propriétés ACID. C est au détriment des performances! I En, on choisit plutôt A+P.

4 Bases 13 / 30 Bases MapReduce 14 / 30 Bases Dans un contexte distribué, avec un très grand volume de données, sont apparues plusieurs solutions englobées sous le terme de. Ces bases de données ont certaines caractéristiques : I pas de schéma pour les données I données de structures complexes ou imbriquées I mode d utilisation : peu d écritures, beaucoup de lectures I on privilégie la disponibilité à la cohérence : A+P plutôt que C+P,! ces solutions ne contiennent pas de support pour les transactions (ou rarement) I Données distribuées : on a souvent la possibilité d utiliser des algorithmes MapReduce. Algorithme MapReduce I Le programmeur définit 2 fonctions : 1. Map : transforme l entrée en couples (clef,valeur) 2. Reduce : calcule 1 valeur à partir de la liste des valeurs associées à chaque clef I L environnement d exécution de l algorithme MapReduce s occupe de l aspect distribution : le programme est distribué sur les di érents noeuds, on a donc une exécution en parallèle. I Un programme complexe est décomposé en une succession de tâches Map et Reduce. Bases MapReduce 15 / 30 Bases MapReduce 16 / 30 Fonctions de base Exemple 1. map : (K1, V 1)! list(k2, V 2) function map(uri, doc) // uri : nom (id) du document, doc : le contenu du document foreach distinct term in doc output (term, count(term, doc)) 2. shu e :list(k2, V 2)! list(k2, list(v 2)) regroupe les couples intermédiaires en fonction de leur clef. 3. reduce : (K2, list(v 2))! list(k3, V 3) function reduce(term, counts) output (term, sum(counts)) On reprend les documents du transparent 4, on applique les fonctions map et reduce du transparent précédent pour compter le nombre de documents par terme.

5 Bases 17 / 30 Bases Couples (clef,valeur) 18 / 30 Bases Couples (clef,valeur) Nous allons voir maintenant les di érents paradigmes utilisés pour les bases. La base est une table de hachage distribuée. On dispose en général de 4 opérations : 1. stockage de couples (clé,valeur) 2. bases de documents 3. bases orientées colonnes 4. bases de graphes 1. Create : créer un nouveau couple (clef,valeur). La valeur est n importe quel objet. 2. Read : lire un objet connaissant sa clef 3. Update : mettre à jour l objet associé à une clef 4. Delete : supprimer un objet connaissant sa clef on ne peut pas e ectuer de requête sur le contenu des objets stockés. Quelques exemples : I Amazon Dynamo, dont Riak est l implémentation Open Source. I Redis, projet sponsorisé par VMWare. Pas dans un contexte BigData puisque toutes les données doivent tenir en mémoire. I Voldemort, développé par LinkedIn en interne puis passage en open source. Bases Couples (clef,valeur) 19 / 30 Bases 20 / 30 Exemple : Riak I stockage (clé,valeur) distribué : hachage distribué I on stocke une collection de documents I accès via une API Rest-ful (put, get, post, delete) I pas de schéma, les données stockées sont quelconques : images, texte (libre, ou semi-structuré comme XML et JSON), vidéos,... I pas de langage de requête, pas d opération un peu complexe que l on pourrait envoyer via une URL I gère la réplication : un cluster primaire qui contrôle la réplication sur un ou plusieurs clusters secondaires I Théorème CAP : privilégie A+P I programmation MapReduce essentiellement en Erlang (aussi en d autres langages comme javascript mais moins performant). I Si on intègre le moteur de recherche full-text à la SolR, Riak devient (presque) une base de documents. I un document a une structure arborescente : il contient une liste de champs, un champs a une valeur qui peut elle même être une liste de champs,... I le format choisi est semi-structuré comme JSON ou XML. On peut stocker n importe quel objet, via une sérialization I les documents n ont pas de schéma : grande flexibilité Quelques exemples : I MongoDB I CouchDB fondation Apache I RavenDB

6 Bases 21 / 30 Bases 22 / 30 Exemple : CouchDB I Modèle semi-structuré, basé sur JSON (Javascript object notation). { "title": "The Social network", "year": "2010", "director": {"last_name": "Fincher", "first_name": "David"}, "actors": [ {"first_name": "Jesse", "last_name": "Eisenberg"}, {"first_name": "Rooney", "last_name": "Mara"} ] } I CouchDB propose des vues structurées définies grâce au paradigme bfseries MapReduce : une vue est donc une liste de couples (clé,valeur) I Les vues sont matérialisées, indexées selon la clé par des B+arbres. Les vues sont mises à jour de façon incrémentale. I interrogation : Bases 23 / 30 Bases 24 / 30 Exemple de vue CouchDB I Les données sont stockées par colonne, non par ligne. I On peut facilement ajouter des colonnes aux tables, par contre l insertion d une ligne est plus coûteuse. I Quand les données d une colonne se ressemblent, on peut facilement compresser la colonne. I Ce concept de base orientée colonnes existait avant I MonetDB pour le modèle relationnel, I modèle e cace pour des requêtes OLAP Quelques exemples en : I BigTable de Google et son implémentation open source (Apache) HBase. Google utilise BigTable pour l indexation des pages web, Google Earth, Google analytics,... I SimpleDB de Amazon I Cassandra fondation Apache, projet né chez Facebook.

7 Bases 25 / 30 Bases 26 / 30 HBase - le Modèle de données I Table :lesdonnéessontorganiséesentables I Ligne : Dans une table, on stocke des lignes, identifiées par leur Rowkey. I Famille de colonnes : A l intérieur d une ligne, les données sont groupées par familles de colonnes. Ces familles ont un impact sur le stockage physique, et doivent être connues à l avance. Toutes les lignes d une table ont les mêmes familles de colonne (donc ces familles constituent le schéma de la table). I Colonne : Les données d une famille de colonnes sont découpées en colonnes. Ces colonnes ne sont pas connues à l avance, et on n a pas toujours les mêmes colonnes d une ligne à l autre. I Cellule : pour 1 ligne, 1 famille et 1 colonne, on a 1 seule cellule. I Version :Lesvaleursd unecellulesontversionnées. I il n y a pas vraiment de type de données : tout est traité comme byte []. I HBase peut-être vue comme une sorted map of maps. Bases 27 / 30 Bases 28 / 30 HBase Architecture BigTable/HBase I HBase est construit au dessus de HDFS, système de fichier distribué. I 1 table est stockée dans une ou plusieurs régions, Le découpage se fait par famille de colonnes, chacune stockée dans des HFiles (HDFS). I HBase est construit au dessus de Hadoop, framework de programmation distribuée, basé sur MapReduce! HBase propose donc aussi une API pour MapReduce I HBase est fortement consistent (C+P) sur 1 cluster : HDFS gère la réplication des données à chaque écriture, et si un serveur de régions tombe en panne, il faut modifier les informations dans quelle région trouver quelle donnée, pendant ce temps la base n est plus disponible. Quand on a plusieurs clusters, les clusters de réplication ne donnent pas forcément la donnée la plus récente (mais système eventually consistent ). I HBase ne permet pas l indexation des données, autrement qu avec la rowkey. I HBase permet de gérer beaucoup de données... il n est pas adapté pour 1 seule machine. même architecture pour BigTable et HBase. Une région HBase correspond à une tablet BigTable

8 Bases Bases de graphes 29 / 30 Bases Bases de graphes 30 / 30 Bases de graphes Exemple : Neo4j I Utilisation d un moteur de stockage pour les objets, du type base de documents. I Mécanisme permettant de décrire des arcs (relations entre objets), arcs orientés et pouvant posséder des propriétés I Ces bases sont adaptées à la manipulation d objets complexes organisés en réseaux : cartographie, réseaux sociaux, web sémantique... Quelques exemples : I Neo4j I OrientDB fondation Apache I très e cace pour traverser un graphe (pas de jointure) I algorithmes classiques sur les graphes, que l on peut appeler avec l interface REST I Par défaut, Neo4j gère des transactions avec les propriétés ACID. I Pour le passage à l échelle en mode distribué, utiliser Neo4j HA (pour High Availability) : available et partition tolerant (A+P du théorème CAP) I Peut gérer plus de 30 milliards de sommets, et plus de 30 milliards de relations (arcs). I Pas de support pour de la programmation MapReduce

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL Module MLBDA Master Informatique Spécialité DAC Cours 10 NoSQL Systèmes NoSQL (not only SQL) Systèmes qui abandonnent certaines propriétés des SGBDR (one size does not fit all): Le langage d interrogation

Plus en détail

Introduction aux bases de données NoSQL

Introduction aux bases de données NoSQL Introduction aux bases de données NoSQL Khaled Tannir ets@khaledtannir.net Montréal - 23 Juillet 2015 Qui suis-je? Khaled TANNIR Big Data Architect Lead 20 ans d expérience ets@khaledtannir.net @khaled_tannir

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData NoSql Principes Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData Les SGBD NoSql partagés ne peuvent satisfaire que 2 critères au plus NoSql Les transactions

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

NoSQL Faut-il franchir le pas?

NoSQL Faut-il franchir le pas? NoSQL Faut-il franchir le pas? Guillaume HARRY Journées rbdd Octobre 2015 Sommaire 1. Evolution des bases de données 2. Le mouvement NoSQL 3. Les grandes familles du NoSQL 4. Aller ou non vers le NoSQL?

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction a MongoDB Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives

Plus en détail

Les bases de données relationnelles

Les bases de données relationnelles Bases de données NO SQL et SIG : d un existant restreint à un avenir prometteur CHRISTIAN CAROLIN, AXES CONSEIL CAROLIN@AXES.FR - HTTP://WWW.AXES.FR Les bases de données relationnelles constituent désormais

Plus en détail

CONGRES BIG DATA PARIS

CONGRES BIG DATA PARIS CONGRES BIG DATA PARIS 21 Mars 2012 Retour d expérience CORPORAMA.COM Eric Barnet Nicolas Thauvin L information entreprise à 360 Corporama est un agrégateur web de données sociétés permettant une vision

Plus en détail

Synthèse d étude et projets d'intergiciels. Base NOSQL

Synthèse d étude et projets d'intergiciels. Base NOSQL Synthèse d étude et projets d'intergiciels Base NOSQL octera [AT] octera [DOT] info Résumé Devant le besoin grandissant en performance et en disponibilité des services/sites possédant un fort trafic, un

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

MIF18 - Les SGBD Non-Relationnels

MIF18 - Les SGBD Non-Relationnels MIF18 - Les SGBD Non-Relationnels Fabien Duchateau fabien.duchateau [at] univ-lyon1.fr Université Claude Bernard Lyon 1 2013-2014 Transparents disponibles sur http://liris.cnrs.fr/~ecoquery/dokuwiki/doku.php?id=

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

NoSQL : en Quête de Performances Extrêmes

NoSQL : en Quête de Performances Extrêmes NoSQL : en Quête de Performances Extrêmes Alors que l audience du web croît sans cesse, les applications Internet à succès ont été confrontées aux mêmes problèmes de base de données : si les serveurs web

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert. NoSQL.

Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert. NoSQL. Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert NoSQL Not only non relational Plan Généralités SGBD Relationnel Théorème CAP

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Bases documentaires Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Web, REST et CouchDB Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

I. Bases de données. Exemples classiques d'applications BD. Besoins de description

I. Bases de données. Exemples classiques d'applications BD. Besoins de description I. Bases de données Exemples classiques d'applications BD Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Gestion des personnels, étudiants, cours, inscriptions,...

Plus en détail

NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011

NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011 NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011 Sommaire Introduction Théorème CAP NoSQL (principes, mécanismes, démos,...) Ce que nous avons constaté Recommandations Conclusion

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Responsable du stage : Nabil Belcaid Le Guyader Chef de projet : Ali Belcaid Déroulement du stage

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Module 6 : Changement d échelle et cohérence Les bases de données relationnelles sont mûres : elles ont bientôt

Plus en détail

BASE DE DONNÉES NoSQL. IFT287 (Thème 9)

BASE DE DONNÉES NoSQL. IFT287 (Thème 9) 1 BASE DE DONNÉES NoSQL IFT287 (Thème 9) 2 NoSQL Fournit un modèle de base de données différent du modèle relationnel ou objet NoSQL veut dire «Not Only SQL» Les modèles pour les bases de données NoSQL

Plus en détail

TP MongoDB. -d : définit le nom de la base où l'on souhaite importer les données

TP MongoDB. -d : définit le nom de la base où l'on souhaite importer les données TP MongoDB MongoDB est l une des base de données composant le mouvement NoSQL (Not Only SQL). L intérêt de ce genre de bases de données se ressent dans la manipulation de très grosses bases de données

Plus en détail

Introduction aux Bases de Données

Introduction aux Bases de Données Introduction aux Bases de Données I. Bases de données I. Bases de données Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Exemples classiques d'applications BD

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

Le NoSQL - Cassandra

Le NoSQL - Cassandra Le NoSQL - Cassandra Thèse Professionnelle Xavier MALETRAS 27/05/2012 Ce document présente la technologie NoSQL au travers de l utilisation du projet Cassandra. Il présente des situations ainsi que des

Plus en détail

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES 1 Base de données COURS 01 INTRODUCTION AUX BASES DE DONNÉES Objectifs du cours 2 Introduction aux bases de données relationnelles (BDR). Trois volets seront couverts : la modélisation; le langage d exploitation;

Plus en détail

CESI Bases de données

CESI Bases de données CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Map Reduce Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Architecture Constellio

Architecture Constellio Architecture Constellio Date : 12 novembre 2013 Version 3.0 Contact : Nicolas Bélisle nicolas.belisle@doculibre.com 5146555185 1 Table des matières Table des matières... 2 Présentation générale... 4 Couche

Plus en détail

Optimisations des SGBDR. Étude de cas : MySQL

Optimisations des SGBDR. Étude de cas : MySQL Optimisations des SGBDR Étude de cas : MySQL Introduction Pourquoi optimiser son application? Introduction Pourquoi optimiser son application? 1. Gestion de gros volumes de données 2. Application critique

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Installation de Solr Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Introduction aux bases de données Cours 1 : Généralités sur les bases de données

Introduction aux bases de données Cours 1 : Généralités sur les bases de données Cours 1 : Généralités sur les bases de données ESIL Université de la méditerranée Odile.Papini@esil.univmed.fr http://odile.papini.perso.esil.univmed.fr/sources/bdmat.html Plan du cours 1 1 Qu est ce qu

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

10 Intégration de données sur le web

10 Intégration de données sur le web 10 Intégration de données sur le web 240 Requête utilisateur : Où est-ce que je peux voir les films qui ont participé au dernier Festival de Cannes? Je voudrais les résumés et critiques des films de Pedro

Plus en détail

Guide de démarrage rapide avec DataStudio Online Edition

Guide de démarrage rapide avec DataStudio Online Edition Guide de démarrage rapide avec DataStudio Online Edition Introduction Ce document vient en complément des films de démonstration disponibles sur le site web de data. L ETL ETL est un sigle qui signifie

Plus en détail

Un peu d histoire. Qu est-ce que MongoDB?

Un peu d histoire. Qu est-ce que MongoDB? Un peu d histoire Initialement développé par 10gen en 2007 10gen rebaptisé en 2013 MongoDB, Inc. Son nom vient de "humongous" (c est énorme!!) Mis en open source en 2009 Dernière version stable (3.0.2)

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Documents structurés Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Bases de données Cours 2 : Architecture pour les bases de données

Bases de données Cours 2 : Architecture pour les bases de données Cours 2 : Architecture pour les bases de données ESIL Université de la méditerranée Odile.Papini@esil.univ-mrs.fr http://odile.papini.perso.esil.univmed.fr Plan du cours Architecture SPARC-ANSI 1 Architecture

Plus en détail

NFA 008. Introduction à NoSQL et MongoDB 25/05/2013

NFA 008. Introduction à NoSQL et MongoDB 25/05/2013 NFA 008 Introduction à NoSQL et MongoDB 25/05/2013 1 NoSQL, c'est à dire? Les bases de données NoSQL restent des bases de données mais on met l'accent sur L'aspect NON-relationnel L'architecture distribuée

Plus en détail

Hibernate vs. le Cloud Computing

Hibernate vs. le Cloud Computing Hibernate vs. le Cloud Computing Qui suis-je? Julien Dubois Co-auteur de «Spring par la pratique» Ancien de SpringSource Directeur du consulting chez Ippon Technologies Suivez-moi sur Twitter : @juliendubois

Plus en détail

4. SERVICES WEB REST 46

4. SERVICES WEB REST 46 4. SERVICES WEB REST 46 REST REST acronyme de REpresentational State Transfert Concept introduit en 2000 dans la thèse de Roy FIELDING Est un style d architecture inspiré de l architecture WEB En 2010,

Plus en détail

NoSQL. Etat de l art et benchmark

NoSQL. Etat de l art et benchmark NoSQL Etat de l art et benchmark Travail de Bachelor réalisé en vue de l obtention du Bachelor HES par : Adriano Girolamo PIAZZA Conseiller au travail de Bachelor : David BILLARD, Professeur HES Genève,

Plus en détail

Bases de données et SGBDR

Bases de données et SGBDR Bases de données et SGBDR A. Zemmari zemmari@labri.fr 1 Bibliographie Bases de données relationnelles (Les systèmes et leurs langages). G. Gardarin Eyrolles Bases de données et systèmes relationnels. C.

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Limites des systèmes classiques de gestion de bases de données

Limites des systèmes classiques de gestion de bases de données Fondamentaux pour le Big Data c Télécom ParisTech 1/5 classiques de gestion de bases classiques Fondamentaux pour le Big Data c Télécom ParisTech 2/5 Basés sur le modèle relationnel Un langage de requêtes

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Bases de données avancées. cours 1 : introduction

Bases de données avancées. cours 1 : introduction Bases de données avancées cours 1 : introduction Plan Objectifs du cours Bases de données : utilisation Système de Gestion de Bases de données (SGBD) Architecture d un SGBD Ingénierie des bases de données

Plus en détail

11/01/2014. Le Big Data Mining enjeux et approches techniques. Plan. Introduction. Introduction. Quelques exemples d applications

11/01/2014. Le Big Data Mining enjeux et approches techniques. Plan. Introduction. Introduction. Quelques exemples d applications Plan Le Big Data Mining enjeux et approches techniques Bernard Dousset Professeur des universités Institut de Recherche en Informatique de Toulouse UMR 5505 Université de Toulouse 118, Route de Narbonne,

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Architecture et moyens de traitements : travaux et perspectives

Architecture et moyens de traitements : travaux et perspectives Masses de Données en Astronomie 10-11 avril 2006 Architecture et moyens de traitements : travaux et perspectives Journée Calculs Réunion et finale Données MDAdistribués Strasbourg André Schaaff 10 et 611

Plus en détail

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Module 7 : Familles de bases de données NoSQL Les bases de données relationnelles mises au point dans les

Plus en détail

ELASTICSEARCH MAINTENANT EN VERSION 1.4

ELASTICSEARCH MAINTENANT EN VERSION 1.4 ELASTICSEARCH MAINTENANT EN VERSION 1.4 firm1 29 octobre 2015 Table des matières 1 Introduction 5 2 Les principaux atouts 7 2.1 Moteur de recherche vs Moteur d indexation.................... 7 2.2 Du

Plus en détail

Faculté des sciences de gestion et sciences économiques BASE DE DONNEES

Faculté des sciences de gestion et sciences économiques BASE DE DONNEES BASE DE DONNEES La plupart des entreprises possèdent des bases de données informatiques contenant des informations essentielles à leur fonctionnement. Ces informations concernent ses clients, ses produits,

Plus en détail

Mercredi 15 Janvier 2014

Mercredi 15 Janvier 2014 De la conception au site web Mercredi 15 Janvier 2014 Loïc THOMAS Géo-Hyd Responsable Informatique & Ingénierie des Systèmes d'information loic.thomas@anteagroup.com 02 38 64 26 41 Architecture Il est

Plus en détail

Document réalisé par Khadidjatou BAMBA

Document réalisé par Khadidjatou BAMBA Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big

Plus en détail

Architecture Orientée Service, JSON et API REST

Architecture Orientée Service, JSON et API REST UPMC 3 février 2015 Précedemment, en LI328 Architecture générale du projet Programmation serveur Servlet/TOMCAT Aujourd hui Quelques mots sur les SOA API - REST Le format JSON API - REST et Servlet API

Plus en détail

Bases de données avancées Introduction

Bases de données avancées Introduction Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)

Plus en détail

Vulnérabilités logicielles Injection SQL

Vulnérabilités logicielles Injection SQL MGR850 Hiver 2014 Vulnérabilités logicielles Injection SQL Hakima Ould-Slimane Chargée de cours École de technologie supérieure (ÉTS) Département de génie électrique 1 Plan SQL Injection SQL Injections

Plus en détail

4. Gestion des données urbaines dans les nuages informatiques

4. Gestion des données urbaines dans les nuages informatiques 4. Gestion des données urbaines dans les nuages informatiques Brève histoire des nuages informatiques Modèles de service et de déploiement Technologie clé : la virtualisation IaaS : les points de vue utilisateur

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Master Informatique et Systèmes. Architecture des Systèmes d Information. 03 Architecture Logicielle et Technique

Master Informatique et Systèmes. Architecture des Systèmes d Information. 03 Architecture Logicielle et Technique Master Informatique et Systèmes Architecture des Systèmes d Information 03 Architecture Logicielle et Technique Damien Ploix 2014-2015 Démarche d architecture SI : structuration en vues Quels métiers?

Plus en détail

Dom, XML, Lecture de fichiers

Dom, XML, Lecture de fichiers Projet de développement web : Développement côté client Chapitre 4 Dom, XML, Lecture de fichiers Page 1 / 11 Table des matières Table des matières Introduction DOM : Document Object Model Structure habituelle

Plus en détail

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr IT203 : Systèmes de gestion de bases de données A. Zemmari zemmari@labri.fr 1 Informations pratiques Intervenants : Cours : (A. Zemmari zemmari@labri.fr) TDs, TPs : S. Lombardy et A. Zemmari Organisation

Plus en détail

Rapport de projet : Interrogation de données hétérogènes.

Rapport de projet : Interrogation de données hétérogènes. Université Montpellier II Sciences et Techniques GMIN332 Gestion de Données Complexes, Master 2 Informatique 2013-2014 Rapport de projet : Interrogation de données hétérogènes. Otmane Nkaira Étudiant en

Plus en détail

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique Mémoire de fin d études Pour l obtention du diplôme de Master en Informatique

Plus en détail

Bases de données. c Olivier Caron. Bureau F-016 Olivier.Caron@polytech-lille.fr

Bases de données. c Olivier Caron. Bureau F-016 Olivier.Caron@polytech-lille.fr Bases de données Bureau F-016 Olivier.Caron@polytech-lille.fr 1 Système d information et bases de données Une formation sur 3 ans! Système d information Analyse, conception Bases de données structuration,

Plus en détail

WebSphere MQ & Haute Disponibilité

WebSphere MQ & Haute Disponibilité L objectif de cet article est d identifier les problèmes pouvant se poser lors de la mise en place d un système de secours dans une configuration WebSphere MQ, et de proposer des pistes pour régler ces

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Hébergement MMI SEMESTRE 4

Hébergement MMI SEMESTRE 4 Hébergement MMI SEMESTRE 4 24/03/2015 Hébergement pour le Web Serveurs Mutualités Serveurs Dédiés Serveurs VPS Auto-Hébergement Cloud Serveurs Mutualités Chaque Serveur héberge plusieurs sites Les ressources

Plus en détail

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager Photobox Amazon RedShift Maxime Mézin Data Foundation Manager Présentation de Photobox Leader Européen du tirage et du livre photo 25 millions de clients 17 pays, dernière ouverture il y a 6 mois en Australie

Plus en détail

Fiche technique WS2012

Fiche technique WS2012 Le 18/03/013 OBJECTIF VIRTUALISATION mathieuc@exakis.com EXAKIS NANTES Identification du document Titre Projet Date de création Date de modification Fiche technique Objectif 18/03/2013 26/03/2013 WS2012

Plus en détail