MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires"

Transcription

1 MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera Id π l idenié de Π Les marices uilisées dans le problème son réelles On noe M n ( IR) l ensemble des marices carrées à n lignes On désigne par A la ransposée de la marice A Si A es une marice carrée, on désigne par de ( A) son déerminan e si A M 3 ( IR), on convien d appeler écriure de A par blocs l écriure A PQ, RS q où P M 2 ( IR), Q es de la forme, R es de la forme r r 2, e S es de la q 2 forme [ s], avec q, q 2, r, r 2, s réels La marice idenié de M 2 ( IR) es noée I Parie I - Quesions préliminaires IA - Les marices A, A e leur produi AA appariennen à M 3 ( IR) ; on les écri par blocs : A PQ A RS P Q AA R S XY ZT IA) En prélevan dans les marices A e A les ermes uiles, calculer les deu ermes de la marice Y e monrer que Y PQ + QS Des calculs analogues prouveraien que AA PP + QR PQ + QS RP + SR RQ + SS, ce que l on admera IA2) Donner sans jusificaion l écriure par blocs de la ransposée de A Concours Cenrale-Supélec 2004 /7

2 IB - IB) On suppose que le couple ( X, X 2 ) forme une base orhonormée de IR 2 e que X e X 2 son des veceurs propres pour une ceraine marice B apparenan à M 2 ( IR) Monrer que le couple ( X, X 2 ) a les mêmes propriéés IB2) Soi S M 2 ( IR), qu on suppose symérique Jusifier l eisence dans M 2 ( IR) de rois marices, N, L, D, avec N e L orhogonales e D diagonale, elles que S ND N LD L, où L es obenue en remplaçan dans N la première colonne par son opposée IB3) En comparan de ( N) e de ( L), monrer que l une des deu marices N ou L es de la forme R( θ) sinθ sinθ IC - Soi R une marice de la forme R( θ) précédene, différene de I Monrer que R I es inversible Parie II - Le roupe À ou riple M( θ, pq, ) ( θ, pq, ) e son écriure par blocs, noée de nombres réels, on associe la marice sinθ p sinθ q 0 0 R( θ) T( p, q) RT, abrégée en, 0 [ ] 0 où les deu ermes de la sous-marice uniligne 0 son nuls On appelle l ensemble des marices de la forme M( θ, pq, ) Concours Cenrale-Supélec /7

3 IIA - IIA) Calculer le déerminan de M( θ, pq, ) IIA2) La marice M( θ, pq, ) es-elle orhogonale? IIB - IIB) Calculer le produi M( θ, pq, ) M( θ, p, q ) de deu marices de Monrer que ce produi apparien à IIB2) Le riple ( θ, pq, ) éan donné, commen choisir ( θ, p, q ) pour que le produi précéden soi la marice idenié I 3? IIB3) Monrer que, lorsqu on le muni de la muliplicaion, l ensemble es un groupe IIC - IIC) Monrer que le polynôme caracérisique de M( θ, pq, ) es le produi de deu polynômes à coefficiens réels, que l on précisera IIC2) On suppose que R I a) Déerminer, selon les valeurs de θ, les valeurs propres réelles de M( θ, pq, ) b) Quelle es la dimension du sous-espace propre associé à la valeur propre? Trouver un veceur propre de la forme y associé à la valeur propre On donnera de 0 0 une epression maricielle uilisan T e ( I R) y 0 IID - Chaque poin P de Π es repéré par ses coordonnées ( y, ) dans le repère ( O ; i, j) IID) Quelles son les coordonnées (, y ) de l image P de P par la ranslaion de veceur T p i+ q j? IID2) Le poin P 0 de Π e le réel θ son fiés On désigne par r la roaion de cenre P 0 e d angle θ Soi P l image de P par r Eprimer les coordonnées (, y ) de P en foncion de, y, θ, e des coordonnées ( 0, y 0 ) de P 0 0 Concours Cenrale-Supélec /7

4 IID3) Monrer que, dans IID2) comme dans IID), on peu rouver dans une marice M, que l on précisera dans chacun des deu cas, elle que y M y IID4) a) Réciproquemen, les réels θ, pqy,,, éan donnés, calculer le produi mariciel M( θ, pq, ) y b) Ce produi es de la forme y Monrer que le poin P de Π, de coordonnées (, y ), es l image du poin P, de coordonnées (, y), par un déplacemen c) Lorsque ce déplacemen es une roaion de cenre P 0 ( 0, y 0 ) différene de l idenié de Π, on pose V P0 0 y 0 Monrer que V P0 ( I R) T Parie III - Le groupe e les marices symériques Dans cee parie, on inrodui l ensemble S des marices symériques de M 3 ( IR), donc de la forme générale a b d b c e d e f Une elle marice sera noée Qabcdef (,,,,, ), ou Q de façon abrégée Soi Q une marice apparenan à S On appelle ransformée de Q oue marice de la forme MQM, où M es une marice apparenan à l ensemble défini dans la parie II IIIA - Soi Q une marice apparenan à S IIIA) Monrer que oues les ransformées de Q appariennen à S IIIA2) Monrer que Q es une ransformée de Q Concours Cenrale-Supélec /7

5 IIIA3) Monrer que si Q es une ransformée de Q, alors Q es une ransformée de Q IIIA4) Monrer que si Q es une ransformée de Q e Q une ransformée de Q, alors Q es une ransformée de Q Pour les quesions qui suiven, on pourra uiliser les résulas de la parie IA IIIB - À oue marice Qabcdef (,,,,, ), on associe les réels : p ( Q) a+ c ; p 2 ( Q) ac b 2 ; p 3 ( Q) de ( Q) e la marice : SQ ( ) a b b c IIIB) Pour M, associée à θ, pq,, écrire S( MQM) comme un produi de rois marices IIIB2) En déduire que, pour oue ransformée Q de Q, on a p ( Q) p ( Q ) e p 2 ( Q) p 2 ( Q ) IIIB3) Monrer que, pour oue ransformée Q de Q, on a p 3 ( Q) p 3 ( Q ) Les nombres réels p ( Q), p 2 ( Q), p 3 ( Q) son appelés les invarians de Q Dans la suie de cee secion, on se propose, en considéran divers cas pour les invarians de Q, de rouver, dans chaque cas, une ransformée simple de Q IIIC - IIIC) Monrer que, parmi les ransformées de Qabcdef (,,,,, ), il y a une marice de la forme Q( λ, 0, µ, d, e, f ), qu on noera Q dans la suie, (on pourra uiliser IB3) e IIIB)) IIIC2) Calculer p ( Q) e p 2 ( Q) en foncion de λ e µ IIIC3) Monrer que, si p 2 ( Q) es nul, on peu, en précisan le choi de Q, faire en sore que µ soi nul IIID - Pour M, de la forme M( 0, pq, ), calculer les ermes non diagonau de MQ M Concours Cenrale-Supélec /7

6 IIIE - Éude des différens cas IIIE) Premier cas : p 2 ( Q) es non nul Monrer que, parmi les ransformées de Q, il y a une marice Q diagonale don le roisième erme diagonal es nécessairemen p 3 ( Q) p 2 ( Q) IIIE2) Deuième cas : p 2 ( Q) es nul a) Premier sous-cas : p ( Q) e p 3 ( Q) son non nuls Monrer que, parmi les ransformées de Q, il y a la marice Q( λ, 000e,,,, 0) b) Deuième sous-cas : p ( Q) es non nul e p 3 ( Q) es nul Monrer que, parmi les ransformées de Q, il y a une marice de la forme Q( λ, 0000f,,,, ) c) Troisième sous-cas : p ( Q) es nul Monrer que ab, e c son nuls Parie IV - Applicaion au coniques Les coefficiens réels ( abcdef,,,,, ) éan fiés, on considère la courbe du plan Π, qui adme, dans le repère ( O; i, j) l équaion carésienne : a 2 + 2by + cy 2 + 2d + 2ey + f 0, Cee courbe es noée C( abcdef,,,,, ), ou C, de façon abrégée L ensemble des courbes C es noé F IVA - Éude d un eemple On pose H C( 0, 200,,, 2, ) e H 2 C( 0,, 00,,, 2) Représener sur un même dessin les courbes H e H 2 ainsi que leurs asympoes Dans la suie, on associe au poin P de coordonnées (, y) la marice P y e à la marice C( abcdef,,,,, ) Qabcdef (,,,,, ) définie dans la parie III la courbe Concours Cenrale-Supélec /7

7 IVB - Trouver une condiion nécessaire e suffisane, poran sur le produi mariciel P QP, pour que le poin P soi sur la courbe C associée à la marice Q IVC - Soi d un déplacemen du plan, d( P) l image par d du poin P e M la marice, apparenan à, définie dans IID3), qui es associée à d IVC) Trouver une condiion nécessaire e suffisane, lian les marices P, M e Q e leurs ransposées, pour que le poin d( P) soi sur la courbe C associée à la marice Q IVC2) En déduire que la courbe C de F, associée à Q de S, es l image par d d une courbe C de F, associée à une marice Q de S, que l on précisera IVC3) Monrer que Q es, suivan la définiion donnée dans la parie II, une ransformée de Q IVD - En uilisan IIIE, monrer que oue courbe C de F es l image, par un cerain déplacemen, d une courbe C de F d équaion simple IVE - Monrer que si C es associée à la marice Q, elle es aussi associée à αq, pour ou α non nul Eemple : monrer, en uilisan IIIE), que H es l image de H 2 par un déplacemen que l on ne cherchera pas à eplicier FIN Concours Cenrale-Supélec /7

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS CONCOURS EXTERNE ÉPREUVES D ADMISSION session 2010 TRAVAUX PRATIQUES DE CONTRE-OPTION DU SECTEUR A CANDIDATS DES SECTEURS B ET C

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I AXE I CAPITAL HUMAIN MESURE I.1 I.1.A I.1.B I.1.C Mobiliser collectivement les acteurs de l'enseignement, de la formation professionnelle et de l'emploi Développer les bassins de vie et créer des pôles

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Définition d un Template

Définition d un Template Objectif Ce document a pour objectif de vous accompagner dans l utilisation des templates EuroPerformance. Il définit les différents modèles et exemples proposés. Définition d un Template Un template est

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

LIVRET BAILLEURS. Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB

LIVRET BAILLEURS. Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB LIVRET BAILLEURS Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB Novembre 2011 Sommaire I.Préambule...4 I.A.«L'abattement» : un terme à préciser...4

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

SÉLECTION DE CONSULTANTS

SÉLECTION DE CONSULTANTS MODÈLE DE RAPPORT D ÉVALUATION SÉLECTION DE CONSULTANTS Banque mondiale Washington Octobre 1999 iii Préface 1 Les Consultants 2 qui sont employés par les Emprunteurs de la Banque mondiale et dont les

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Conditions Générales d'utilisation

Conditions Générales d'utilisation Conditions Générales d'utilisation Préambule Le présent site Internet www.tournoi7decoeur.com (le " Site Internet") est édité par l association Côté Ouvert, Association loi de 1901, enregistrée à la préfecture

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Guide de l'archivage électronique sécurisé

Guide de l'archivage électronique sécurisé Original : Français Guide de l'archivage électronique sécurisé Recommandations pour la mise en œuvre d'un système d'archivage interne ou externe utilisant des techniques de scellement aux fins de garantir

Plus en détail

REGLEMENT INTERIEUR. COLLEGE Emile ZOLA

REGLEMENT INTERIEUR. COLLEGE Emile ZOLA REGLEMENT INTERIEUR ***** COLLEGE Emile ZOLA (Modifié par les conseil d administration du 5 octobre 2006, du 14 juin 2007, du 19 juin 2008) 1 REGLEMENT INTERIEUR COLLEGE EMILE ZOLA RENNES Préambule I ORGANISATION

Plus en détail

Documentation technique du logiciel Moduleo Version du 03/12/2014

Documentation technique du logiciel Moduleo Version du 03/12/2014 Version du 03/12/2014 SOMMAIRE I) Architecture globale... 3 I.A) Logiciel modulaire... 3 I.B) Logiciel réseau... 3 I.C) Information en temps-réel... 3 I.D) Client lourd / serveur lourd... 4 II) Réseau...

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Supervision sécurité. Création d une demande de descente. 13/03/2014 Supervision sécurité Création d'une demande

Supervision sécurité. Création d une demande de descente. 13/03/2014 Supervision sécurité Création d'une demande Supervision sécurité Création d une demande de descente 1 Sommaire I. Connexion II. Création d une demande a. Informations générales b. Localisation c. Formulaire d. Suivi III. Validation 2 I. Connexion

Plus en détail

Les puces RFID en élevage

Les puces RFID en élevage Les puces RFID en élevage Veille technologique Théo Harsant Yoann Valloo 1 Introduction Développement des systèmes NFC depuis les années 40 (système IFF) Puis transfert de technologie vers le secteur civil

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

LE DELEGUE INTERMINISTERIEL A LA SECURITE ROUTIERE A MESDAMES ET MESSIEURS LES PREFETS MONSIEUR LE PREFET DE POLICE

LE DELEGUE INTERMINISTERIEL A LA SECURITE ROUTIERE A MESDAMES ET MESSIEURS LES PREFETS MONSIEUR LE PREFET DE POLICE PREMIER MINISTRE Le Délégué Interministériel à la Sécurité Routière LE DELEGUE INTERMINISTERIEL A LA SECURITE ROUTIERE A MESDAMES ET MESSIEURS LES PREFETS MONSIEUR LE PREFET DE POLICE OBJET: Agrément des

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme Programmaion, organisaion e opimisaion de son processus Acha (Ref : M64) OBJECTIFS LES PLUS DE LA FORMATION Appréhender la foncion achas e son environnemen Opimiser son processus achas Développer un acha

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE LA GAMME D INDICES.2 LA GESTION DES INDICES : LE COMITE DES INDICES BOURSIERS.4 METHODOLOGIE ET CALCUL DE L INDICE TUNINDEX ET DES INDICES SECTORIELS..5 I. COMPOSITION

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Circulaire sur l'assurance protection juridique

Circulaire sur l'assurance protection juridique Circulaire _2010_22 du 19 octobre 2010 Circulaire sur l'assurance protection juridique Champ d'application: La présente circulaire est destinée aux entreprises d'assurances qui proposent des assurances

Plus en détail

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten I.P.C.F. Institut Professionnel des Comptables et Fiscalistes agréés B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten Plan comptable Octobre 2005 Avenue Legrand 45-1050 BRUXELLES Tél. (02)

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Plan Climat Énergie. Territorial

Plan Climat Énergie. Territorial Plan Climat Énergie Territorial Avril 2014 Rédaction : Anne LASTMANN, Gilles GRANDVAL, Gaël LAMBERTHOD Mosaïque Environnement Contribution et Rédaction : l ensemble des services du Conseil général de la

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Code social - Sécurité sociale 2012

Code social - Sécurité sociale 2012 Code social - Sécurité sociale 2012 Ce Code est à jour au 15 janvier 2012. Editeur responsable: Hans Suijkerbuijk 2012 Wolters Kluwer Belgium SA Waterloo Office Park Drève Richelle 161 L B-1410 Waterloo

Plus en détail

PHYSIQUE. Calculatrices autorisées. Quelques enjeux de la fusion thermonucléaire inertielle laser

PHYSIQUE. Calculatrices autorisées. Quelques enjeux de la fusion thermonucléaire inertielle laser PHYSIQUE Calculatrices autorisées Quelques enjeux de la fusion thermonucléaire inertielle laser Les différentes parties sont très largement indépendantes Tout résultat donné par l énoncé peut être utilisé

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Thierry Litannie Avocat Spécialiste agréé en droit fiscal

Thierry Litannie Avocat Spécialiste agréé en droit fiscal CONTENTIEUX FISCAL DU DIRIGEANT D ENTREPRISE QUELQUES PROBLEMES D ACTUALITE Thierry Litannie Avocat Spécialiste agréé en droit fiscal Rue des Combattants, 96-1301 Bierges info@litannie.be - www.litannie.be

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel

Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel Nicolas Berthier Stage de Magistère M encadré par Christophe Rippert et Guillaume Salagnac Laboratoire Vérimag Septembre 007 Résumé

Plus en détail

COURS 470 Série 10. Comptabilité Générale

COURS 470 Série 10. Comptabilité Générale COURS 470 Série 10 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de

Plus en détail

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours.

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours. PHY2723 Hiver 2015 Champs magnétiques statiques cgigault@uottawa.ca otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial WHC.12/01 juillet 2012 Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial ORGANISATION DES NATIONS UNIES POUR L EDUCATION, LA SCIENCE ET LA CULTURE COMITE INTERGOUVERNEMENTAL

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Secrétariat du Grand Conseil PL 9670. Projet de loi. Projet présenté par le Conseil d Etat Date de dépôt: 20 septembre 2005 Messagerie

Secrétariat du Grand Conseil PL 9670. Projet de loi. Projet présenté par le Conseil d Etat Date de dépôt: 20 septembre 2005 Messagerie Secrétariat du Grand Conseil PL 9670 Projet présenté par le Conseil d Etat Date de dépôt: 20 septembre 2005 Messagerie Projet de loi ouvrant un crédit au titre de subvention cantonale d'investissement

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Développement d'un projet informatique

Développement d'un projet informatique Développement d'un projet informatique par Emmanuel Delahaye (Espace personnel d'emmanuel Delahaye) Date de publication : 27 janvier 2008 Dernière mise à jour : 25 avril 2009 Cet article présente un certain

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES Cahier de recherche 03-06 Sepembre 003 MODÈLE BAYÉSEN DE TARFCATON DE L ASSURANCE DES FLOTTES DE VÉHCULES Jean-François Angers, Universié de Monréal Denise Desardins, Universié de Monréal Georges Dionne,

Plus en détail

I) - DEFINITIONS I-A) TERMINOLOGIE

I) - DEFINITIONS I-A) TERMINOLOGIE Venise CANABADY Lycée Amiral Bouvet St Benoît PARTIE I - DEFINITIONS PARTIE II - LES GRANDES FONCTIONNALITES DE LA GED PARTIE III - GED : INDEXATION ET OUTILS PARTIE IV- LA GESTION ÉLECTRONIQUE DES DOCUMENTS

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS

Plus en détail

Conception d une Plateforme Open Source d Extraction et de Gestion des Connaissances

Conception d une Plateforme Open Source d Extraction et de Gestion des Connaissances Département d Informatique MEMOIRE Présenté par : KADEM Habib Pour obtenir LE DIPLOME DE MAGISTER Spécialité : Informatique Option : Informatique & Automatique Intitulé : Conception d une Plateforme Open

Plus en détail

protection antideflagrante

protection antideflagrante protection antideflagrante Protection antiexplosion Valves pour la technique fluidique pour l utilisation dans les domaines avec danger d explosion Protection antiexplosion contre gaz, poussière et pour

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail