Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes."

Transcription

1 Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que f e g son C sur R + e que pour ou x R +, f () = g(). Monrer que g es prolongeable par coninuié en e que le prolongemen (encore noé g) es dérivable en. 3 Faire un ableau de variaions de g sur R +, en faire un graphe sachan que e 1, 36 à 1 près. 4 Soi H la primiive sur R + de g ( 1 ), s annulan en 1 : 1. Calculer H.. En former un développemen limié à l ordre 3 au voisinage de 1. 5 Soi n 3 un enier naurel. On inrodui l équaion (E n ) : f () = n, d inconnue R En uilisan la quesion 3, monrer que (E n ) a une unique soluion dans ], 1[, que l on noera α n. On monrerai ideniquemen (mais ce n es pas à faire) que (E n ) adme une unique soluion dans ]1, + [, que l on noera β n.. Monrer que les suies (α n ) n 3 e (β n ) n 3 son monoones. 3. Es-il possible que l une des deux suies converge vers une limie l >? En déduire leurs limies. Parie (Éude d une courbe paramérée) On éudie ici, dans un repère orhonormal d origine O, la courbe paramérée définie sur R + par le poin M() de coordonnées x() = f () = exp( 1 ) y() = g() = exp( 1 ) 6 Déerminer les valeurs de pour lesquelles M() se siue sur la première bissecrice du plan d équaion carésienne y = x. 1

2 7 Éudier la limie de la pene de la droie (OM()) lorsque end vers + e +. 8 En uilisan la quesion 3, faire un ableau de variaion de x e y sur R + avec limies aux bornes + e +. 9 En uilisan les deux quesions précédenes, racer la courbe en repéran les angenes vericales ou horizonales, on pourra uiliser que 4e, 54 à 1 près. Parie 3 (Foncions définies par des inégrales) On prolonge mainenan f à R + en posan f () =. 1 Monrer que l applicaion f ainsi prolongée es de classe C 1 sur R + ; préciser f () e monrer que l égalié de la quesion 1 rese valable pour =. 11 Soi x R +, on noe : F(x) = x f () d, G(x) = x g() d 1. Jusifier l exisence de ces inégrales que l on ne cherchera surou pas à calculer puis monrer que F(x) = xe 1 x G(x).. En séparan l inégrale G(x) en deux, monrer qu il exise une consane C réelle elle que pour ou x 1, G(x) C + ln(x) 3. En déduire que G(x) es négligeable devan x au voisinage de + ainsi qu un équivalen de F(x) au voisinage de +. 1 Résoudre sur R + l équaion différenielle (E) : x y + y = x, l expression générale de la soluion fera apparaîre la foncion F. Parie 4 (Éude qualiaive d une équaion différenielle) On considère mainenan une applicaion y soluion de (E) : x y + y = x cee fois sur R +, de classe C sur R +. Nous allons, sans aucun calcul explicie de y, déerminer enièremen la suie des u n = y (n) () à parir de l équaion (E). 13 Que vau u = y()? 14 En dérivan (E), calculer u 1 = y () e u = y (). 15 Peu-on avoir y de la forme : x αx + βx + γ avec (α, β, γ) R 3?

3 16 Soi n un enier naurel. 1. On suppose ici n 3. Prouver à l aide de la formule de Leibniz que pour ou x R + : x y (n+1) (x) + (1 + nx)y (n) + n(n 1)y (n 1) (x) = En déduire une relaion de récurrence enre u n e u n+1.. Donner une expression de u n uilisan une facorielle, valable pour ou n ; en déduire les développemens limiés (don on jusifiera l exisence) de y à ou ordre au voisinage de. Problème Dans ou ce problème, on se place dans l espace usuel don on noera E l ensemble des poins, E l ensemble des veceurs e le veceur nul. E es muni d un repère orhonormal direc R = (O, ı, j, k), oues les équaions de l énoncé seron relaives aux élémens de ce repère. Si M E e OM = x ı + y j + z k on pourra noer M = (x, y, z) e OM = (x, y, z). On considère les ensembles P e Q d équaions carésiennes : P : x + z =, Q : x + y + z 3 = Parie 1 (Éude d un mouvemen dans l espace) Pour ou R, on inrodui le poin N() de E caracérisé dans R par les coordonnées a() = cos() b() = sin() c() = cos() 1 Prouver que N() apparien au plan P. Donner une équaion paramérique de la droie D inersecion de P e Q. Es-il possible que N() D? 3 Calculer a () + b () + c (). En déduire que N() apparien à un cercle de P don on précisera le cenre e le rayon. 4 Calculer la disance de N() à la droie D puis au plan Q, on pourra vérifier que leur rappor es consan. 5 Prouver que pour ou R : ( ( exp(i) + exp i + π 3 )) ( ( + exp i π 3 )) = 6 En déduire l isobarycenre des poins N(), N ( + π 3 ) ( ), N π 3. 3

4 Parie (consrucion d un polynôme) On fixe mainenan R e on s() = a() + b() + c() noe d() = a()b() + a()c() + b()c(). p() == a()b()c() 7 Simplifier s(). 8 Linéariser le produi de foncions rigonomériques p(). 9 Calculer d() de deux manières différenes on pourra uiliser un résula de la quesion 3. 1 On considère mainenan le polynôme R(X) = (X a())(x b())(x c()), don les racines son donc a(), b() e c() : 1. Dans cee quesion seulemen = π. Monrer sans calculer R(X) ni R (X) que R () =.. Exprimer mainenan R(X) en foncion de s(), d(), p(), puis en foncion des résulas des quesions précédenes. Parie 3 (Endomorphismes à noyau imposé) 11 Monrer que P défini un plan vecoriel de E. 1 Es-ce le cas pour Q? Préciser, sans preuve, la srucure algébrique de Q. 13 On inrodui les veceurs : ı = 1 ( ı k), j = j, k = 1 ( ı + k) Monrer que ( ı, j ) es une base orhonormale de P e que k en es un veceur normal. En déduire que B = ( ı, j, k ) es une base orhonormale de l espace. 14 On désigne par a b le produi scalaire de deux veceurs a e b. Soi e E. Prouver, auremen que par «c es du cours», que ses coordonnées dans la base B son données par : e = ( e ı ) ı + ( e j ) j + ( e k ) k 15 On considère ici une applicaion linéaire u : E E elle que P ker(u). 1. Prouver qu il exise z E el que u( e) = ( e k ) z pour ou e E. 4

5 . Réciproquemen, monrer qu une applicaion u donnée par la formule précédene es un endomorphisme de E el que P ker(u). 3. Donner une condiion nécessaire e suffisane sur z pour que P = ker(u). Donner dans ce cas le rang e l image de u. Parie 4 (Marices de projeceurs) On noe ici p : E E le projeceur orhogonal sur le plan P, B la base ( ı, j, k) e B = ( ı, j, k ) la base inroduie à la quesion 13. On inrodui les marices : 1 1 M = 1, I = Jusifier rès rapidemen que M es la marice de p dans la base B. 17 Donner la marice de passage P de la base B à la base B ainsi que son inverse on déaillera le raisonnemen pour cee dernière. 18 Soi M la marice de p dans la base B : 1. Jusifier sans calcul que M = M.. En déduire que pour ou n N, (M + I) n = I + ( n 1)M 3. Exprimer M en foncion de P, P 1 e M. Ensuie calculer expliciemen M. 19 On peu raier cee parie sans avoir rouvé expliciemen M. On inrodui l ensemble M des marices du ype M a,b = am + bi, où a e b son réels : 1. Monrer que l ensemble M muni des lois usuelles sur les marices a une srucure de R-espace vecoriel don on donnera une base e la dimension.. Les réels a e b éan donnés, exprimer M a,b en foncion de P, P 1, I e M. En déduire une forme facorisée du déerminan de M a,b ainsi qu une condiion nécessaire e suffisane pour qu elle soi inversible. 3. Déerminer les réels e e f els que M a,b M c,d = M e, f. 4. Lorsque M a,b es inversible, exprimer son inverse sous la forme d un élémen de M. 5

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR) Dans ou le problème, n es un enier naurel supérieur ou égal à 2 On noe l ensemble des marices carrées réelles de aille n e M n ( IC ) l ensemble des marices carrées complexes de aille n On noe A la marice

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u.

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u. MATHÉMATIQUES II Dans ou le problème, n es un enier naurel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On noe ( xy) le produi scalaire de deux veceurs x e y e xa x la norme

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques Lycée du Parc 2-22 - Concours Blanc Épreuve de mahémaiques Samedi 5 Mai 22-8h-2h Si la vie es complee, c es parce qu elle a une parie réelle e une parie imaginaire. Marius Sophus Lie. Le devoir compore

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u)

COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u) COURBES PLANES PARAMETREES A DEFINITIONS ET PREMIERES PROPRIETES: Arc paraméré, courbe paramérée, Dans ou ce chapire on noera R ( O i j, un repère orhonormé du plan P soi I f : une foncion vecorielle C

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps MATHÉMATIQUES II Dans ou le problème, ε désigne le plan affine euclidien IR 2 rapporé à son repère orhonormé canonique ( OI ;, J) On noe i le complexe de module 1 e π d argumen -- Si z IC, on noe Mz ()

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Chapitre 14 - Fonctions de plusieurs variables - Corrigés Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

Juin 2007 (2 heures et 30 minutes)

Juin 2007 (2 heures et 30 minutes) Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c)

Plus en détail

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm.

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm. Suje 4 (Bac S) Exercice 1 (Courbes paramérées) Le plan es rapporé à un repère orhonormal (O ; i r, r j ), l unié graphique éan 1 cm. 1) Soi (C) la courbe don une représenaion paramérique es : = = 1 2 x

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résolution de systèmes linéaires par la méthode du pivot de Gauss Lycée Pierre de Ferma 7/8 MPSI TD Résoluion de sysèmes linéaires par la méhode du pivo de Gauss Sysèmes linéaires. Conclure à parir d un sysème échelonné e riangularisé Exercice.. Sysèmes linéaires riangularisés

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

e t e itx e t e itx x (x, t) = i te t e itx. x te t

e t e itx e t e itx x (x, t) = i te t e itx. x te t Correcion ES-Analyse - ES - - 15-16 - Correcion - Analyse I Exercice 1. On remarque d abord que f es bien définie pour ou x. En effe, on a : e e ix e. Cee foncion es inégrable sur [, + [, car en elle es

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

Espaces préhilbertiens réels et espaces euclidiens

Espaces préhilbertiens réels et espaces euclidiens Espaces préhilberiens réels e espaces euclidiens 0 Rappels de première année 0. Produi scalaire réel, espace euclidien Définiion 0... Produi scalaire réel Ean donné un Respace vecoriel E, on appelle produi

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 5 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mahémaiques A MP Parie I 1. Les soluions de l équaion différenielle E sur l inervalle I formen un R-espace vecoriel de dimension. Les

Plus en détail

MATHÉMATIQUES I. Partie I - Calculs préliminaires

MATHÉMATIQUES I. Partie I - Calculs préliminaires MATHÉMATIQUES I Parie I - Calculs préliminaires Dans ou ce problème a e v désignen deux nombres réels, a es sricemen posiif IA - Monrer que la foncion ϕ définie sur IR * par ( sin( x) ) ϕ( x) = adme un

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1 Eercice (Calculer les inégrales suivanes)..... 5. 6. 7. 8. e d = e d = e ] = = 5. = e e. ( + )d = d = ln ( )] = ln ( ) ln ( ) = ln(). ue u du = e u = e. e e + d = ln ( e + ) e (e + ) d = u (ln u) du =

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Intégrales fonctions des bornes

Intégrales fonctions des bornes [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Inégrales foncions des bornes Eercice [ 987 ] [Correcion] Soi f : R R une foncion coninue. Jusier que les foncions g : R R suivanes son de classe

Plus en détail

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt.

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt. Parie A ) Prouver que pour ou réel >, ln. ) En déduire que la foncion f :, e elle que f() =, es définie sur [;+ [. ln 3) a) Eudier la foncion f. En pariculier, f es-elle dérivable en zéro? Sa courbe représenaive,

Plus en détail

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale CONCOURS TA A EPREUVES COMMUNES - 996 Mahémaiques PARTIE I : Formules de projecion orhogonale ) Le poin couran M() de l hélice (H) vérifian OM() = R cos i + R sin j + h k, le projeé orhogonal p(m) de M

Plus en détail

Autour des fonctions vectorielles

Autour des fonctions vectorielles NOTES DE COURS Chap GEO01 Auour des foncions vecorielles Cadre de ravail e/ou noaions uilisées Dans ou ce qui sui, I désignera un inervalle non vide e non rédui à un poin de R, e n désignera un enier naurel

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé Planche n o 8. Inégraion sur un inervalle quelconque. Corrigé Eercice n o Pour, +4+ e donc la foncion f : + +4+ es coninue sur [,+ [. Quand end vers +, + 3 +4+ = ++ +4+ 3 3. Comme la foncion es posiive

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

UE LM336 Année Feuille de TD 4

UE LM336 Année Feuille de TD 4 Universié Pierre & Marie Curie Licence de Mahémaiques L3 UE LM336 Année 2013 14 Feuille de TD 4 Exercice 1 Reprendre l exercice 2 de la feuille 1 de manière rigoureuse Concrèemen, pour chacune des équaions

Plus en détail

Rappels sur les suites.

Rappels sur les suites. UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

e3a PC Mathématiques 3

e3a PC Mathématiques 3 e3a PC Mahémaiques 3 Problème Le exe définissai une norme sur l espace vecoriel des marices réelles à p lignes e q colonnes, p, q e demandai d admere une inégalié sur ces normes. Si dans on considère les

Plus en détail

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1 Universié Claude Bernard Lyon- Licence «Sciences e echnologie» Unié d enseignemen Mah. I Algèbre CONTROLE FINAL 8 Janvier 0-durée h L énoncé compore cinq exercices sur deux pages. Documens, calcularices

Plus en détail

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes.

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes. Corrigé de l épreuve Mah de CCP, PSI 22 Luc Verschueren, Lycée Daude à Nîmes. Parie I Cas d une marice à coefficiens consans. Quesion I.. La foncion X définie par X : e V es dérivable surre X e V (coefficien

Plus en détail

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt Donner une primiive sur un ensemble à préciser de f : +. Corrigé : La foncion f es définie sur R, ainsi on va en déerminer une primiive sur ], [ ou sur ], + [. On a : + d + d uu + du Ceci en posan u, on

Plus en détail

CONCOURS D ADMISSION 2004

CONCOURS D ADMISSION 2004 A 4 Mah MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

Les calculatrices sont autorisées. ****

Les calculatrices sont autorisées. **** Les calcularices son auorisées B Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené à repérer ce qui peu lui sembler êre une erreur

Plus en détail

Mathématiques MP - Corrigé du DS 3

Mathématiques MP - Corrigé du DS 3 Mahémaiques MP - Corrigé du DS 3 Exercice a d C (R e, d ( = sin( d es donc croissane sur R On a donc, d( d( e donc >, cos( De plus pour >, cos( car cos b δ es de classe C sur R e, δ ( = sin( e δ ( = cos(

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque TD - corrigés Inégraion sur un inervalle quelconque. Jusifier, pour ou réel >, la convergence de l inégrale J) d Énoncés. Soi α un réel sricemen posiif. Pour quelles valeurs de α, l inégrale généralisée

Plus en détail

Intégrales généralisées et intégrales doubles : exercices

Intégrales généralisées et intégrales doubles : exercices Inégrles générlisées e inégrles doubles : exercices BCPST 2 4/5 Exercice Eudier l convergence des inégrles suivnes e les clculer le cs échén (on veiller à vérifier l crédibilié des résuls obenus à l ide

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx Sup PCSI Quelques eercices corrigés sur les foncions Eercice : énoncé On noe f : lnd Q Jusifiez l eisence de l applicaion f Q Quelle es la classe de coninuié de f? Q Quelle es la classe de coninuié de

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

Mines Math1 PSI Un corrigé

Mines Math1 PSI Un corrigé Mines 26 - Mah PSI Un corrigé Préliminaire Le cours nous apprend que pour ou réel α, on a x ], [, ( + x α + En choisissan α /2 e en subsiuan x à x, on a donc α(α (α + x! x ], [, x + a x avec a 2, : a +

Plus en détail

Fonctions de Bessel : comportement à l infini

Fonctions de Bessel : comportement à l infini Prépa. Agrég écri d Analyse, avril 23. Foncions de Bessel : comporemen à l infini 1. Éude au moyen de l équaion différenielle Voir Chaerji volume 3, secions 2.6 e 2.7. On suppose que n es un enier e que

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t²

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t² Parie A Pour ou réel, on pose h() = 1 + ² - e-. 1) Prouver que la foncion h ainsi définie es dérivable sur [ ;+ [, que h es dérivable sur [ ;+ [, e calculer h () e h () pour ou réel. Préciser les valeurs

Plus en détail

TD 02 : Applications linéaires

TD 02 : Applications linéaires Ex 1 Ex 2 TD 02 : Applicaions linéaires Les applicaions suivanes son-elles linéaires? x ( ) 1 f : y 2x + 4y z R4 R y 2, x 2 f : y 2x πy z R4 z + 3 R 3, x + y + z + Première approche x 3 f : y z R4 x +

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Techniques ahémaiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Exercice 1 1.a Rappel sur les coniques Les coniques inerviennen dans un nombre d applicaions

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail