CH14 : Le moteur synchrone

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CH14 : Le moteur synchrone"

Transcription

1 BTS électrotechnique 2 ème année - Sciences physiques appliquées CH14 : Le moteur synchrone Compensation de l énergie réactive Enjeu : Problématique : On souhaite utiliser un moteur synchrone en compensateur d énergie réactive (compensateur synchrone) tout en gardant constant la puissance utile qu il délivre. En partant de la valeur de la puissance réactive nécessaire, vous devez déterminer les réglages correspondants et vous prononcer sur la faisabilité. Rapport au programme : E machine synchrone et convertisseur de fréquence : E1.1. Constitution E1.2. Alternateur couplé sur un réseau : transfert des puissances active et réactive Objectifs : A l issue de la leçon, l étudiant doit : 14.1 Savoir expliquer le principe de fonctionnement du moteur synchrone 14.2 Savoir effectuer le bilan de puissance en calculant les différentes pertes 14.3 Savoir déterminer le rendement d un moteur synchrone 14.4 Savoir dessiner le diagramme à réactance synchrone pour déterminer la valeur E et en déduire la valeur du courant d excitation correspondant à un point de fonctionnement Savoir placer l angle de décalage sur le diagramme à réactance synchrone et connaître la condition sur cet angle pour éviter un décrochement du moteur Connaître le principe du fonctionnement en compensateur synchrone Travail à effectuer : Lire attentivement l annexe (en essayant de le comprendre). Répondre à la problématique au travers des questions suivantes (au brouillon) : La puissance maximale à compenser est égale 800kVAR. Le moteur devra donc absorber une puissance réactive Q=-800kVAR. On veut cependant garder le point de fonctionnement mécanique tel que Pu=1MW et I=207A. Modèle équivalent par phase du stator : I X V E Tension entre phases 3800 V Couplage Y Fréquence 50 Hz, 4pôles réactance synchrone 2Ω les résistances statoriques sont négligeables Essai à vide : E = 150 Ie dans la partie linéaire

2 1. Justifier le signe de Q? Cela correspond-il à un fonctionnement en compensateur synchrone? 2. Calculer la valeur du sin φ correspondante à cette puissance. 3. En déduire la valeur de cos φ correspondante du moteur en précisant AV ou AR. 4. Déterminer la valeur de E correspondante en passant par une représentation vectorielle d échelle 1cm 200V. 5. Quelle est la valeur de l angle de décalage θ? Cette valeur est-elle acceptable? 6. A quelle la valeur le courant Ie doit-il être réglé en supposant que la machine reste non saturée? En utilisant l annexe, réaliser la fiche résumée du chapitre. Pour cela, réécrire les différents objectifs et indiquer pour chacun la relation, la définition ou la méthode permettant de l atteindre.

3 BTS électrotechnique 2 ème année - Sciences physiques appliquées Annexe du CH14 : cours sur le moteur synchrone 1. Rappel sur la constitution de la machine synchrone : Le rotor est constitué d un aimant permanent pour les faibles puissances ou d un bobinage alimenté en continu pour les plus fortes puissances. Le stator est identique à celui de la MAS : il est constitué de bobinages qui sont décalés spatialement d un multiple de 2π 3 pour les machines triphasées. 2. Rappel sur le fonctionnement en alternateur : Le rotor entraîné par un dispositif annexe (éolienne, turbine, ) crée un champ tournant au sein de la machine. Il apparaît aux bornes des bobinages du stator des tensions induites qui du fait de leur décalage spatial produisent un système de tensions triphasées. 3. Quel est le principe de fonctionnement en moteur? Le stator, alimenté par un système triphasé, crée un champ tournant au sein de la machine. ( Le rotor est alimenté en continu pour les machines à rotor bobinés. Les pôles du rotor sont attirés par les pôles du champ tournant : le rotor tourne à la même vitesse que le champ tournant, c est-à-dire à la vitesse de synchronisme (d où le nom de machine synchrone) : [tr/min] n = n s = 60f p 4. Quel est le modèle équivalent du moteur synchrone? C est le même modèle qu en fonctionnement alternateur. D ailleurs, les éléments du modèle se déterminent en fonctionnement alternateur. Il n y a que le transfert de puissance qui change de sens : le stator est alimenté en triphasé (ou monophasé) et le rotor produit de la puissance mécanique. [Hz]

4 5. Comment déterminer la valeur de E correspondant à un point de fonctionnement? En régime sinusoïdal, on ne peut pas réaliser de loi des mailles directement sur les valeurs efficaces. Il faut donc passer, comme pour le fonctionnement en alternateur, par une représentation de Fresnel. On a : E + jxi + RI V = 0 R pouvant être négligée devant X, on obtient : V = E + jxi Le moteur étant alimenté par le réseau, on connaît V que l on prend comme origine des phases. Connaissant φ, on place jxi en partant de la pointe de V. On en déduit E. L angle θ entre V et E est appelé angle interne. Il a une grande importance dans le fonctionnement en moteur de la MS. 6. Comment en déduire la valeur de Ie correspondante? Connaissant la valeur de E, on déduit la valeur de Ie par lecture graphique sur la caractéristique à vide E=f(Ie) (voir cours sur l alternateur synchrone de 1 ère année). 7. Quelles sont les différentes configurations du diagramme synchrone? Dans la zone linéaire, E=kIe. Le courant Ie permet donc de régler la valeur de E, alors que V est fixée par le réseau (ou le variateur de vitesse). Il est donc possible, en jouant sur l'excitation, de régler la valeur du déphasage et donc de la puissance réactive présentée par le moteur : on peut se servir de ce moteur pour faire diminuer la puissance

5 réactive d'une installation et donc améliorer son facteur de puissance. Le moteur fonctionne alors en compensateur synchrone. 8. L angle de décalage peut-il prendre n importe quelle valeur? On peut démontrer que le couple électromagnétique a pour expression : T em = 3VE sin θ Ω s Lω A excitation constante, plus on charge la machine, plus Tem doit augmenter. Ce qui se traduit par une augmentation de l angle θ. Pour θ=90 (sinθ=1), Tem est alors maximum. Si on charge un peu plus la machine, θ augmente est le couple électromagnétique décroît. Le moteur n est plus capable d entraîner la charge : la MS décroche et il y a arrêt du moteur. Le décalage θ est transcrit par un angle de décalage du rotor θ méca visualisable au stroboscope est tel que θ méca = θ p 9. Quel est le bilan de puissance en fonctionnement moteur? P a = 3VI cos φ (+U e I e pour les rotors bobinés) P u = T u Ω s Pertes joules P j Pertes mécaniques P m Les pertes joules : Au stator : P js = 3RI 2 si couplage étoile ; P js = 3RJ 2 si couplage triangle ; P js = 3R m 2 I2 quelque soit le couplage avec R m résistance mesurée entre 2 phases. Si le rotor est bobiné, il faut ajouter P jr = U e I e = ri e 2

6 10. Quelle est la caractéristique mécanique d un moteur synchrone? Le moteur synchrone tournant à la vitesse de synchronisme, sa vitesse est fixée par la fréquence du réseau. A fréquence fixe, la vitesse est constante et le moteur synchrone a une caractéristique perpendiculaire à l axe des vitesses :

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses BTS électrotechnique 1 ère année - Sciences physiques appliquées CH25 : modèle équivalent de l alternateur synchrone à pôles lisses Production d énergie électrique Problématique : Enjeu : Comme pour le

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

CH19 : Le transformateur monophasé réel

CH19 : Le transformateur monophasé réel BTS électrotechnique 1 ère année - Sciences physiques appliquées CH19 : Le transformateur monophasé réel Dimensionnement des transformateurs Problématique : Dans la grande majorité des cas, un transformateur

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

Chapitre 5 : Moteur asynchrone

Chapitre 5 : Moteur asynchrone Chapitre 5 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit 3. Symboles 4. plaque signalétique II / Principe de fonctionnement

Plus en détail

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz.

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD TD de Machines Asynchrones Exercice N 1 : Un moteur asynchrone tourne à 965 tr/min

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

CHAPITRE 3 MACHINES SYNCHRONES

CHAPITRE 3 MACHINES SYNCHRONES CHAITR 3 MACHINS SYNCHRONS Ce chapitre représente le minimum de ce qui doit être compris pour être capable de mener un projet de machine synchrone ou le maximum de ce qui est tolérable pour comprendre

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE *********

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE ********* I.U.T. Formation Initiale D.U.T. GENIE ELECTRIQUE & INFORMATIQUE INDUSTRIELLE Enseignant responsable : B. DELPORTE Documents interdits Calculatrice autorisée Travail demandé : ELECTROTECHNIQUE Deuxième

Plus en détail

A.3.a) Déterminer l'intensité efficace du courant en ligne appelé par le moteur.

A.3.a) Déterminer l'intensité efficace du courant en ligne appelé par le moteur. Ex n 1 Bacf1984 : Un moteur asynchrone triphasé possède sur sa plaque signalétique les indications suivantes : 220 V / 380 V 50 Hz P u = 6 kw 4 pôles On dispose du réseau 220 V / 380 V ; 50 Hz. A.1) Quel

Plus en détail

CH 12 : Les installations triphasées équilibrées non polluées

CH 12 : Les installations triphasées équilibrées non polluées BTS électrotechnique ère année - Sciences physiques appliquées CH : Les installations triphasées équilibrées non polluées Enjeu : minimisation de la facture énergétique Problématique : comment calculer

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles BACCALAURÉAT TECHNOLOGIQUE Session 1999 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'usage de la

Plus en détail

CHAP 2 : Les convertisseurs électromécaniques M 2.2 : Energie électrique 2

CHAP 2 : Les convertisseurs électromécaniques M 2.2 : Energie électrique 2 I. Un champ magnétique tournant I.1. L origine du réseau électrique triphasé Moteur d entrainement CH 2 Expérience : On positionne un aimant entraîné par un moteur auxiliaire au milieu de trois bobines

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

N.L.Technique FONCTION CONVERTIR : MOTEUR ASYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MOTEUR ASYNCHRONE S.CHARI I. Description Le moteur asynchrone est constitué de deux parties distinctes : le stator et le rotor. I.. Stator (partie fixe du moteur) I... Présentation Il est identique à celui des machines synchrones,

Plus en détail

Série d exercices N 9

Série d exercices N 9 GENIE ELECTRIQUE Série d exercices N 9 Prof : Mr Raouafi Abdallah Essentielle de cours : «résumé» Vitesse de synchronisme n S en (tr/s) : n S =... «Moteur Asynchrone Triphasé» Niveau : 4 ème Sc.Technique

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique BACCALAURÉAT TECHNOLOGIQUE Session 211 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l épreuve : 4 heures coefficient : 7 L emploi de toutes

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail

Eléments de correction génératrice asynchrone

Eléments de correction génératrice asynchrone Eléments de correction génératrice asynchrone 1. Machine couplée au réseau : 1.1 Représentation de Ptr = f(g) Puissance transmise au rotor P 8000 6000 4000 2000 0-1 -0,8-0,6-0,4-0,2 0 0,2 0,4 0,6 0,8 1

Plus en détail

Machines asynchrones : éléments de correction

Machines asynchrones : éléments de correction Machines asynchrones : éléments de correction VII.Fonctionnement en génératrice (parfois appelé alternateur asynchrone) 1. Réversibilité Les diagrammes de Fresnel ci dessous sont associés à une machine

Plus en détail

génie électrique Machine synchrone

génie électrique Machine synchrone MACHINE SYNCHRONE Autrefois utilisés quasi exclusivement en alternateur, le développement de l'électronique de puissance et la généralisation des aimants comme inducteur permettent aujourd'hui d'employer

Plus en détail

CH17 La bobine à noyau de fer alimentée en sinusoïdal

CH17 La bobine à noyau de fer alimentée en sinusoïdal BTS électrotechnique 1 ère année - Sciences physiques appliquées CH17 La bobine à noyau de fer alimentée en sinusoïdal Dimensionnement des circuits magnétiques Problématique : Après avoir construit une

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Baccalauréat Technologique. Session Epreuve : Physique appliquée

Baccalauréat Technologique. Session Epreuve : Physique appliquée Baccalauréat Technologique Session 2003 Epreuve : Physique appliquée Série : Sciences et Technologies Industrielles Spécialité : Génie Electrotechnique Durée de l épreuve : 4 heures coefficients : 7 Ce

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

MOTEURS SYNCHRONES. CI3 : Chaîne d énergie MOTEURS SYNCHRONES - MOTEURS BRUSHLESS COURS. Edition 2-22/01/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE

MOTEURS SYNCHRONES. CI3 : Chaîne d énergie MOTEURS SYNCHRONES - MOTEURS BRUSHLESS COURS. Edition 2-22/01/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE Edition 2-22/01/2018 MOTEURS SYNCHRONES CHAÎNE D INFORMATION ACQUERIR TRAITER COMMUNIQUER ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE CHAÎNE D ENERGIE ACTION Lycée Jules Ferry - 06400 Cannes ats.julesferry.cannes@gmail.com

Plus en détail

CH5 : La machine à courant continu en régime transitoire

CH5 : La machine à courant continu en régime transitoire BTS électrotechnique 2 ème année - Sciences physiques appliquées CH5 : La machine à courant continu en régime transitoire Motorisation des systèmes. Problématique : Une ligne d usinage de culasses pour

Plus en détail

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats.

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats. triphase_td 1/5 Exercice 1 Dessiner une ligne triphasée et placer les tensions simples et les tensions composées. Quels sont les symboles utilisés pour les courants en ligne et les courants par phase?

Plus en détail

CH20 : Le transformateur triphasé

CH20 : Le transformateur triphasé BTS électrotechnique 1 ère année - Sciences physiques appliquées CH20 : Le transformateur triphasé Dimensionnement des transformateurs Problématique : Pour un transformateur monophasé, le rapport de transformation

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options)

BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options) BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options) Epreuve de Sciences Physiques Durée : 2 heures coefficient: 5 L 'utilisation

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

CH3 : Solide en mouvement de rotation autour d un axe fixe

CH3 : Solide en mouvement de rotation autour d un axe fixe BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : Solide en mouvement de rotation autour d un axe fixe Mise en sécurité d une machine-outil. Enjeu : Problématique : En tant que responsable

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

M. Dedieu ; Lycée J.Perrin (95) 1

M. Dedieu ; Lycée J.Perrin (95) 1 Terminale GET EXERCICES : planche 7 MOTEUR ASYNCHRONE Exercice 1 : La plaque signalétique d un moteur asynchrone triphasé indique 1395 tr.min -1 ; 50Hz. 1. Calculer la vitesse de synchronisme n S. 2. Calculer

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE

IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE SIDKI Mohammed Université Mohamed V-Ecole Mohammadia d Ingénieurs sidki@emi.ac.ma Mots clés Modélisation de la génératrice asynchrone,

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Place Cormontaigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences Appliquées. Savoir-faire expérimentaux. Référentiel : S5 Sciences Appliquées.

Plus en détail

Baccalauréat Technologique. Bac blanc Epreuve : Physique appliquée

Baccalauréat Technologique. Bac blanc Epreuve : Physique appliquée Baccalauréat Technologique Bac blanc 2011 Epreuve : Physique appliquée Série : Sciences et Technologies Industrielles Spécialité : Génie Electrotechnique Durée de l épreuve : 4 heures coefficients : 7

Plus en détail

Division : 2 ème Année BTS Electrotechnique Thème support : Energie renouvelable (Génératrice asynchrone)

Division : 2 ème Année BTS Electrotechnique Thème support : Energie renouvelable (Génératrice asynchrone) Division : ème Année BTS Electrotechnique Thème support : Energie renouvelable (Génératrice asynchrone) ériode de l année : Cette activité se déroule en fin de ème semestre. ré-requis : Contenus d enseignement

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

Machine synchrone Table 5 (et 2) : fonctionnement en moteur

Machine synchrone Table 5 (et 2) : fonctionnement en moteur Machine synchrone Table 5 (et 2) : fonctionnement en moteur Objectifs Fonctionnement sur réseau fixe (fréquence et valeur efficace des tensions statoriques) La machine utilisée est celle de la table n

Plus en détail

Fiche descriptive de la leçon

Fiche descriptive de la leçon Fiche descriptive de la leçon L'intitulé de la leçon Machines synchrones Le résumé de la leçon Cette leçon vise l étude des machines synchrones et leurs applications industrielles en tant qu alternateurs

Plus en détail

CH4 : Les moteurs électriques et les charges mécaniques

CH4 : Les moteurs électriques et les charges mécaniques BTS électrotechnique 2 ème année - Sciences physiques appliquées CH4 : Les moteurs électriques et les charges mécaniques Motorisation des systèmes. Enjeu : Problématique : En tant que technicien supérieur,

Plus en détail

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN Examen partiel Durée Documents : heures. : non autorisés sauf une feuille A4-manuscrite REONDRE DIRECTEMENT SUR LA COIE D EXAMEN NOM RENOM SIGNATURE EXERCICE 1 (5 points) : On relève avec l oscilloscope

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

BACCALAUREAT TECHNOLOGIQUE. S e s s i o n PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies industrielles

BACCALAUREAT TECHNOLOGIQUE. S e s s i o n PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies industrielles BACCALAUREAT TECHNOLOGIQUE S e s s i o n 2 0 0 7 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies industrielles Spécialité : Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'emploi

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie.

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie. Il est rappelé aux candidats que la qualité de la rédaction et la clarté des raisonnements, entreront pour une part importante dans l'appréciation des copies. Le sujet comporte trois parties indépendantes

Plus en détail

CH3 : La machine à courant continu à aimant permanent

CH3 : La machine à courant continu à aimant permanent Enjeu : motorisation des systèmes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : La machine à courant continu à aimant permanent Problématique : Le principal intérêt des moteurs

Plus en détail

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation Chapitre 9 Conversion d énergie électromécanique 9.1 Introduction La conversion d énergie électromécanique est une partie intégrale de la vie de tous les jours. Que ce soit les grandes centrales hydoélectriques

Plus en détail

ENSIL 1 ère année - Electrotechnique et Electronique de puissance

ENSIL 1 ère année - Electrotechnique et Electronique de puissance ENSIL 1 ère année - Electrotechnique et Electronique de puissance S1TC-ETEC dans UES1-TC-SPI Examen final (75%) du mardi 15 décembre 2015 Durée : 1 H 30 Documents non autorisés Présentation : Soit l installation

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE Série: Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée : 4 heures coefficient :7 L'emploi de toutes les calculatrices

Plus en détail

Laboratoire génie électrique 4Stech Série d exercices N 9 Moteurs asynchrones triphasés Page 1/5

Laboratoire génie électrique 4Stech Série d exercices N 9 Moteurs asynchrones triphasés Page 1/5 Laboratoire génie électrique 4Stech Série d exercices N 9 oteurs asynchrones triphasés Page / Exercice : Un moteur asynchrone triphasé hexapolaire (6 pôles) à rotor à cage d écureuil a les caractéristiques

Plus en détail

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Examen Final : EL41 P07. Durée : 2 heures. Documents : non autorisés sauf une feuille manuscrite de format A4. REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Nom : Prénom : Signature : Problème (10 points)

Plus en détail

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Sommaire Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Projet Éclairage d un entrepôt - Deuxième partie... 1 Cours Puissances et compensation en monophasé...

Plus en détail

Exercices Chapitre 12 Hiver 2003 ELE1400

Exercices Chapitre 12 Hiver 2003 ELE1400 Exercice 1 (DEV2A01) Un moteur asynchrone de 100hp est alimenté par une source triphasée à 600V. Ce moteur est construit avec 8 pôles. A son point d opération nominal, son rendement η est égal à 89% et

Plus en détail

Champ tournant, création de couple électromagnétique

Champ tournant, création de couple électromagnétique Champ tournant, création de couple électromagnétique SIMON SELLEM simon.sellem@ens-cachan.fr Motivation Toute machine tournante classique comporte un stator et un rotor. Il est nécessaire d étudier la

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Les gradateurs Les gradateurs Page 1 sur 23 1. Domaine d action des gradateurs... 3 1.1. Le réglage des intensités lumineuses dans les salles de spectacle... 3

Plus en détail

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie Cours Cours CEM 2 La conversion électromécanique d énergie TSI1 TSI2 X Période La machine asynchrone triphasée 1 2 3 4 5 Cycle 2 : Conversion électromécanique Durée : 3 semaines X 1- Introduction : Les

Plus en détail

Le Moteur Asynchrone

Le Moteur Asynchrone Le Moteur Asynchrone Table des matières 1. Introduction...2 2. Principe de fonctionnement...2 2.1. principe du moteur synchrone...2 2.2. Principe du moteur asynchrone...2 2.3. Énonce du principe...3 2.4.

Plus en détail

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p Laboratoire génie électrique 4tech ésumé du cours : moteur asynchrone triphasé age /5 Moteur asynchrone triphasé à rotor en court circuit ymbole h h h Le stator étant alimenté par un système de tension

Plus en détail

Circuits triphasés 1

Circuits triphasés 1 Circuits triphasés 1 Création d'un système de tensions triphasées N2 e3 e2 N1 Soit 3 bobines fixes de N spires (N1=N2=N3=N) (stator) et un aimant (rotor) entraîné àla vitesse ω. En canalisant le flux par

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au réseau

Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au réseau Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au Séquences réseau Domaine électrotechnique : - Réversibilité des convertisseurs électromécaniques.

Plus en détail

e - L EE e-learning for Electrical Engineering

e - L EE e-learning for Electrical Engineering www.e-lee.net e - L EE e-learning for Electrical Engineering Marche en isolé Thématique : Machines électriques Chapitre : Machines synchrones Section : Type ressource : Exposé Laboratoire virtuel / Exercice

Plus en détail

Le Moteur Asynchrone Triphasé

Le Moteur Asynchrone Triphasé Le Moteur Asynchrone Triphasé DOSSIER RESSOURCES Première BAC PRO ELEEC - Lycée Professionnel Clément Ader Le moteur asynchrone triphasé - Dossier ressources 1/6 I- FONCTION : Les moteurs asynchrones triphasés

Plus en détail

Moteurs synchrones. 6

Moteurs synchrones. 6 Master Mécatronique 1. Cours Moteurs. J Diouri. 2010 Moteurs synchrones. 6 Servomoteurs synchrones à aimants permanents Références : Électrotechnique, Théodore Wildi, Électricité au service des machines,

Plus en détail

Les moteurs asynchrones

Les moteurs asynchrones Les moteurs asynchrones I)- GENERALITES Le moteur asynchrone représente 80% des moteurs utilisés industriellement, étant donné leur simplicité de construction et leur facilité de démarrage. D'autre part

Plus en détail

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES 3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES Durée : 4 heures L'épreuve est d'une durée de quatre heures et est constituée de deux parties indépendantes (électrotechnique et électronique). Les

Plus en détail

Corrigé Jeu d eau de Versailles

Corrigé Jeu d eau de Versailles Corrigé Jeu d eau de Versailles 1 A.1.1) En A la masse m a une énergie cinétique E ca = mv A A.1.) En B v B = 0 donc l énergie cinétique est nulle E cb = 0. A.1.3) La valeur de l énergie potentielle en

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE Les moteurs asynchrones triphasés représentent plus de 80 % du parc moteur électrique. Ils sont utilisés pour transformer l énergie électrique en énergie mécanique grâce à

Plus en détail

EXERCICE N 1 : ÉLECTRICITÉ (17 points)

EXERCICE N 1 : ÉLECTRICITÉ (17 points) BACCALAURÉAT TECHNOLOGIQUE 2PYGMPO1 Série SCIENCES ET TECHNOLOGIES INDUSTRIELLES SPECIALITE GENIE MECANIQUE SESSION 2002 Épreuve SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE Durée 2 h Coef. 5 Ce sujet comporte

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Machine asynchrone triphasée

Machine asynchrone triphasée ciences de l Ingénieur Page 178 Machine asynchrone triphasée 1 - Technologie stator 2 pôles 3 + 3' + E1' + + E1 2. E2 +. 2' +. E2'... 1' E3 1 PH1(U) PH3(Z) PH2(V) PH1(X) PH3(W) PH2(Y) tator & rotor CI3_E2_MA&Y

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

Electrotechnique. Il sert à créer un champ magnétique (champ "inducteur") dans le rotor.

Electrotechnique. Il sert à créer un champ magnétique (champ inducteur) dans le rotor. Electrotechnique Chapitre 1 Machine à courant continu 1- Constitution La machine à courant continu est constituée de trois parties principales : - l'inducteur - l'induit - le dispositif collecteur / balais

Plus en détail

ASSOCIATION MOTEUR-CHARGE

ASSOCIATION MOTEUR-CHARGE Sciences Appliquées, chap 6.2 ASSOCIATION MOTEUR-CHARGE 1 -Caractéristique mécanique...2 1.1 -Point de fonctionnement...2 2 -Charges mécaniques...3 2.1 -Analyse de la caractéristique mécanique d une charge...3

Plus en détail