L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE"

Transcription

1 CHAPITRE P15 L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE Introduction I) DES LIMITES DE LA MÉCANIQUE CLASSIQUE À LA MÉCANIQUE QUANTIQUE I.1. Comparaison entre la force gravitationnelle et la force électrostatique. I.2. Le modèle de RUTHERFORD et ses limites. I.3. Première limite de la mécanique classique : l interprétation des volumes atomiques I.4. Une autre limite de la mécanique classique : l interprétation de l effet photoélectrique. II) QUANTIFICATION DES NIVEAUX D ÉNERGIE ÉLECTRONIQUES D UN ATOME. II.1. Les spectres atomiques II.2. L énergie d un atome : le postulat de Bohr II.3. Interprétation énergétique des spectres atomiques III) QUANTIFICATION DES NIVEAUX D ÉNERGIE D UN ATOME, D UNE MOLÉCULE,D UN NOYAU III.1. Niveaux d énergie d un atome : exemple de l atome d hydrogène. III.2. Niveaux d énergie nucléaire III.3. Niveaux d énergie d une molécule Introduction Les 3 lois de Newton et sa loi de gravitation expliquent les phénomènes à l échelle humaine et à l échelle astronomique. Par contre, la mécanique newtonienne se révèle incapable d expliquer les phénomènes à l échelle microscopique, la structure de l atome par exemple. Il a donc fallu donc une autre théorie : la mécanique quantique. Chap. P15 1/8

2 I) DES LIMITES DE LA MÉCANIQUE CLASSIQUE À LA MÉCANIQUE QUANTIQUE I.1. Comparaison entre la force gravitationnelle et la force électrostatique. LOI DE NEWTON ( 1686 ) interaction gravitationnelle entre 2 A astres (m A ) (m B ) F F d = = G B A A B m A d² m unités SI : F en N : m en kg ; d en m G = 6, SI F B A F A B d B B LOI DE COULOMB ( 1785 ) interaction électrostatique entre 2 particules de charges opposées (par ex.) A q A > 0 F F = = k B A A B q A d² q unités SI : F en N : q en C ; d en m k = 9, SI F B A F A B d B B q B < 0 exercice : calculer F grav et F élec pour l atome d hydrogène q A = q B = e = 1, C d = 53 picomètres 1 pm = m m p = 1, kg m e- = 9, kg F grav = N et F élec = N donc F grav est négligeable devant F élec exercice : On donne : M T = 6, kg M L = 7, kg d = 3, m a) Calculer F grav entre la Terre et la Lune : F grav = N b) Quelle devrait être la charge commune portée par chacun de ces 2 astres pour que la force de Coulomb soit égale à la force gravitationnelle? Q = C c) Commenter : Analogies entre les deux forces : Ce sont deux forces à distance. Ce sont deux forces variant en 1/d² Ce sont deux forces dont les valeurs sont proportionnelles au produit des deux grandeurs qui caractérisent les corps en interaction (les masses pour l une, les charges pour l autre) Les deux forces sont portées par la droite qui passe par A et B Différences entre les deux forces : La force de gravitation est une force d attraction alors que la force électrostatique peut être attractive ou répulsive. La force de gravitation est prépondérante pour les astres, négligeable pour les atomes alors que la force électrostatique est prépondérante pour les atomes et négligeable pour les astres. Chap. P15 2/8

3 I.2. Le modèle de RUTHERFORD et ses limites. La similitude des équations pour les deux types d'interaction à conduit Ernest Rutherford, en 1911, à proposer un modèle planétaire de l'atome. Le noyau y jouait un rôle semblable à celui du Soleil et les électrons, en orbite autour du noyau, un rôle semblable à celui des planètes. Ce modèle s'est vite avéré être en contradiction avec les observations expérimentales. En tournant, les électrons devraient perdre de l'énergie par rayonnement électromagnétique et donc s'écraser sur le noyau... ce qui n est bien sûr pas le cas! I.3. Première limite de la mécanique classique : l interprétation des volumes atomiques On constate expérimentalement que les atomes d un élément donné ont tous la même taille, ce qui permet de dresser un tableau des rayons atomiques des éléments : Cette observation est contradictoire avec la mécanique classique. En effet, dans le cas des système «astres-satellites», la mécanique classique prévoit qu il est possible de mettre en orbite un satellite à n importe quelle altitude. Le rayon de l orbite, donc la taille du système, peut prendre n importe quelle valeur. De la même façon, les systèmes planétaires sont très variés : à priori, une planète peut graviter à n importe quelle distance de l astre attracteur et la taille de son orbite est fixée par les conditions initiales de lancement. Si l on imagine que l électron, soumis à la force électrostatique, évolue en mouvement circulaire et uniforme autour du proton de l atome d hydrogène, la mécanique newtonienne prévoit que tous les rayons d orbite sont possibles et donc que deux atomes d hydrogène ont à priori des rayons différents ce qui n est pas le cas! Mais les conditions initiales n interviennent plus car les atomes d hydrogène sont tous identiques. La mécanique classique ne peut pas expliquer cette observation, ni expliquer ce qui fixe les valeurs de ces caractéristiques : c est la mécanique quantique qui apporte la réponse. Remarque : Dans le monde macroscopique, la diversité est la règle commune, alors que dans le monde microscopique des atomes, c est l uniformité qui règne. Chap. P15 3/8

4 I.4. Une autre limite de la mécanique classique : l interprétation de l effet photoélectrique. I.4.a. Définition de l effet photoélectrique. L'effet photoélectrique est l'émission d'électrons par un matériau, généralement métallique, lorsque celui-ci est exposé à un rayonnement électromagnétique de fréquence suffisamment élevée, qui dépend du matériau. L effet photoélectrique a été découvert en 1887 par Heinrich Rudolf Hertz. I.4.b. Incapacité de la physique classique à donner une interprétation Dans l expérience réalisée par Hertz, les électrons ne sont émis que si la fréquence de la lumière incidente est suffisamment élevée, et la fréquence limite à partir de laquelle les électrons sont émis dépend du matériau. Si la fréquence de la lumière incidente est trop basse, l effet photoélectrique ne se manifeste plus, même pour une lumière très intense. À l époque, la physique classique considère que la lumière est une onde : cette théorie permet d'expliquer la plupart des phénomènes dans lesquels la lumière intervient, tel l'optique. Mais en considérant la lumière comme une onde, on peut penser qu une exposition prolongée à la lumière, ou une lumière plus intense, permet d accumuler de l énergie en quantité suffisante pour extraire des électrons. La physique classique ne peut donc pas expliquer le phénomène observé par Hertz I.4.c. Interprétation à l aide de la théorie des quanta En 1900, afin d interpréter l émission de rayonnement d un corps noir, Max Planck postule la quantification de l énergie transportée par les ondes lumineuses et plus généralement par les ondes électromagnétiques. C est la théorie des quanta, selon laquelle les échanges d énergie entre la matière et la lumière ne se font pas de façon continue mais par quantités élémentaires. La plus petite quantité (ou quantum) d énergie qu une onde lumineuse de fréquence peut échanger avec de la matière est proportionnelle à sa fréquence : = h... La constante de proportionnalité h est appelée constante de Planck, h = 6, J.s est en joule et est en hertz (ou s -1 ) En 1905, Albert Einstein associa à ces «grains d énergie», ou quanta d énergie, des corpuscules de lumière : les «photons». Les photons sont des particules de masse nulle, qui se déplacent à la vitesse de la lumière. Un photon appartenant à une radiation monochromatique de fréquence, donc de longueur d onde λ, a une énergie = h = h. c λ Chap. P15 4/8

5 Albert Einstein a alors interprété l effet photoélectrique comme le choc entre un photon du faisceau lumineux et un électron du métal. Ce choc conduit éventuellement à l extraction de l électron du métal : cette extraction n est possible que si le photon fournit une certaine énergie E 0 à l électron pour lui permettre de se libérer du réseau métallique. L effet photoélectrique n est donc possible que si h E 0 soit E 0 /h La valeur 0 = E 0 /h, caractéristique du métal, est appelée fréquence seuil photoélectrique : c est la valeur minimale que la fréquence de la lumière incidente doit avoir pour extraire un électron de ce métal. II) QUANTIFICATION DES NIVEAUX D ÉNERGIE ÉLECTRONIQUES D UN ATOME. II.1. Les spectres atomiques Les spectres atomiques d émission sont constitués de raies fines colorées, plus ou moins intenses, et irrégulièrement espacées. Les spectres atomiques d absorption sont constitués du spectre continu de la lumière blanche sur lequel apparaissent des raies noires, irrégulièrement espacées. Les spectres d absorption ou d émission sont des spectres de raies. Chaque raie correspond à une radiation monochromatique caractérisée par une longueur d onde λ dans le vide. Différentes sources contenant le même élément chimique présentent des spectres identiques : les longueurs d onde des raies observées sont caractéristiques de cet élément. Un spectre d émission ou d absorption constitue la signature d un atome. II.2. L énergie d un atome : le postulat de Bohr En 1913, afin d expliquer les spectres atomiques, Niels Bohr postule que l énergie d un atome d un élément donné est quantifiée. Cela signifie que l énergie d un atome ne peut prendre que certaines valeurs caractéristiques de l élément, ces valeurs sont appelées niveaux d énergie électronique de l atome et chaque niveau d énergie est caractéristique de l élément. Les différents niveaux d énergie sont représentés sur un diagramme énergétique. II.3. Interprétation énergétique des spectres atomiques II.3.a. État fondamental et transition atomique L état fondamental est l état stable de l atome. En l absence de perturbation, l atome peut rester dans cet état indéfiniment. À partir de l état fondamental, un apport d énergie extérieur va amener l atome dans un état excité, instable, où il demeure de 10-9 à 10-8 seconde. L atome va ensuite se désexciter spontanément et retourner vers l état fondamental (directement ou en passant par des états intermédiaires). Une transition atomique est le passage d un atome d un état d énergie à un autre. D après le principe de conservation de l énergie, une transition atomique s accompagne d un transfert énergétique entre l atome et le milieu extérieur. Chap. P15 5/8

6 II.3.b. Variation d énergie au cours d une transition Émission Lorsqu un atome émet un photon, la conservation de l énergie entraîne une diminution de l énergie de l atome : l atome passe donc d un niveau d énergie E i à un niveau d énergie inférieur E f. La variation d énergie E = E f E i est négative Absorption Lorsqu un atome absorbe un photon, la conservation de l énergie entraîne une augmentation de l énergie de l atome : l atome passe donc d un niveau d énergie E i à un niveau d énergie supérieur E f. La variation d énergie E = E f E i est positive E i niveau initial n i E f niveau final n f > n i E f photon d énergie E émis par l atome niveau final n f < n i E i niveau initial n i photon d énergie E absorbé par l atome II.3.c. Relation de Bohr et interprétation des spectres de raies. La fréquence i,f d un photon est liée aux énergies E i et E f par la relation de Bohr : E = E f E i = h. i,f où E est l énergie de la transition atomique réalisée. La longueur d onde de la radiation émise ou absorbée est : λ i,f = c ν i,f h.c = Ef E i Les spectres d émission ou d absorption sont donc constitués de raies car seules les longueurs d ondes qui correspondent à une transition atomique peuvent apparaître dans le spectre. Chaque raie d un spectre est associée à l émission d un photon lors d une transition atomique. III) QUANTIFICATION DES NIVEAUX D ÉNERGIE D UN ATOME, D UNE MOLÉCULE, D UN NOYAU. III.1. Niveaux d énergie d un atome : exemple de l atome d hydrogène. Pour un atome, les écarts entre les niveaux d énergie vont de quelques ev à quelques kev. On démontre que les niveaux d énergie quantifiés de l atome d hydrogène (le plus simple des atomes, 1 seul électron) sont donnés par la relation : E n = - E 0 n² n = entier ( 1, 2,3 ) = nombre quantique principal E 0 = niveau fondamental ( n = 1 ), le plus stable E 0 = 2, J = 13,6 ev E n = niveau excité ( n > 1 ) n = : atome ionisé, l électron est séparé du noyau Chap. P15 6/8

7 E n ( ev ) 0-0,85 atome ionisé n = n = 4 n E (ev) ,5 0,85-1,51-3,40 n = 3 n = 2 niveaux excités D où vient le signe «-» dans la formule? n = 1 c est le niveau le plus bas, le plus stable n = : l atome n existe plus, l électron et le proton sont séparés. On attribue la valeur nulle à ce niveau d énergie. Comme les autres niveaux sont plus bas, donc plus stables, leur énergie est négative. analogie avec la chute libre : si on prend comme niveau de référence des E pp le point le plus élevé, les autres E PP sont toutes négatives. - 13,6 niveau fondamental n = 1 III.2. Niveaux d énergie nucléaire Lors d une désintégration radioactive, le noyau fils est en général excité : il retourne dans son état stable en émettant un rayonnement γ, cette émission correspond à un changement de niveau d énergie du noyau atomique. L énergie dont il est question ici correspond à l interaction forte entre les nucléons constituant le noyau. Le rayonnement γ présente lui aussi un spectre de raies : l énergie du noyau est donc elle aussi quantifiée. L émission γ correspond à des énergies de l ordre du MeV (longueurs d onde de l ordre du picomètre) E AN E γ = 1 MeV calculer λ γ E i E f noyau fils excité noyau fils désexcité photon de fréquence ν émis par le noyau fils E γ =... J λ γ =. m =.pm rayonnement très «dur», très pénétrant, donc très dangereux. III.3. Niveaux d énergie d une molécule Une molécule est un oscillateur : elle est constamment animée de mouvements de rotation et de vibration (les liaisons sont assimilables à des ressorts). La transition entre deux niveaux d énergie de rotation correspond à une variation d énergie E de l ordre du mev (longueur d onde dans l IR lointain) La transition entre deux niveaux d énergie de vibration correspond à une variation d énergie E de l ordre de 0,1 ev (longueur d onde dans l IR) Chap. P15 7/8

8 La transition entre deux niveaux électroniques correspond, comme pour un atome, à des longueurs d ondes dans le domaine du visible et de l ultraviolet. ( E de l ordre de l ev ou du kev) La quantification des niveaux d énergie intervient dans le fonctionnement d un four à micro-onde. Application numérique : Un four à micro-ondes utilise une onde de fréquence 2,45 GHz. On calcule alors la longueur d onde de cette radiation et l énergie qu elle transporte : λ =. qui correspond à l IR lointain E = J. ev Cette fréquence correspond à une des fréquences propres de vibration/rotation de la molécule d eau : les molécules d eau du corps placé dans le four à micro-ondes vibrent donc par résonance avec une grande amplitude. Les collisions entre molécules d eau augmentent et une grande partie de l énergie d oscillation se transforme en énergie thermique : le corps s échauffe. Chap. P15 8/8

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses.

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses. Physique quantique 15 CHAPITRE Jusqu'au début du XX ème siècle, la physique s'est développée dans le cadre de la mécanique créée par Newton. Connaître, à un instant donné, la position du corps et toutes

Plus en détail

Physique quantique. Chapitre 17

Physique quantique. Chapitre 17 Chapitre 17 Physique quantique RÉVISION ET RÉSUMÉ Interaction gravitationnelle La force d interaction gravitationnelle entre deux corps de masses m A et m B s écrit : F G =G m Am B r oùg=6, 67 10 11 N.m.kg

Plus en détail

Introduction au monde quantique.

Introduction au monde quantique. Introduction au monde quantique. Introduction : l état de la physique à la fin du XIX e siècle. A la fin du XIX e siècle, la physique classique était basée sur deux grandes théories : la mécanique Newtonienne

Plus en détail

Chapitre 18. allal Mahdade. 2 mai 2017

Chapitre 18. allal Mahdade. 2 mai 2017 Chapitre 18 Groupe scolaire La Sagesse Lycée qualifiante 2 mai 2017 1 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4 5 2 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4 5 2 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4

Plus en détail

Spectre atomique. Gaz à faible pression

Spectre atomique. Gaz à faible pression I- La quantification de l énergie 1/ Expérience de Franck et Hertz Spectre atomique a- Schéma simplifié du dispositif expérimental Cette expérience consiste à bombarder de la vapeur de mercure sous faible

Plus en détail

Chap. II : Les spectres atomiques Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule???

Chap. II : Les spectres atomiques Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule??? Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule??? II.1.a. Nature ondulatoire (onde) Les ondes lumineuses sont des ondes électromagnétiques

Plus en détail

Exercices d introduction à la physique quantique

Exercices d introduction à la physique quantique Constante de Planck : h = 6,626.10 34 J.s. Charge élecrique élémentaire : e = 1,602.10 19 C. Célérité de la lumière dans le vide : c = 3,00.10 8 m s 1. 1 Vrai ou faux 1. La force d interaction électrique

Plus en détail

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev)

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev) I- la quantification du transfert d énergie entre un atome et le milieu extérieur. 1 / Expérience de Frank et Hertz : a- Dispositif expérimental Canon à électrons : Permettant d'obtenir des électrons de

Plus en détail

Cours n 16 : Physique quantique

Cours n 16 : Physique quantique Cours n 16 : Physique quantique 1) Nature corpusculaire de la lumière La lumière peut être vue sous deux aspects : ondulatoire et corpusculaire. Dans ce chapitre nous allons étudier l aspect corpusculaire.

Plus en détail

Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES

Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES MODELES DE L ATOME. Modèle de Rutherford (1911) Modèle de Bohr 1913 (cas de l'atome d'hydrogène) Modèle de De Broglie

Plus en détail

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique (1) (2) (3) (4) (5) (6) Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique Connaissances et savoir-faire exigibles : Connaître les expressions de la force d interaction gravitationnelle

Plus en détail

CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE

CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE Lycée International des Pontonniers Avril 2018 I. Transferts quantiques d énergie 1. Rappels de 1 re S Contrairement à ce que prévoit

Plus en détail

Les échecs de la physique classique

Les échecs de la physique classique Les échecs de la physique classique La mécanique quantique : pourquoi est-elle nécessaire? Au début du XXième siècle, de plus en plus d expériences n étaient pas en accord avec la physique qui était établie

Plus en détail

Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1. 1 Tester ses prérequis

Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1. 1 Tester ses prérequis Compétences exigibles Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1 Interpréter les échanges d énergie entre lumière et matière à l aide du modèle corpusculaire

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie. I. Quantification des niveaux d énergie de la matière. 1. Modèle corpusculaire de la lumière

Plus en détail

Chapitre 3 : Les sources de lumières colorées (p. 45)

Chapitre 3 : Les sources de lumières colorées (p. 45) PARTIE 1 - OBSERVER : COULEURS ET IMAGES Chapitre 3 : Les sources de lumières colorées (p. 45) Compétences attendues : Distinguer une source polychromatique d une source monochromatique caractérisée par

Plus en détail

CH3 UNE ORIGINE AU CŒUR DE LA MATIERE

CH3 UNE ORIGINE AU CŒUR DE LA MATIERE CH3 UNE ORIGINE AU CŒUR DE LA MATIERE «La lumière donne la couleur et l éclat à toutes les productions de la nature et de l art ; elle multiplie l Univers en le peignant dans les yeux de tout ce qui respire.»

Plus en détail

Chapitre II. Modèles classiques de Rutherford et de Bohr. Université Cadi Ayyad Faculté Polydisciplinaire Safi. Département de Chimie

Chapitre II. Modèles classiques de Rutherford et de Bohr. Université Cadi Ayyad Faculté Polydisciplinaire Safi. Département de Chimie Université Cadi Ayyad Faculté Polydisciplinaire Safi Département de Chimie Chapitre II Modèles classiques de Rutherford et de Bohr Pr. M. El HIMRI Octobre 2015 Pr. H. ANANE Questions: Comment sont répartis

Plus en détail

Physique Sources de lumières colorées et photon Chap.4-5

Physique Sources de lumières colorées et photon Chap.4-5 1 ère S Thème : Couleurs et images Activités Physique Sources de lumières colorées et photon Chap.4-5 I. La lumière 1. Les ondes électromagnétiques - Voir Document 1 Connaissances exigibles : Distinguer

Plus en détail

Matière microscopique : une description quantique est nécessaire

Matière microscopique : une description quantique est nécessaire Chapitre 3 Matière microscopique : une description quantique est nécessaire I Spectres d absorption et d émission (observation de la lumière émise ou absorbée par une espèce chimique donnée) 1) xpériences,

Plus en détail

Thème 2 : Lumière et matière colorée / CHAP3

Thème 2 : Lumière et matière colorée / CHAP3 Thème 2 : Lumière et matière colorée / CHAP3 DOC1 : Quelques données numériques Couleur violet bleu vert jaune orange rouge λ (nm) 400-435 435-500 500-570 570-600 600-625 625-700 1 ev = 1,6.10-19 J c =

Plus en détail

Transferts quantiques d énergie et dualité onde-particule

Transferts quantiques d énergie et dualité onde-particule 1. Onde électromagnétique et photon Au début du XXème siècle, la nature ondulatoire de la lumière est presque unanimement admise. 1.1. Insuffisance du modèle ondulatoire Expérience de Hertz (physicien

Plus en détail

Cours et activités : La mécanique quantique

Cours et activités : La mécanique quantique Cours et activités : La mécanique quantique Par analogie avec le mouvement des planètes, Ernest Rutherford propose en 1911 son modèle planétaire pour l atome. Les électrons (alias planètes) tourneraient

Plus en détail

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE TaleS / P15 İNTRODUCTİON A LA PHYSİQUE QUANTİQUE 1/ LA DUALİTÉ ONDE-PARTİCULE : Activité 15.1 a Dualité onde-particule de la lumière : Les phénomènes de diffraction et d interférences s expliquent par

Plus en détail

Nature de la lumie re

Nature de la lumie re Sciences Physiques Unité : Optique Chapitre: Chapitre 3 Lumière et Matière Fiche de Cours S. Zayyani Nature de la lumie re On vient de voir, dans le chapitre précédent, qu une couleur peut être spectrale.

Plus en détail

RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE. 1) Aspect ondulatoire: I. INTRODUCTION

RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE. 1) Aspect ondulatoire: I. INTRODUCTION RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE 1) Aspect ondulatoire: I. INTRODUCTION Les rayonnements électromagnétiques englobent un ensemble de rayonnements de nature physique identique, mais très

Plus en détail

TUT RENTRÉE COURS 1 PARTICULES, ONDES ET ATOMES

TUT RENTRÉE COURS 1 PARTICULES, ONDES ET ATOMES TUT RENTRÉE COURS 1 PARTICULES, ONDES ET ATOMES I. MASSE ET ÉNERGIE A. Définition La masse est la mesure de la quantité de matière d un corps. En physique, il s agit d atomes isolés ou de particules élémentaires,

Plus en détail

I. Absorption et émission quantique

I. Absorption et émission quantique CHAPITRE N 2 PARTIE D TRANSFERT QUANTIQUE D ENERGIE TS I. Absorption et émission quantique 1. Quantification des niveaux d énergie Les niveaux d énergie d un atome sont quantifiés, ils ne peuvent pendre

Plus en détail

Activité 1 : Les tubes fluorescents.

Activité 1 : Les tubes fluorescents. Chapitre 3: Quels principes expliquent l émission d une lumière colorée? I. Sources de lumières colorées. Distinguer une source polychromatique d une source monochromatique caractérisée par une longueur

Plus en détail

Chapitre III : structure des atomes: classification

Chapitre III : structure des atomes: classification . Historique. Structure de l atome: - particules élémentaires -spectres atomiques - aspect ondulatoire 3. orbitales atomiques et configuration électronique 4. Classification périodique 5. Stabilité électronique

Plus en détail

COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13)

COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) 1 COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) SDM VOLUME HORAIRE : 24 heures Séances Cours : 12 heures 6 Travaux dirigés : 12 heures 6 Contrôles : 1

Plus en détail

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption.

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption. FICHE 1 Fiche à destination des enseignants 1S 5 INTERACTION LUMIERE- MATIERE Type d'activité Activité-cours. Notions et contenus Interaction lumière-matière : émission et absorption. Quantification des

Plus en détail

PRINCIPES GENERAUX DE LA SPECTROSCOPIE

PRINCIPES GENERAUX DE LA SPECTROSCOPIE 1 CHAPITRE I PRINCIPES GENERAUX DE LA SPECTROSCOPIE I - INTRODUCTION L'interaction de la lumière avec la matière est à l origine de la majeur partie des phénomènes électriques, magnétiques, optiques et

Plus en détail

PARTIE II : COMPRENDRE. Chapitre 15 Transferts quantiques d énergie et dualité onde-particule

PARTIE II : COMPRENDRE. Chapitre 15 Transferts quantiques d énergie et dualité onde-particule PARTIE II : COMPRENDRE Connaître le principe de l émission stimulée et les principales propriétés du laser (directivité, monochromaticité, concentration spatiale et temporelle de l énergie). Mettre en

Plus en détail

La Mécanique Quantique. La physique du monde submicroscopique

La Mécanique Quantique. La physique du monde submicroscopique La Mécanique Quantique La physique du monde submicroscopique Sept. 2014 Les origines de la théorie quantique Les 3 phénomènes inexpliqués par la physique «classique», au début du 20è siècle: - le rayonnement

Plus en détail

Sources de lumière colorée

Sources de lumière colorée Sources de lumière colorée " Que la lumière soif Et la lumière but. " André Beucler, poète, romancier et scénariste français du XX e siècle Prérequis : Le Soleil, les étoiles et les lampes sont des sources

Plus en détail

1ere S Chapitre 4 : Les sources de lumières colorées 1/5

1ere S Chapitre 4 : Les sources de lumières colorées 1/5 1 ere S Chapitre 4 : Les émissions de lumières colorées Thème Observer BO Notions et contenus Sources de lumière colorée Différentes sources de lumière : étoiles, lampes variées, laser, DEL, etc. Domaines

Plus en détail

Chapitre 1. Atomistique. 1. Structure de l atome

Chapitre 1. Atomistique. 1. Structure de l atome Chapitre 1 Atomistique 1. Structure de l atome La notion élémentaire dont on a besoin, lorsqu on étudie la constitution de la matière, est celle de l atome ; cette notion est née sur les bords de la mer

Plus en détail

Chapitre 5. Dualité onde-corpuscule. 5.1 Aspect corpusculaire de la lumière Expérience de Hertz (1887)

Chapitre 5. Dualité onde-corpuscule. 5.1 Aspect corpusculaire de la lumière Expérience de Hertz (1887) Chapitre 5 Dualité onde-corpuscule 5.1 Aspect corpusculaire de la lumière 5.1.1 Expérience de Hertz (1887) Une plaque de zinc montée sur un électroscope est chargée, puis éclairée par la lumière émise

Plus en détail

Première partie : modèle de l atome et tableau périodique des éléments

Première partie : modèle de l atome et tableau périodique des éléments Première partie : modèle de l atome et tableau périodique des éléments Introduction A. Analyse élémentaire B. Modèle de l atome : électrons, nucléons, isotopie ; mole, nombre d Avogadro ; édifices moléculaires,

Plus en détail

Cours élaboré par : PROFESSEUR SFAXI SALAH. Chapitre : SPECTRE ATOMIQUE ET QUANTIFICATION DES ECHANGES D ENERGIES

Cours élaboré par : PROFESSEUR SFAXI SALAH. Chapitre : SPECTRE ATOMIQUE ET QUANTIFICATION DES ECHANGES D ENERGIES Cours élaboré par : PROFESSEUR SFAXI SALAH Classes : EME SC-MATH-TEC année : 00/0 Chapitre : SPECTRE ATOMIQUE ET QUANTIFICATION DES ECHANGES D ENERGIES I) Spectre de l atome d hydrogène ) Expérience Gaz

Plus en détail

L ATOME : CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS REPRÉSENTATION ET CONFIGURATION ÉLECTRONIQUE

L ATOME : CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS REPRÉSENTATION ET CONFIGURATION ÉLECTRONIQUE L ATOME : CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS REPRÉSENTATION ET CONFIGURATION ÉLECTRONIQUE STRUCTURE DU NOYAU I. Constituants de la matière - Cristaux et molécules (dimensions variables ; énergie dissociation

Plus en détail

Transferts quantiques d'énergie et dualité onde-particule

Transferts quantiques d'énergie et dualité onde-particule Transferts quantiques d'énergie et dualité onde-particule Comment la matière se comporte-t-elle à l'échelle microscopique? 1) Ondes ou particules? 1) La lumière Les phénomène de diffraction et interférences

Plus en détail

Spectroscopie et sources lumineuses

Spectroscopie et sources lumineuses Chapitre 3 Spectroscopie et sources lumineuses 3.1 Spectre de différentes sources de lumière 3.1.1 Domaine spectral proche du visible La lumière est une onde électromagnétique, c est à dire une perturbation

Plus en détail

PROGRESSION sur L ANNEE SCOLAIRE

PROGRESSION sur L ANNEE SCOLAIRE PROGRESSION sur L ANNEE SCOLAIRE ONDES 1. Ondes et particules 2. Caractéristiques des ondes 3. Propriétés des ondes ANALYSE CHIMIQUE 4. Analyse spectrale 5. Réaction chimique par échange de proton 6. Contrôle

Plus en détail

Chapitre 9 : Dualité onde-particule

Chapitre 9 : Dualité onde-particule Chapitre 9 : Dualité onde-particule 1. Ondes ou particules? 1.1. Aspect ondulatoire de la lumière Dans son «Traité de la lumière», Christian Huygens interprète la lumière comme la propagation d une onde.

Plus en détail

Chapitre 1 PHENOMENES QUANTIQUES GENERALITES

Chapitre 1 PHENOMENES QUANTIQUES GENERALITES Chapitre 1 PHENOMENES QUANTIQUES GENERALITES Leçon L2 Différents phénomènes physiques liés au comportement corpusculaire de la lumière Plan 1. Energie, matière, rayonnement : rappel des définitions 2.

Plus en détail

Sources de lumière. En déduire une relation entre λ et T puis une relation entre λ et f :

Sources de lumière. En déduire une relation entre λ et T puis une relation entre λ et f : 1 Sources de lumière I. La lumière : une onde 1. Longueurs d ondes Expérience : propagation d une onde à la surface de l eau La longueur d onde λ correspond à la distance qui sépare 2 vagues. Les vagues

Plus en détail

La structure atomique. Chimie 11

La structure atomique. Chimie 11 La structure atomique Chimie 11 L'atome Un atome est constitué d'électrons qui gravitent autour d'un noyau. Le noyau est composé de protons et de neutrons (nucléons). Stabilité : nombre de protons = nombre

Plus en détail

CHAPITRE IV : RAYONNEMENTS

CHAPITRE IV : RAYONNEMENTS CHAPITRE IV : RAYONNEMENTS IV. PHYSIQUE GENERALE DES RADIATIONS : On entend par rayonnement, la propagation d énergie à travers l espace. IV.. Classification des rayonnements: Les rayonnements sont classés

Plus en détail

Stage de Pré Rentrée Rayonnement et Matière

Stage de Pré Rentrée Rayonnement et Matière Stage de Pré Rentrée 2010 Rayonnement et Matière Sommaire I. Généralités sur les ondes II. Le modèle ondulatoire de la lumière III. Ouverture au monde quantique IV. Décroissance radioactive V. Noyau, Masse

Plus en détail

II- La lumière émise par une source chaude dépend-elle de sa température?

II- La lumière émise par une source chaude dépend-elle de sa température? Chapitre II : Sources de lumières colorées Et la lumière fut! Outre le Soleil qui éclaire notre planète, il existe une grande diversité de sources lumineuses, des ampoules classiques aux DEL en passant

Plus en détail

PRINCIPES GENERAUX DE LA SPECTROSCOPIE

PRINCIPES GENERAUX DE LA SPECTROSCOPIE Chapitre I PRINCIPES GENERAUX DE LA SPECTROSCOPIE I - DEFINITION La spectroscopie est l étude du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des

Plus en détail

PARTICULES, ONDES ET ATOMES UE3A - BIOPHYSIQUE TUT RENTRÉE 2016/ COURS 1

PARTICULES, ONDES ET ATOMES UE3A - BIOPHYSIQUE TUT RENTRÉE 2016/ COURS 1 PARTICULES, ONDES ET ATOMES UE3A - BIOPHYSIQUE TUT RENTRÉE 2016/2017 - COURS 1 PLAN I. MASSE ET ÉNERGIE II. PARTICULES MATÉRIELLES III. RAYONNEMENTS ÉLECTROMAGNÉTIQUES IV. DUALITÉ ONDE-PARTICULE V. STRUCTURE

Plus en détail

L ATOME DE BOHR-SOMMERFELD ET LES NOMBRES QUANTIQUES

L ATOME DE BOHR-SOMMERFELD ET LES NOMBRES QUANTIQUES L ATOME DE BOHR-SOMMERFELD ET LES NOMBRES QUANTIQUES Modèle planétaire de Rutherford Selon les expériences de Rutherford : l atome est constitué par un ensemble d électrons plus ou moins nombreux,ennombrez,formantle

Plus en détail

Tableau 1.1 Principales caractéristiques de l électron, du proton et du neutron. Charge * Masses (m e, m p, m n ) *

Tableau 1.1 Principales caractéristiques de l électron, du proton et du neutron. Charge * Masses (m e, m p, m n ) * CORTÈGE ÉLECTRONIQUE D UN ATOME ET CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS RAPPELS DE COURS. CONSTITUTION DE L ATOME Protons-Neutrons-Électrons Les atomes sont les premiers corpuscules différenciés de la

Plus en détail

Sources de lumière colorée

Sources de lumière colorée 2 novembre 2012 Sources de lumière colorée Table des matières 1 Différentes sources de lumière 2 2 Sources monochromatiques ou polychromatiques 4 3 Lumière et ondes électromagnétiques 5 4 Couleur des corps

Plus en détail

LES SOURCES DE LUMIERE ET LES SPECTRES

LES SOURCES DE LUMIERE ET LES SPECTRES LS SOURCS D LUMIR T LS SPCTRS 1. Les spectres d émission Un spectre d émission est un spectre produit par la lumière directement émise par une source (lampe à incandescence, corps chauffé, lampe à vapeur

Plus en détail

TP4: La lumière... onde ou particules?

TP4: La lumière... onde ou particules? TP4: La lumière... onde ou particules? 1. Les sources de lumière: Les lampes à incandescence sont constituées par un filament métallique porté à haute température par le passage d un courant électrique.

Plus en détail

L ATOME. 1.2 Composition d un noyau atomique Le noyau est composé de nucléons : les protons et les neutrons.

L ATOME. 1.2 Composition d un noyau atomique Le noyau est composé de nucléons : les protons et les neutrons. L ATOME 1. Description de l atome 1.1 Le modèle de l atome L atome est constitué d un noyau central de diamètre de l ordre de 10-14 m, chargé positivement, autour duquel gravite un cortège électronique.

Plus en détail

Introduction à l interaction lumière-matière

Introduction à l interaction lumière-matière 1 Introduction Introduction à l interaction lumière-matière Tous les corps ne se comportent pas de la même manière vis à vis de la lumière. En effet, certains sont transparents tandis que d autres sont

Plus en détail

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler 1 Le rayonnement de corps noir Rappels : Propriétés essentielles

Plus en détail

Bibliographie. P.H. Communay «physique quantique» Groupe de recherche et édition. Berkeley «Cours de physique» vol 4 : Méca quantique Armand Colin

Bibliographie. P.H. Communay «physique quantique» Groupe de recherche et édition. Berkeley «Cours de physique» vol 4 : Méca quantique Armand Colin Mécanique Quantique Frédéric Le Quéré Equipe de Chimie Théorique Labo de Modélisation et Simulation Multi Echelle Bât Lavoisier, bureau K35 (3ème étage) lequere@univ-mlv.fr Bibliographie P.H. Communay

Plus en détail

COURS. La matière est constituée d atomes reliés entre eux pour donner des molécules (ce qui ne devrait surprendre aucun étudiant).

COURS. La matière est constituée d atomes reliés entre eux pour donner des molécules (ce qui ne devrait surprendre aucun étudiant). Chapitre 1 Atomistique COURS Dans ce chapitre, nous commençons par un bref rappel sur la structure de la matière, à seule fin de rafraîchir la mémoire de certains étudiants (d autres les trouveront certainement

Plus en détail

Sources de lumière colorée Interaction lumière-matière

Sources de lumière colorée Interaction lumière-matière CH03 CH04 Sources de lumière colorée Interaction lumière-matière Table des matières 1 Différentes sources de lumière 2 2 Sources monochromatiques ou polychromatiques 5 3 Lumière et ondes électromagnétiques

Plus en détail

λ = hc Exercice 19 p 417 L énergie du photon est liée à la fréquence de la radiation associée par la relation E = hν. Par ailleur ν= c/λ

λ = hc Exercice 19 p 417 L énergie du photon est liée à la fréquence de la radiation associée par la relation E = hν. Par ailleur ν= c/λ T6 énergie ch4 Mécanique quantique Exercice 15 p 417 a. Le schéma du bas représente une absorption (l atome est initialement dans l état fondamental) et le schéma du haut 1 une émission (atome initialement

Plus en détail

Sources de lumières colorées

Sources de lumières colorées Sources de lumières colorées 5h Quelles sont les différentes sources de lumière et comment fonctionnentelles? 1) Différencier les sources lumineuses Activité : Des sources lumineuses différentes Les sources

Plus en détail

PHYSIQUE. (Révisions vacances d hiver 2013)

PHYSIQUE. (Révisions vacances d hiver 2013) PHYSIQUE (Révisions vacances d hiver 2013) Séance 3 ONDES : RAYONNEMENT DANS L UNIVERS CARACTERISTIQUES DES ONDES MECANIQUES PROPRIETES DES ONDES PERIODIQUES-DIFFRACTION Exercice Type 1 : Ondes progressives

Plus en détail

Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique Atomistique

Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique Atomistique Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique I-ASPECTS DE LA MECANIQUE QUANTIQUE :... 4 - Dualité onde-corpuscules... 4 a- Dispositif expérimental...

Plus en détail

2- Fréquence d une radiation La fréquence. d une radiation est liée à sa longueur d onde dans le vide.. par la relation :

2- Fréquence d une radiation La fréquence. d une radiation est liée à sa longueur d onde dans le vide.. par la relation : Couleurs et images Physique LE PHOTON I- Lumière et énergie 1- Préalable La lumière transporte de l : Une lampe de poche de la lumière grâce à l énergie fournie par les piles qui s usent. La matière récupère

Plus en détail

Chapitre 1: Lumière et spectroscopie

Chapitre 1: Lumière et spectroscopie Chapitre 1: Lumière et spectroscopie Une science qui utilise la lumière pour analyser les propriétés des atomes, molécules et matériaux Elle utilise les fréquences (COULEURS, ENERGIES) de la lumière émise

Plus en détail

L ATOME. 1.2 Composition d un noyau atomique Le noyau est composé de nucléons : les protons et les neutrons.

L ATOME. 1.2 Composition d un noyau atomique Le noyau est composé de nucléons : les protons et les neutrons. L ATOME 1. Description de l atome 1.1 Le modèle de l atome L atome est constitué d un noyau central de diamètre de l ordre de 10-14 m, chargé positivement, autour duquel gravite un cortège électronique.

Plus en détail

Chapitre 5 : L électron et interactions L effet photoélectrique

Chapitre 5 : L électron et interactions L effet photoélectrique Chapitre 5 : L électron et interactions L effet photoélectrique Plan 1. Introduction 2. Interaction lumière / métal 3. Effet photoélectrique 4. Conclusion 1 Importance des électrons Constituant de la matière,

Plus en détail

PROGRESSION sur L ANNEE SCOLAIRE

PROGRESSION sur L ANNEE SCOLAIRE PROGRESSION sur L ANNEE SCOLAIRE ONDES 1. Ondes et particules 2. Caractéristiques des ondes 3. Propriétés des ondes ANALYSE CHIMIQUE 4. Analyse spectrale 5. Réaction chimique par échange de proton 6. Contrôle

Plus en détail

DM n o 9 (dernier) TS Physique 3 (lumière), 16 (énergies) et 17 (quantique) Exercice 1 Étude énergétique des oscillateurs mécaniques

DM n o 9 (dernier) TS Physique 3 (lumière), 16 (énergies) et 17 (quantique) Exercice 1 Étude énergétique des oscillateurs mécaniques DM n o 9 (dernier) TS Physique 3 (lumière), 6 (énergies) et 7 (quantique) Exercice Étude énergétique des oscillateurs mécaniques Partie A Pendule simple On étudie un pendule simple constitué d une masse

Plus en détail

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique.

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique. ① OBJECTIF Connaître le spectre de la lumière solaire et le spectre électromagnétique. 1- Décomposition du rayonnement visible solaire On obtient une plage multicolore s étalant du rouge au violet en passant

Plus en détail

Chapitre 2 : Atomistique DOCUMENT DE COURS CHAPITRE 2 : ATOMISTIQUE

Chapitre 2 : Atomistique DOCUMENT DE COURS CHAPITRE 2 : ATOMISTIQUE DOCUMENT DE COURS CHAPITRE 2 : ATOMISTIQUE DOCUMENT 1 : CARACTERISTIQUES DE L ATOME ET DE SES CONSTITUANTS Nucléons (A) Rayon Masse Charge Atome 10-10 m A x m n neutre Noyau 10-14 m = A x m n chargé positivement

Plus en détail

Points essentiels. Découverte accidentelle. Introduction. Observations de Lenard. L étude de Lenard 8/10/10

Points essentiels. Découverte accidentelle. Introduction. Observations de Lenard. L étude de Lenard 8/10/10 Points essentiels Observations expérimentales Échec de la théorie ondulatoire Explication quantique Expérience de Millikan La dualité onde-corpuscule 1 Découverte accidentelle Introduction L effet photoélectrique

Plus en détail

B - LES SPECTRES ATOMIQUES

B - LES SPECTRES ATOMIQUES B - LES SPECTRES ATOMIQUES A l'échelle macroscopique, les énergies (l'énergie cinétique d'un solide, l'énergie électrique dissipée par effet Joule, etc...) varient de façon continue. A l'échelle microscopique,

Plus en détail

Histoire des sciences : La Mécanique Quantique

Histoire des sciences : La Mécanique Quantique Histoire des sciences : La Mécanique Quantique «Quiconque n'est pas choqué par la mécanique quantique ne la comprend pas.» Niels Bohr Plan Chapitre I : Introduction I. Définition de la mécanique quantique

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé / L0 Santé - Olivier CAUDRELIER oc.polyprepas@orange.fr 1 Données générales : é é é è..,.. é :,. ;,. exercice 1 : a) Calculer,

Plus en détail

CHAPITRE I NOTIONS DE BASE DE LA SPECTROSCOPIE

CHAPITRE I NOTIONS DE BASE DE LA SPECTROSCOPIE CHAPITRE I NOTIONS DE BASE DE LA SPECTROSCOPIE I - INTRODUCTION La spectroscopie est l ensemble des techniques qui permettent d analyser : - la lumière émise par une source lumineuse - la lumière transmise

Plus en détail

STRUCTURE DE L ATOME :

STRUCTURE DE L ATOME : STRUCTURE DE L ATOME : L atome est constitué d un noyau (association de protons et de neutrons) autour duquel des électrons se déplacent. Le numéro atomique noté Z correspond au nombre de protons dans

Plus en détail

I. Dualité onde/photon : une onde lumineuse.

I. Dualité onde/photon : une onde lumineuse. Terminale S Partie B : Comprendre : lois et modèles Chapitre 15 : Un peu de physique quantique. I. Dualité onde/photon : une onde lumineuse. Savoir que la lumière présente des aspects ondulatoire et particulaire.

Plus en détail

Chapitre 7 De l atome à l univers

Chapitre 7 De l atome à l univers Chapitre 7 De l atome à l univers Du plus petit au plus grand Ordre de grandeur L ordre de grandeur d une longueur est la puissance de 10 la plus proche de sa valeur. Activité 1 : Complétez la ligne des

Plus en détail

La structure atomique. Chimie 11

La structure atomique. Chimie 11 La structure atomique Chimie 11 L'atome Un atome est constitué d'électrons qui gravitent autour d'un noyau. Le noyau est composé de protons et de neutrons. Stabilité : nombre de protons = nombre d'électrons

Plus en détail

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm.

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm. Données : constante de Planck : h=6,63.0-34 J.s ; ev correspond à,60.0-9 J ; c=3,00.0 8 m.s - ; Loi de Wien : avec en C et max en nm. Exercice (6 points) Rayonnements UV et IR. Les ondes lumineuses visibles

Plus en détail

La physique électrique

La physique électrique Introduction La physique décrit les phénomènes naturels observables dans tous les milieux, que ce soit mécanique, nucléaire, thermique, cosmique, électriques, ou autre. Des relations mathématiques permettent

Plus en détail

CHAPITRE I : ATOMISTIQUE

CHAPITRE I : ATOMISTIQUE CHAPITRE I : ATOMISTIQUE 1. Structure de l atome. - Le noyau et les électrons. - Les atomes sont constitués d un noyau très dense, chargé positivement, entouré d électrons (charge électrique négative).

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC STAV ACTIVITÉS 1 LE SPECTRE ÉLECTROMAGNÉTIQUE 2 ASPECT ONDULATOIRE DE LA LUMIÈRE 3 ASPECT CORPUSCULAIRE DE LA LUMIÈRE 1 Activité 1 OBJECTIF

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO ① LA LUMIÈRE SOLAIRE ② ASPECT ONDULATOIRE DE LA LUMIÈRE ③ ASPECT CORPUSCULAIRE DE LA LUMIÈRE OBJECTIFS DES ACTIVITÉS Connaître

Plus en détail

Chapitre 14 : Dualité onde corpuscule

Chapitre 14 : Dualité onde corpuscule Chapitre 14 : Dualité onde corpuscule Dualité onde-particule Photon et onde lumineuse. Particule matérielle et onde de matière ; relation de de Broglie. Interférences photon par photon, particule de matière

Plus en détail

Chapitre 5: Interaction des neutrons avec la matière

Chapitre 5: Interaction des neutrons avec la matière Chapitre 5: Interaction des neutrons avec la matière 1 Contenu Introduction Mécanismes d interaction Sections efficaces d interaction Modération et parcours des neutrons Pour plus de détails voir cours

Plus en détail

: SPECTRE D ABSORPTION ET D EMISSION D UN ATOME

: SPECTRE D ABSORPTION ET D EMISSION D UN ATOME TP 5 : SPECTRE D ABSORPTION ET D EMISSION D UN ATOME Pourquoi le spectre d'émission d'une lampe à vapeur de mercure présente-t-il des raies? Le modèle proposé par le physicien Niels Bohr permet de le comprendre.

Plus en détail

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015 DS DE PHYSQUE-CHME DU 19 NOVEMBRE 2015 Rendre l énoncé avec la copie. Documents interdits. Calculatrice autorisée. Soigner la présentation. Numéroter correctement les questions. EXERCCE 1 : LES RAYONS

Plus en détail

Interactions lumière-matière

Interactions lumière-matière Interactions lumière-matière La lumière est une source immédiate de connaissance du monde qui nous entoure. Pourtant, c est un «objet» physique particulièrement complexe que les physiciens n ont eu de

Plus en détail