BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

Dimension: px
Commencer à balayer dès la page:

Download "BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES"

Transcription

1 BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P Brazzavlle

2 BAMSI REPRINT 04/2003 Introducton à l analyse des données (*) Samuel AMBAPOUR (**) Ce caher n est pas un cours. On y nsste sur le tratement pratque des données et sur les applcatons des dfférentes méthodes d analyse. Un même exemple llustratf est utlsé tout au long de l exposé et sert de base pour la comparason des méthodes utlsées. Pour des exposés théorques complets de ces méthodes, le lecteur est nvté à consulter les ouvrages de base ctés en référence. Grâce à l outl nformatque et notamment à de nombreux logcels commercalsés sur mcro-ordnateurs, l utlsateur de l analyse des données peut désormas se consacrer aux tâches essentelles à savor, le chox de la méthode et l nterprétaton des résultats. Dans ce caher, l est fat usage du logcel ADDAD dffusé par l assocaton du même nom (***) Données ). ( Assocaton pour le Développement et la Dffuson de l Analyse des (*) Ce texte a été publé dans les cahers du CASP n 3-4, décembre 1992 (**) Ensegnant au CASP (***) Ce caher s nspre, au nveau de la forme et du langage, des travaux de cette assocaton.

3 TABLE DES MATIERES 1. INTRODUCTION 2. UN PEU D HISTOIRE 3. TYPES DE TABLEAUX ANALYSABLES 4. ANALYSE GENERAL 5. L ANALYSE EN COMPOSANTES PRINCIPALES 5.1. Les données Les obectfs 5.2. La méthode Le tableau de données Analyse des ponts ndvdus de N ( I) dans R Analyse des ponts ndvdus de N ( J) dans R Relaton entre les ponts de N ( I) et de N ( J) Analyse des ponts supplémentares 5.3. Interprétaton de l Analyse en Composantes Prncpales Tableau des données de base Matrce de corrélatons des varables Vecteurs et valeurs propres de la matrce de corrélaton Tableau des facteurs sur I Tableau des facteurs sur J Représentatons graphques J J I I P n

4 6. L ANALYSE FACTORIELLE DES CORRESPONDANCES 6.1. Les données Les obectfs 6.2. La méthode Le tableau de données Analyse des ponts de N J ( I) dans p R Analyse des ponts de N ( J) dans R I Relatons entre les ponts de N ( I) et les ponts de N ( J ) Eléments supplémentares 6.3. Interprétaton d une analyse factorelle des correspondances Tableau des données de base Vecteurs et valeurs propres Tableaux des facteurs sur I et sur J : ades à l nterprétaton Représentatons graphques 6.4. Analyse des correspondances multples Tableau dsonctf complet Tableau de Burt Equvalence entre les deux analyses précédentes Calcul de contrbutons dans le tableau dsonctf complet Interprétaton d une analyse des correspondances multples Tableau des données de base Valeurs propres Tableaux des facteurs sur et J Représentaton graphque J n I

5 7. CLASSIFICATION ASCENDANTE HIERARCHIQUE 7.1. Prncpes généraux Partton et hérarche Classfcaton ascendante et classfcaton descendante Constructon d une classfcaton ascendante hérarchque Crtères d agrégaton 7.2. L nterprétaton d une classfcaton ascendante hérarchque Le tableau des données Hstogramme des ndces de nveau de la hérarche Le tableau du contenu des classes Représentaton de la classfcaton ascendante hérarchque Calcul de contrbutons Etude des classes par rapport à des axes. Formulare Etude des classes par rapport à des axes. Exemple Etude des dpôles par rapport à des axes. Formulare Etude des dpôles par rapport à des axes. Exemple Contrbutons relatves mutuelles entre classes et facteurs Introducton des nœuds de la classfcaton dans le graphque de l analyse factorelle REFERENCES BIBLIOGRAPHIQUES

6 Avec l Analyse des Données fondée sur l usage de l ordnateur, c est une nouvelle méthodologe que la statstque apporte à la scence et notamment aux scences de l homme. J-P. Benzécr L Analyse des Données n est certes pas smplement un ensemble de technques nouvelles et, sans être le vecteur phlosophque de la recherche du sens de toute chose, c est quand même une nouvelle manère d être, face à un tableau de données. J-P. Fenelon. Les servces rendus montrent ben que l Analyse des Données consttue auourd hu, et de lon, la parte la plus mmédatement rentable de la statstque. G. Morlat 1. Introducton Il n y a pas très longtemps, on ne pouvat pas trater un tableau de 3000 lgnes et 300 colonnes. L apparton et le développement des ordnateurs a du coup levé cet obstacle de calcul, et a perms la conservaton et l explotaton des grandes masses de données. Cette améloraton contnue de l outl nformatque a fortement contrbué au développement et à la vulgarsaton de nombreuses méthodes statstques, devenues mantenant d usage assez courant. Auourd hu, des vastes données d enquêtes sont dépoullées et, fournssent de grands tableaux qu se prêtent asément à l nterprétaton. Des données ssues d nvestgatons spécfques sont rassemblées et consttuent une masse mportante et apparemment ndéchffrable d nformatons mas, qu on peut désormas trater sans dffcultés. Cependant, comment extrare les phénomènes, les los, les connassances que recèlent ces données que nous ne pouvons appréhender drectement [ 8 ]? 6

7 La statstque classque nous a habtué à étuder les varables les unes après les autres, de construre autant d hstogrammes que de varables. Comment fare pour que, à ces nombreux graphques se substtue un seul graphque, une carte plane? Comment devant, la profuson des descrptons parcellares fournes par l analyse varable par varable, donner une vson globale de l ensemble des résultats? Les technques dtes d analyse des données permettent de répondre à ces questons. Pour J-P. Fénelon l analyse des données est un ensemble de technques pour découvrr la structure, éventuellement complquée, d un tableau de nombres à pluseurs dmensons et de tradure par une structure plus smple et qu la résume au meux. Cette structure peut le plus souvent, être représentée graphquement 31. [ ] Ces technques qu sont essentellement descrptves, ont pour but de décrre, de rédure, de classer et de clarfer les données en tenant compte de nombreux ponts de vue et d étuder, en dégageant les grands trats, les lasons, les ressemblances ou les dfférences entre les varables ou groupes de varables. Les documents fourns sont qualfés de synthétques et percutants et valent souvent meux qu un long dscours. Cette approche descrptve et multdmensonnelle permet de dre que l Analyse des Données, c est de la statstque descrptve perfectonnée. L analyse des données recouvre prncpalement deux ensembles de technques : les premères qu relèvent de la géométre eucldenne et condusent à l extracton de valeurs et de vecteurs propres, sont appelées analyses factorelles ; les secondes, dtes de classfcaton automatque sont caractérsées par le chox d un ndce de proxmté et d un algorthme d agrégaton ou de désagrégaton qu permettent d obtenr une partton ou arbre de classfcaton [ 53 ]. Parm ces deux technques, les premères occupent une place de chox, car elles sont utlsées sot seules, sot conontement avec les secondes, alors que ces dernères sont rarement applquées seules [ 28 ]. On s ntéressera surtout aux analyses factorelles dont on ne décrra que les deux méthodes les plus employées. Il s agt de l analyse en composantes prncpales (beaucoup utlsée dans les pays anglo-saxons) et de l analyse factorelle des correspondances (très prsée en France). La classfcaton automatque sera ntrodute comme ade à l nterprétaton d une analyse factorelle. Ce qu permet de compléter et d enrchr les résultats de cette dernère. Cependant, vu la dversté des méthodes, on 7

8 regardera comment se présentent les résultats pour l une d entre elles : la classfcaton ascendante hérarchque, qu est la plus élaborée des méthodes de classfcaton. 8

9 2. Un peu d hstore Ben que l étude de la structure de vastes ensembles de données sot récente, les prncpes dont les méthodes d analyse de données s nsprent sont ancens. En ce qu concerne l analyse factorelle, l faut remonter aux travaux de Ch. Spearman (1904) qu ntrodut pour la premère fos le concept de facteur ; l cherche, derrère les notes obtenues par de nombreux suets à de nombreux tests, une varable explcatve cachée : le facteur général d apttude (analyse factorelle au sens des psychologues). C est vers les années 30 que se pose le problème de la recherche de pluseurs facteurs (travaux de C. Burt et de L.L Thurstone) ; on cherche deux pus pluseurs facteurs : mémore, ntellgence, etc. non observables drectement mas susceptbles d explquer au sens statstque du terme les nombreuses notes obtenues par les suets. Comme on le constate l s agssat déà de résumer à l ade d un pett nombre de facteurs une nformaton multdmensonnelle. De nos ours on ne fat guère appel à l analyse factorelle au sens des psychologues parce qu elle suppose un modèle a pror. Pus, l analyse factorelle en composantes prncpales développée par H. Hotellng (1933), mas dont on peut fare remonter le prncpe à K. Pearson (1901) : les ndvdus colonnes du tableau à analyser étant consdérés comme des vecteurs d un espace à p dmensons, on proposat de rédure la dmenson de l espace en proetant le nuage des ponts ndvdus sur le sous-espace de dmenson k (k pett fxé) permettant d auster au meux le nuage [ 53 ]. D un pont de vue plus récent écrt L. Lebart, l analyse au composantes prncpales est «une technque de représentaton des données, ayant un caractère optmal selon certans crtères algébrques et géométrques spécfés et que l on utlse en général sans référence à des hypothèses de nature statstque ou à un modèle partculer [ 43 ]. Enfn, l analyse factorelle des correspondances ntrodute par J.P Benzécr (1962), est actuellement en vogue. Elle fournt, sans hypothèses a pror des représentatons smplfées dans un certan sens à l nterprétaton. Lassons sur ce pont la parole au Professeur J.P Bensécr : l analyse des correspondances telle qu on la pratque en 1977 ne se borne pas à extrare des facteurs de tout tableau de nombres postfs. Elle donne pour la préparaton des données des règles telles que le codage sous-forme dsonctve complète ; ade à crtquer la valdté des résultats, prncpalement par des calculs de 9

10 contrbuton ; fournt des procédés effcaces de dscrmnaton et de régresson ; se conugue harmoneusement avec la classfcaton automatque [ 6 ]. Sa logque est clare : le modèle dot suvre les données non l nverse ; le modèle probablste est ugé trop contragnant : statstque n est pas probablté. Les deux méthodes précédentes et celles qu en ont été dérvées, comme l analyse factorelle dscrmnante (ntée par Fsher en 1936, qu permet de décrre la lason entre une varable qualtatve et un ensemble de varables quanttatves) et l analyse canonque (ntrodute par Hotellng en 1936 et dont l obectf ntal état d exprmer au meux à l ade d un pett nombre de couples de varables la lason entre deux ensembles de caractères quanttatfs) dépendent d un même corps de résultats mathématques qu on exposera dans le paragraphe analyse générale. S agssant de la classfcaton automatque, compte tenu de la multplcté des technques exstantes et l effervescence qu règne autour de ce domane, car selon R.M. Cormack (cté par Lebart) plus de 1000 artcles sont publés par an sur ce thème, l est vrament dffcle de fare l hstorque de ces méthodes ; en effet nombreux sont les chercheurs qu ont contrbué à leur mse en œuvre et dont les précurseurs sont : Buffon (1749), Adanson (1757) et Lnné (1758). Je me contentera de rapprocher les obets, suvant le plus grand nombre de degrés de leurs rapports et leur de leurs ressemblances Les obets ans réuns formeront pluseurs pettes famlles que e réunra encore ensemble afn d en fare un tout dont les partes soent unes et lées ntmement écrvat Adanson [ 47 ]. Pour termner cette page d hstore, mentonnons l analyse des données non métrques ntrodute par une nouvelle école de statstcens amércans sous le nom de «multdmensonal scalng» (J.D. Carrol, J.B. Kruskal, R.N. Shepard, ) et dont les prncpales méthodes sont : - l analyse des proxmtés ; - l analyse des préférences ; - l analyse de mesure cononte (qu permet d explquer une varable qualtatve ordnale à l ade des varables nomnales). Ces méthodes ont trouvé leurs applcatons surtout dans le domane du marketng[ 9 ]. 10

11 3. Types de tableaux analysables Les données se présentent généralement sous la forme d un tableau rectangulare, dont les lgnes correspondent à des ndvdus ou untés statstques et les colonnes à des varables appelées caractères ou caractérstques. Les valeurs des varables peuvent être : - quanttatves ordnales (ugement human, température) ; - quanttatves mesurables (pods d un ndvdu, revenu) ; - qualtatves ordnales (classe d âge, le rang) ; - qualtatves nomnales (sexe, stuaton matrmonale). Lorsque dans un tableau, toutes les varables choses sont quanttatves, on peut établr un tableau de données quanttatves ; c est le cas par exemple où l on observe sur un ensemble de suets I, un certan nombre de mesures J : pods, talle, âge. Ce tableau est encore appelé tableau de mesures. A partr de deux varables qualtatves, on peut défnr un tableau de contngence crosant les modaltés de deux varables, l ensemble des lgnes correspond aux modaltés de la premère varable et l ensemble des colonnes aux modaltés de la deuxème varable ; par exemple le tableau qu répartt la populaton congolase recensée en 1974 selon les deux caractères régon et classe d âge. S l on dvse chaque valeur du tableau précédent par le cardnal de la populaton, on obtent le tableau de fréquences relatves que l on appellera smplement tableau de fréquence. S l on crose plus de deux varables qualtatves entre elles défnes sur une même populaton, on peut construre un tableau contenant l ensemble des tableaux de contngence entre les varables prses deux à deux. Le tableau ans obtenu est appelé tableau de Burt. C est un tableau symétrque qu comporte sur sa dagonale des résultats qu en terme de dépoullement d enquête on appellerat des trs à plats, alors qu alleurs on a tous les tableaux des trs crosés des varables deux à deux. 11

12 On rencontre auss des tableaux de préférence. Un ensemble I d ndvdus donne des ugements de préférence globale sur un ensemble J d obets ; on demande par exemple à chaque personne nterrogée de noter de 1 à 4 l ordre de préférence pour quatre marques de bère : prmus, kronenbourg, ngok, amstel. A l ntersecton de la ème lgne et de la èmecolonne, on trouve le rang attrbué par la personne à la bère. Le tableau de préférence est dfférent du tableau de rang. Reprenons le tableau de contngence qu répartt la populaton congolase selon les deux caractères régon et classe d âge. On obtent un tableau de rang s à l ntersecton de la régon et de la classe d âge, on y nscrt le rang de la régon sur toutes les régons, relatvement à l effectf de la classe d âge. Dans le tableau de préférence rencontré c-haut, la lgne est une permutaton de 4 obets alors que dans le tableau de rang c est la colonne qu est une permutaton de nombres de 1 à 9 (les 9 régons du Congo). Les tableaux de proxmtés évoluent la smlarté ou la dssmlarté entre chaque couple d ndvdus par un ndce de proxmté ou de dstance (tableau de dstance nter-vlles). Souvent, on observe des varables qu ne prennent que deux valeurs codées généralement 0 et 1 ; elles condusent à des tableaux bnares : par exemple un ndvdu dot répondre par ou ou par non à une queston ; le ou est codé 1, le non est codé 0 ; on peut auss cter le cas des tableaux de présence-absence où l s agt du relevé de la présence ou de l absence d un caractère. Tel ménage possède ou ne possède pas le caractère : avor un poste télévseur : la présence est codé 1, l absence est codé 0. D une manère générale, un tableau rempl unquement de 0 et de 1 est appelé tableau logque. C est le cas des tableaux précédents. Nous verrons au 6.4.1, qu on peut transformer un tableau de données quanttatves en un tableau de descrpton logque par découpage en classes des varables quanttatves. En fat, parler de tableau logque, c est désgner un certan format de codage, qu peut recouvrr des domanes très [ ] dfférents 31. On peut également mentonner les tableaux de notes. Il s agt dans le cas qu nous ntéresse des notes scolares (type de tableaux analysé dans ce caher) comprses entre deux bornes (0 et 20). Ce tableau peut être analysé comme tel (c est ce que nous ferons dans les chaptres suvants). Dans ben de cas, pour donner la même mportance à chaque observaton, on dédoublera chaque colonne du tableau, c est-à-dre qu à 12

13 chaque matère d orgne on lu fat correspondre une matère dte duale : avor 15/20 en statstque, c est avor 5/20 en la matère duale. L analyse factorelle d un tableau de notes dédoublé semble d un pont de vue pratque donner des résultats plus clars et plus faclement nterprétables que l analyse du tableau ntal[ 12 ]. Le tableau de descrpton logque décrt précédemment peut être consdéré comme un tableau de notes partculer dans lequel toutes les notes ne peuvent prendre que l une des valeurs 0 ou 1. Pour termner, on peut cter les tableaux de correspondance chronologque ou tableaux ternares ou encore tableaux multples. C est par exemple le cas du tableau où, I est l ensemble d ndustres (ou produts), d époques, kijt (ou à destnaton) du pays un ensemble de pays, T un ensemble désgnant les échanges pour le produt, à l nstant t en provenance obtent un tableau de la forme exportateurs, J J. Une généralsaton au cas quaternare a été étudée et on kijpt où I est par exemple l ensemble des pays l ensemble des mêmes pays consdérés comme exportateurs, P est un ensemble des classes de produts et T un ensemble d époques : k IJPT est donc la valeur des mportatons du pays en provenance du pay s (ou des exportatons du pays destnaton du pays ), rentrant dans la classe de produts p et effectuées en l année t. Pour l étude de ces types de tableaux, on utlse très largement la technque des ponts supplémentares (cf 5.2.5)[ 14 ]. à Le tableau soums à l analyse dot posséder certanes qualtés : pertnence, homogénété, exhaustvté. Il ne faut retenr dans la masse hétérogène des fats que ce qu se rapporte à un seul pont de vue (pertnence), et ne pas mélanger les quanttés exprmées en klogrammes et en mètres (homogénété). L exhaustvté mplque que les dfférentes zones du domane d nvestgaton sont ben représentées. A ces tros exgences l faut aouter une condton assez évdente, mas parfos oublée : le tableau de données dot être vaste et en statstque, l nfn est parfos de l ordre de 30 [ 42 ]. 13

14 4. Analyse générale On part d un tableau rectangulare relant deux ensembles fns I et J. On a Ca rdi observatons sur lesquelles sont mesurées CardJ varables : varable de J sur l ndv du de I. ( CardI n, CardJ p) obtenue par l étud ant à l épreuve. Le tableau X peut admettre deux représentatons [ 35 ] : x est la mesure de l a = =. x peut être la note - l une dans un espace vectorel R n avec un nuage de p ponts correspondant chacun à une lgne ; - l autre dans un espace vectorel R p avec un nuage de n ponts correspondant chacun à une colonne. L analyse factorelle revent à fare la recherche des axes prncpaux d nerte (ou axes factorels) des deux nuages. On cherche donc à auster le nuage des ponts par un sous-espace vectorel de R p, mun de la dstance eucldenne usuelle (c est-à-dre que le carré de la dstance entre deux ponts est égal à la somme des carrés des dfférences de leurs coordonnées). On commence par détermner une drote n passant par l orgne et austant au meux le nuage à étuder, en mnmsant la somme des carrés des dstances des ponts à la drote. Ce calcul condut à un vecteur untare porté par cette drote dt auss vecteur propre relatf à une valeur propre. De façon analogue on peut contnuer l austement et trouver dans R p un certan nombre de vecteurs propres et de valeurs propres toutes postves décrossant avec le rang. X étant la matrce du tableau, et la matrce transposée, u α les vecteurs propres et λ α les valeurs propres seront solutons de l équaton : X Xuα λαuα = dans R p Le vecteur u est norme par la relaton : uu= 1 Le premer axe factorel est donc le vecteur u 1 correspondant λ 1 la plus grande valeur propre de X X. L nerte explquée par cet axe est λ 1. En prolongeant le problème on trouve que le sous-espace qu explque la plus grande nerte content les q premers vecteurs propres u 1,..., uq de X X. L nerte explquée par ce sous-espace est égale à la somme des valeurs propres correspondant à ces vecteurs propres. On aura les formules correspondantes dans R n. En effet, l est démontré que [ 43 ] : - s v α est vecteur propre untare de u = X v est vecteur untare de 1/2 α λ α α F 1 X XX relatf à la valeur propre α 0 X X relatf à la même valeur propre. λ, 14

15 -récproquement, s u α est vecteur untare de vecteur untare de XX relatf à λ α. X X relatf à α 0 λ, 1/2 vα = λ α Xuα est u α est appelé α ème axe factorel dans p R. v α est appelé α ème axe factorel dans n R. 15

16 5. Analyse en composantes prncpales 5.1. Les données les obectfs En analyse en composantes prncpales, l ensemble I est décrt à l ade de p varables quanttatves, contnues, homogènes ou non a pror corrélées entre elles deux à deux. On cherche à répondre à des questons du type suvant : quelles sont les varables qu sont lées postvement entre elles? Quelles sont celles qu s opposent? A propos des ndvdus on cherchera à évaluer leur ressemblance et leur dssemblance, à mettre en relef des groupes homogènes d ndvdus. En résumé l analyse en composantes prncpales (ACP) consste à transformer les p varables quanttatves, ntales en p nouvelles varables non corrélées, appelées composantes prncpales (ou facteurs) La méthode On ne décrra c, que l une des varantes de cette méthode et qu est de lon la plus employée : l analyse en composantes prncpales normées. On suppose que les données de départ sont non seulement hétérogènes quant à leur moyenne, mas le sont également quant à leur dsperson et à leur nature (dsparté des untés de mesure). Pour ramener chaque varable à un cadre commun de comparablté, on opérera sur chacune d elle une transformaton lnéare ramenant sa moyenne à zéro et sa varance à l unté (varable centrée rédute) Le tableau de données On a les mêmes ensembles I et {, } X = x I J x J de l analyse générale x... On calcule : )- La moyenne de la varable x : m = M avec M = { m I} x x I 16

17 1 où m est le pods affecté à l ndvdu ; m = et CardI { m I} = M = 1 )- La varance de la varable x : 2 m var( ) ( ) 2 σ = x = x x I M ) La varable centrée et rédute qu a pour composantes sur l ensemble I : X x x = σ où σ est l écart type de x moy( X ) = { X I} = 0 et = ( ) 2 { } var( X ) X moy X I = 1 v)- Le coeffcent de corrélaton lnéare entre deux varables m r = X X I M qu prend les valeurs entre 1 et +1. x et x : Analyse des ponts ndvdus de N ( I) dans On se placera au centre de gravté du nuage des ponts de base (normalsaton centréerédute). Le ème ndvdu sera représenté dans l espace des varables normées un pont ayant pour coordonnée la valeur note par : J p R X et affecté de masse (pods) m NJ( I) = ( X; ) I le nuage des ponts I ; M ) Le centre de gravté G de ce nuage a pour ème coordonnée : m M = 1 m m x I x I 0 σ = M M X GJ = X I ; c est donc l orgne du système d axes dans lequel est placé le nuage des ndvdus. ) La dstance entre deux ponts de 2 {( X X ) J } 2 d (, ) = N ( I) s écrt dans p R : m X par. S l on x x 2 = ( ) J σ (c est la dstance eucldenne usuelle ). Ans chaque varable aura une contrbuton égale à la dsperson totale du nuage NJ ( I ). ) La dstance d un pont de au centre de gravté G du nuage N ( I) vaut : 17

18 { } d G = ρ = X J (, ) () v) L nerte d un pont par rapport au centre de gravté est : m 2 In( I) ( ) M ρ et l nerte du nuage N ( I) sera égal à : m 2 In( NJ( I)) ( ) I M ρ = m 2 = ( X ) I M m 2 = X I, J M Var( X ) J or var( X ) = 1 = { } I = ( N ( I)) = CardJ n J J L nerte du nuage des ponts est donc égale au nombre de varables ; cette nerte est auss égale à la somme des termes dagonaux (trace) de la matrce de corrélaton entre les varables dont le terme général est dagonalser pour la recherche des vecteurs et valeurs propres. r. C est donc cette matrce qu l faudra v) Les facteurs et axes factorels-coordonnées des observatons dans l espace factorel. Soent { Fα () I} les facteurs assocés à l analyse en composantes prncpales normées. Les facteurs sont de moyenne nulle, de varance égale à λ α, et sont deux orthogonaux. En effet : m F α () I = 0 M m F 2 λ α = α () I M et m F () F () I = 0 M α β s α β On sat déà que la somme de toutes les valeurs propres est égale au nombre varables. Et donc : I ( N ( I)) = = CardJ n J λ α CardJ de Analyse des ponts varables de N ( J) dans I n R 18

19 En ACP, l orgne des axes n est pas le centre de gravté du nuage des varables ; les axes factorels ssus du nuage des ndvdus ne sont pas les axes prncpaux d nerte du nuage des varables. On a vu que Var( X ) = 1 c est-à-dre que d 2 (0, ) = 1 ; les varables X sont donc stuées sur une sphère de rayon 1 ce ntrée en 0, orgne ntale des axes. L ntersecton de la sphère et d un plan factorel est un cercle dt cercle de corrélaton. La dstance eucldenne usuelle entre deux ponts de N ( J) dans { } (, ) ( ) d 2 = X X 2 I I n R : En tenant compte du fa t que Var( X ) = Var( X ) = 1 et X X = r, On trouve que : (, ) 2(1 ) 2 d = r où r, est le coeffc ent de corrélaton lnéare entre les varables et. Ans, les proxmtés entre ponts varables s exprment en termes de corrélatons : r = 1 les ponts et sont confondus ; r = 1 les ponts et r = 0 les ponts et 90. sont damétralement opposés sur la sphère (0,1) ; sont orthogonaux et se trouvent aux extrémtés d un arc de Relaton entre les ponts de N ( I) et de N ( J ) Nous avons vu au chaptre 4 les relatons qu exstent entre les matrces J I X X et XX en ce qu concerne les vecteurs et les valeurs propres. En utlsant ces proprétés, on peut établr les relatons de transton entre les facteurs Fα () de I et Gα ( ) de J. On a : α λ 1/2 F () = XGα( ) et 1/2 Gα( ) = λ XFα( ) Il faut sgnaler que ces formules ne sont pas barycentrques comme celles du de l analyse factorelle des correspondances ; les X pouvant être négatfs Analyse des ponts supplémentares On profte de ce paragraphe pour parler éléments supplémentares qu présentent un grand ntérêt en analyse de données et plus partculèrement en analyse factorelle des correspondances. On utlse les éléments supplémentares en analyse de représenter [ 14 ] : données pour - sot une observaton relevée dans des condtons douteuses (ou dfférentes des autres observatons) ou encore une varable sur laquelle la précson est mondre que sur les autres varables mesurées ; - sot un élément aberrant, ou ayant perturbé une analyse prélmnare ; 19

20 - sot un cas nouveau ; - sot des éléments de nature dfférente de ceux analysés. On peut auss utlser des éléments supplémentares pour représenter un groupe de varables ou un groupe d ndvdus. Exemple 1 : un questonnare a été soums à l ensemble des étudants du CASP ; après analyse, on recuelle les réponses d un étudant absent (cas nouveau) : on cherchera naturellement à le placer sur les axes factorels sans refare l analyse. Exemple 2 : on a réalsé une enquête sur l mage de marque de la S.N.E. Chaque clent enquêté répond à un questonnare comportant deux partes : une fche soco- (âge, sexe, professon, revenus, ) ; et une battere d opnons relatves à démographque la socété. S l on analyse la battere d opnons, on mettra par exemple les varables soco-démographques en supplémentares. Consdérons la fgure suvante : J J s X X s I s X s S l on effectue l analyse en composantes prncpales du tableau X (tableau prncpal), on peut proeter sur les axes factorels ans trouvés les ensembles I s (ensemble des ndvdus supplémentares) et J s (ensemble des varables supplémentares). Les coordonnées des ndvdus supplémentares s I s sont les composantes du vecteur ( ) X s u α et, celles des varables supplémentares s J s les composantes du vecteur ( X ) v α (vor 4). Technquement, mettre des éléments en supplémentares dans s l analyse consste à attrbuer une masse nulle à ces éléments et à calculer leurs coordonnées dans l espace factorel. 20

21 5.3. Interprétaton de l Analyse en Composantes Prncpales Tableau des données de base Tratons par cette méthode le recuel d nformatons qu est donné par le tableau 1. Nous y trouvons les notes moyennes par matère obtenues par les étudants du CASP promoton pendant la premère année de leur scolarté. ABDO BANZ BATA BOUK BOYE GOYI LIK LIK LOUZ MAKI MALO MAMP MATO MBIK MPOU NGUI NKOK NSEM NSON NZAK ONDZ SAFO SAM SAM TSIB Tableau.1 : Notes des étudants Le chef de la scolarté du CASP peut être amené à se demander : - s les étudants ont systématquement des résultats melleurs que ceux de leurs collègues ; - s les flles et les garçons obtennent des résultats comparables ; - s un étudant bon en mathématque l est également en démographe ; - etc. Dsons tout smplement qu l veut analyser les données dont l dspose. Le tableau que nous allons étuder crose 25 étudants (en lgnes) et 19 matères (en colonnes) : le 21

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Gestion et stratégie Utilisateur

Gestion et stratégie Utilisateur Geston et stratége Utlsateur GESTION ET STRATEGIE UTILISATEUR...2 1.) Comment gérer des utlsateurs?...2 1.1) Geston des utlsateurs en groupe de traval...2 1.2) Geston des utlsateurs par domane...2 Rôle

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Enquête sur les services de télécommunications

Enquête sur les services de télécommunications Enquête sur les servces de télécouncatons Vu l'avs favorable du Consel Natonal de l'inforaton Statstque, cette enquête, reconnue d'ntérêt général et de qualté statstque, est oblgatore. Vsa n 200222EC du

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

Méthodologie quiestlemoinscher de comparaison de prix entre magasins

Méthodologie quiestlemoinscher de comparaison de prix entre magasins Méthodologe questlemonscher de comparason de prx entre magasns Les éléments méthodologques ont été défns par le cabnet FaCE Consel, socété d études et d analyses statstques ndépendante. Le cabnet FaCE

Plus en détail

Méthodes psychométriques utilisées dans le cadre des évaluations des élèves

Méthodes psychométriques utilisées dans le cadre des évaluations des élèves MESURE DES COMPÉTENCES Méthodes psychométrques utlsées dans le cadre des évaluatons des élèves Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle présente les méthodes psychométrques

Plus en détail

Traitement des valeurs manquantes et des valeurs aberrantes

Traitement des valeurs manquantes et des valeurs aberrantes Etudes Statstques 2 (1/10) Tratement des valeurs manquantes et des valeurs aberrantes Avant de trater les données, vérfer la qualté des données : Les données peuvent être : manquantes aberrantes : la valeur

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

5- Analyse discriminante

5- Analyse discriminante 5. ANALYSE DISCRIMINANTE... 5. NOTATION ET FORMULATION DU PROBLÈME... 5. ASPECT DESCRIPTIF...3 5.. RECHERCHE DU VECTEUR SÉPARANT LE MIEUX POSSIBLE LES GROUPES...4 5.. Cas partculer de deu groupes...7 5.3

Plus en détail

Ton domaine réservé Organisation Simplicité Efficacité

Ton domaine réservé Organisation Simplicité Efficacité Rev. 07/2012 Ton domane réservé Organsaton Smplcté Effcacté www.vstos.t Ton La tua domane area rservata réservé 1 MyVstos MyVstos est une plate-forme nformatque réservée aux revendeurs Vstos qu permet

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG)

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG) UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE L INFORMATION ET DES MATÉRIAUX Année 2006 N attrbué par la bblothèque Méthodes d Extracton de Connassances à partr

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution.

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution. Républque Tunsenne Présdence du Gouvernement Ecole Natonale d Admnstraton 4, Avenue du Dr Calmette Mutuelle-vlle 08 Tuns Tél. (+6) 848 00 Fa (+6) 794 88 www.ena.nat.tn STATISTIQUE ET CALCUL DE PROBABILITE

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

Interfaces Windows 8 et Bureau

Interfaces Windows 8 et Bureau Interfaces Wndows 8 et Bureau Interfaces Wndows 8 et Bureau Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître sur son écran la toute

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Les risques des pesticides mieux les connaître pour les réduire

Les risques des pesticides mieux les connaître pour les réduire Les rsques des pestcdes meux les connaître pour les rédure Des outls à votre portée pour rédure les rsques des pestcdes Vous avez mantenant accès à des outls d ade pour meux connaître les rsques des pestcdes

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ;

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ; Introducton Le groupe de Bo-Statstque a eu une actvté soutenue en 2006-2007. Cette dernère s est concrétsée par des réunons de petts groupes de traval autour de thèmes de recherche partculers et par la

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait Edtons ENI Excel 2010 Collecton Référence Bureautque Extrat Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser,

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Régression linéaire et incertitudes expérimentales

Régression linéaire et incertitudes expérimentales 91 e Année - N 796 Publcaton Mensuelle Jullet/Août/Septembre 1997 Régresson lnéare et ncerttudes expérmentales par Danel BEAUFILS Insttut Natonal de Recherche Pédagogque Département Technologes Nouvelles

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture La moblté résdentelle depus 20 ans : des facteurs structurels aux effets de la conjoncture T. Debrand C. Taffn Verson Prélmnare - Ne pas cter 10 mars 2004 Résumé : Les analyses économques sur la moblté

Plus en détail

EXEMPLES D UTILISATION DE LA TECHNIQUE DES OBSERVATIONS INSTANTANÉES.

EXEMPLES D UTILISATION DE LA TECHNIQUE DES OBSERVATIONS INSTANTANÉES. EXEMPLES D UTILISATIN DE LA TECHNIQUE DES BSERVATINS INSTANTANÉES. Chrstan Fortn, ng., Ph.D. Ergonome et hygénste du traval Centre of santé et servces socaux de la Montagne, Montréal. Résumé La technque

Plus en détail

Introduction aux statistiques spatiales et aux systèmes d'information géographique en santé environnement

Introduction aux statistiques spatiales et aux systèmes d'information géographique en santé environnement Santé envronnement Introducton aux statstques spatales et aux systèmes d'nformaton géographque en santé envronnement applcaton aux études écologques Sommare Abrévatons 2 Résumé 3 1. Introducton 4 1.1 Études

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Electronque applquée B2150 Cycle 1 Bloc 2 Quadrmestre 2 Pondératon 4 Nombre de

Plus en détail

Calcul de l unité astronomique Lors du transit de Vénus

Calcul de l unité astronomique Lors du transit de Vénus TP 8 Calcul de l unté astronomque Lors du transt de Vénus Nveau A partr du CM Evaluaton de l Unté Astronomque à partr de l observaton du transt de Vénus. -Propostons pédagogques Les propostons exposées

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Cryptographie évolutionniste

Cryptographie évolutionniste Cryptographe évolutonnste Applcaton des algorthmes évolutonnstes à la cryptographe Fouza Omary* Abderrahm Tragha** Aboubakr Lbekkour* *Département de mathématques et nformatque faculté des scences-rabat

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 2. Quadrimestre 1. Pondération 4. Nombre de crédits 4

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 2. Quadrimestre 1. Pondération 4. Nombre de crédits 4 Informatons de l'unté d'ensegnement Implantaton Cursus de Inttulé Code ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Outls de communcaton B2050 Cycle 1 Bloc 2 Quadrmestre 1 Pondératon

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Accord Entreprise. Le Guide du True-Up. Enterprise Agreement True - Up Guide

Accord Entreprise. Le Guide du True-Up. Enterprise Agreement True - Up Guide Enterprse Agreement True-Up Gude Accord Entreprse Le Gude du True-Up Enterprse Agreement True - Up Gude Le gude du True-Up dans l Accord Entreprse Table des matères Le True-Up des lcences on premse et

Plus en détail

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i Fchers F chers Offce 2013 - Fonctons de base Créer/ouvrr/enregstrer/fermer un fcher Clquez sur l onglet FICHIER. Pour créer un nouveau fcher, clquez sur l opton Nouveau pus, selon l applcaton utlsée, clquez

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

Mesurer la qualité de la prévision

Mesurer la qualité de la prévision Mesurer la qualté de la prévson Luc Baetens 24/11/2011 www.mobus.eu Luc Baetens 11 ans d expérence Planfcaton Optmsaton des stocks Organsaton de la Supply Chan Performance de la Supply Chan Geston de la

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n 5. Tests du Kh-deux (non paramétrque) Lo du Ch-deux (χ n ) à n degrés de lberté (ddl) S X 1, X,..., X n, sont n varables ndépendantes, suvant toutes une lo normale N (0,1), la varable χ n = X 1 + X + +

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen Le commerce nternatonale en stuaton de concurrence mparfate: ros problèmes essentels des modèles théorques Rcardo, HOS, Standard: - fondés sur la CPP: le commerce n augmente pas la concurrence - pas d

Plus en détail

Préparation INSTALLATION INFORMATION

Préparation INSTALLATION INFORMATION Préparaton 1 Les éléments de sol stratfés Pergo sont lvrés avec les nstructons sous la forme d llustratons. Les textes suvants fournssent des explcatons sur les llustratons et sont dvsés en tros partes

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L EFFET DES ENFANTS SUR L OFFRE DU TRAVAIL DES MÈRES : CAS DU CANADA MÉMOIRE PRÉSENTÉ

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L EFFET DES ENFANTS SUR L OFFRE DU TRAVAIL DES MÈRES : CAS DU CANADA MÉMOIRE PRÉSENTÉ UNIVERSITÉ DU QUÉBEC À MONTRÉAL L EFFET DES ENFANTS SUR L OFFRE DU TRAVAIL DES MÈRES : CAS DU CANADA MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIQUE PAR EZZAOUALI WALID Septembre

Plus en détail

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette WINDOWS 10 Prse en man de votre ordnateur ou votre tablette Table des matères Wndows 10 L envronnement Wndows 10 sur un ordnateur Wndows 10 : les nouveautés................................ 7 Démarrer Wndows

Plus en détail

Notes de cours. Échantillonnage STT-2000. David Haziza Département de mathématiques et de statistique Université de Montréal

Notes de cours. Échantillonnage STT-2000. David Haziza Département de mathématiques et de statistique Université de Montréal otes de cours Échantllonnage STT-000 Davd Hazza Département de mathématques et de statstque nversté de Montréal Automne 008 PRÉFACE Ces notes de cours ont été rédgées pour le cours STT-000 (Échantllonnage)

Plus en détail

THÈSE DE DOCTORAT. Steven MARTIN. le 6 juillet 2004. pour obtenir le titre de

THÈSE DE DOCTORAT. Steven MARTIN. le 6 juillet 2004. pour obtenir le titre de THÈSE DE DOCTORAT UNIVERSITÉ PARIS XII présentée par Steven MARTIN le 6 ullet 2004 pour obtenr le ttre de DOCTEUR EN SCIENCES Spécalté Informatque MAÎTRISE DE LA DIMENSION TEMPORELLE DE LA QUALITÉ DE SERVICE

Plus en détail

L environnement Windows 10 sur tablette

L environnement Windows 10 sur tablette L envronnement Wndows 10 sur tablette L envronnement Wndows 10 sur tablette Wndows 10 - Prse en man de votre ordnateur ou votre tablette Actver/désactver le mode Tablette Contnuum est une nouvelle fonctonnalté

Plus en détail