Algèbre de BOOLE. Système binaire:

Dimension: px
Commencer à balayer dès la page:

Download "Algèbre de BOOLE. Système binaire:"

Transcription

1 Algèbre de BOOLE 5V Sstème binaire: Un sstème binaire (signal, circuit, etc ) est un sstème qui ne peut eister que dans deu états autorisés. fermé : v 0 = 0v ouvert: v 0 = 5v R Notations: numérique : et 0 (bit : binar digit) S V 0 logique : Vrai et Fau (True et False) Oui et Non (Yes et No) électronique : ON et OFF Haut et Bas (HI et LO, H et L, H et B) ALGEBRE de BOOLE - Albert Dipanda

2 Algèbre de BOOLE - Opérateurs La porte OU (inclusif) (OR) - Addition logique noté A B Y = A B La porte ET (AND) - Produit logique noté A B Y = A B ALGEBRE de BOOLE - Albert Dipanda 2

3 Algèbre de BOOLE - Opérateurs Inverseur : porte NON (NOT)opérateur unaire noté A Y = A 0 0 A partir des définitions des fonctions NON, OU et ET nous pouvons déduire : A A A = A A A A = = 0 ( A ) B = A B ALGEBRE de BOOLE - Albert Dipanda 3

4 Algèbre de BOOLE - Opérateurs Porte NON ET (NAND) et Porte NON OU (NOR) Ce sont les portes de base: tout sstème binaire peut être obtenu en utilisant uniquement les portes NAND ou NOR A B Y = A B A B Y = A B ALGEBRE de BOOLE - Albert Dipanda 4

5 Algèbre de BOOLE - Opérateurs Porte OU eclusif (XOR)-opérateur binaire notée A B Y = A B ALGEBRE de BOOLE - Albert Dipanda 5

6 Algèbre de BOOLE - Opérateurs Différentes formulations du XOR: Y=A B est égal à si et seulement si A = ou B = mais pas simultanément: A B = ( A B) ( A B) Y=A B égal à si A = et B = 0 ou si B = et A = 0. Soit : A B = ( A B) ( B A) Y=A B égal à 0 si A et B sont égau à ou si A et B sont égau à 0 : A B = ( A B) ( A B) Y=A B correspond à un détecteur d'égalité: A B = ( A B) ( A B) ALGEBRE de BOOLE - Albert Dipanda 6

7 Algèbre de BOOLE - Opérateurs Aiomes et théorèmes de l Algèbre de Boole OU (A B) C = A (B C) = A B C A B = B A A A = A A 0 = A A = ET (A B) C = A (B C) = A B C A B = B A A A = A A = A A 0 = 0 Distributivité A (B C) = (A B) (A C) A (B C) = (A B) (A C) NON A = A A A = A A = 0 Associativité Commutativité Idempotence Elément neutre Elément absorbant Associativité Commutativité Idempotence Elément neutre Elément absorbant ALGEBRE de BOOLE - Albert Dipanda 7

8 Aiomes et théorème de l algèbre de BOOLE Aiomes et théorèmes de l Algèbre de Boole (suite) Simplification A (A B) = A A (A B) = A ( A B) (A B) = A (A B) = A B Théorème A B C... = A B C... De Morgan A B C... = A B C... OU eclusif A B = (A B) (A B) A B A B A = (A B) (B = (A B) (A A) B) A B = (A B) (A B) ALGEBRE de BOOLE - Albert Dipanda 8

9 Usages de l algèbre de Boole. formalisation du raisonnement sur les propositions logiques (= qui a un résultat vrai ou fau). 2. faire des opérations sur des valeurs quelconques codées. Eemples:. fonction tourne_gauche sur les aes cardinau (4 valeurs différentes donc un codage sur 2 bits) E: 00 - N: 0 - S: - O:0 2. fonctions logiques sur des nombres ALGEBRE de BOOLE - Albert Dipanda 9

10 Fonctions booléennes Définition : Une fonction booléenne est une application de {0, } n vers {0, } (, 2, 3,..., n ) f(, 2, 3,..., n ) {0, } Elle peut être définie de deu manières différentes :. par une table de vérité 2. par une équation logique ALGEBRE de BOOLE - Albert Dipanda 0

11 Fonctions booléennes Table de vérité Eemple: F(,,) F est une fonction booléennes à 3 variables (,,) La table de vérité donne la valeur de F pour les 8 différentes combinaisons possibles C i F Eemples: F(0,0,)= F(0,,)=0 F(,0,)= ALGEBRE de BOOLE - Albert Dipanda

12 Fonctions booléennes Problème: Taille de la table si le nombre de variables est grand (>4) nombre de lignes de la table= 2 n (n étant le nombre de variables) A n utiliser que si le nombre de variables est inférieur ou égal à 4 ALGEBRE de BOOLE - Albert Dipanda 2

13 Fonctions booléennes Equation logique: Epression faisant intervenir les variables de la fonction. Deu tpes de termes peuvent être utilisés:. minterme (ou monôme) : produit de variables, chaque variable intervenant au plus une fois sous sa forme normale ou complémentée. Eemples: Fonctions à 3 variables, et ( monome complet) 2. materme : somme de variables, chaque variable intervenant au plus une fois sous sa forme normale ou complémentée. Eemples: (materme complet) ALGEBRE de BOOLE - Albert Dipanda 3

14 Fonctions booléennes Equation logique ère forme canonique : somme des monômes (mintermes) complets pour lesquels la fonction vaut C i P 0 P P 2 P 3 P 4 P 5 P 6 P F = ALGEBRE de BOOLE - Albert Dipanda 4 F P 0 P P 2 P

15 Fonctions booléennes Equation logique 2 ème forme canonique : produit des matermes complets pour lesquels la fonction vaut 0. S 0 S S 2 S 3 S 4 S 5 S 6 S 7 C i F = ( ) ( ) ( ) ( ) ALGEBRE de BOOLE - Albert Dipanda 5

16 Simplification des équations logiques But : Obtenir une forme simplifiée de l équation logique (epression équivalente et plus facile à utiliser) Eemple: ( t) ( t) ( t) ( t) t t ALGEBRE de BOOLE - Albert Dipanda 6

17 Simplification des équations logiques Deu méthodes:. utilisation des règles de simplification 2. utilisation des tableau de Karnaugh ALGEBRE de BOOLE - Albert Dipanda 7

18 ALGEBRE de BOOLE - Albert Dipanda 8 Utilisation des règles de simplification Eemple: F = = = = ) ( ) ( ) ( ) ( ) ( ) ( Problèmes: Trouver la bonne règle de simplification on n est pas sûr d avoir la «meilleure» solution

19 Tableau de Karnaugh La méthode repose sur l'identité suivante: ( A B) ( A B) = A ( B B) = A Utilisation d un code de GRAY Tableau à 3 variables : AB C 0 ALGEBRE de BOOLE - Albert Dipanda 9

20 Tableau de Karnaugh Tableau à 4 variables : AB CD CDE AB Tableau à 5 variables : ALGEBRE de BOOLE - Albert Dipanda 20

21 Tableau de Karnaugh Règles :. Constituer des pavés de avec des cases voisines (attention, le nombre de dans un pavé est une puissance de deu). 2. Recouvrir tous les du tableau. 3. A chaque pavé correspond un monôme. 4. Les monômes sont constitués de variables qui ne changent pas dans le pavé. 5. Les valeurs interdites sont notées et sont considérées égales à dans le cas où elles sont intéressantes. Remarques :. on peut recouvrir plusieurs fois un 2. les paves constitués doivent être les plus grands possibles. ALGEBRE de BOOLE - Albert Dipanda 2

22 A l intérieur Tableau de Karnaugh Cases voisines A un coin t t Sur un bord t ALGEBRE de BOOLE - Albert Dipanda 22

23 Tableau de Karnaugh Eemples: Fonction à 3 variables Fonction à 4 variables t t t t 0 F = F = t t ALGEBRE de BOOLE - Albert Dipanda 23

24 Tableau de Karnaugh Table de vérité correspondante F = t t t F ALGEBRE de BOOLE - Albert Dipanda 24

25 Tableau de Karnaugh Eemples Fonctions à 5 variables tu ALGEBRE de BOOLE - Albert Dipanda 25

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES 1 PROPRIÉTÉS L algèbre de Boole est définie sur l'ensemble E2 constitué des éléments {0,1}. Il eiste une relation d'ordre 0 < 1, et trois opérations de base. La

Plus en détail

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale.

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale. GM Sciences et Techniques Industrielles Page sur 5 Automatique et Informatique Industrielle Génie Mécanique Cours Première & - LA VARIABLE BINAIRE L électrotechnique, l électronique et la mécanique étudient

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

LOGIQUE COMBINATOIRE

LOGIQUE COMBINATOIRE MPI/PCI LOGIQUE COMBINATOIRE I. VARIABLE LOGIQUE. Rappel : structure d une chaine fonctionnelle d un système automatisé. Les ordres et les informations peuvent être : Analogique (par exemple une tension

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

AUTOMATISME COMBINATOIRE

AUTOMATISME COMBINATOIRE AUTOMATISME COMBINATOIRE - 1 - AUTOMATISME COMBINATOIRE 1 INTRODUCTION... 2 2 VARIABLES LOGIQUES :... 2 3 OPERATIONS LOGIQUES :... 3 4 FONCTIONS OU OPERATEURS LOGIQUES :... 4 5 REGLES DE SIMPLIFICATION...

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

Cours 2 Microprocesseurs

Cours 2 Microprocesseurs 4//2 Cours 2 Microprocesseurs Jalil Boukhobza LC 26 boukhobza@univ-brest.fr Chemin de données Font l objet de ce cours: Les portes logiques et circuits combinatoires Le traitement de quelques opérations

Plus en détail

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI Université de Metz Cours de Logique et d APIs D.E.U.G. STPI Année Universitaire 2002/2003 Y. Morère Cette page est laissée blanche intentionnellement Table des matières 1 Représentation des nombres 11

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR

ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DM2 Page 1 北 航 中 法 工 程 师 学 院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR Année académique 2013-2014 Devoir à la maison n 3 À rendre le jeudi 17 avril 2014 Numéro d étudiant à 8 chiffres

Plus en détail

Travaux Dirigés de Logique Combinatoire

Travaux Dirigés de Logique Combinatoire Travaux Dirigés de Logique Combinatoire 1 TD n 1 Algébre de BOOLE Propriétés et formes canoniques 1. Méthode algébrique. a) Les 3 opérateurs de base de l algèbre de Boole sont les opérateurs «non», «et»,

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

Circuits logiques et électronique numérique

Circuits logiques et électronique numérique Circuits logiques et électronique numérique -Support de cours - COURS ING3 Année 2007-2008 Benoît ecoux Sommaire Introduction générale... 4 Partie I) Fonctions logiques de base et circuits associés...

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

Processeurs et Architectures Numériques. Introduction et logique combinatoire

Processeurs et Architectures Numériques. Introduction et logique combinatoire Processeurs et Architectures Numériques Introduction et logique combinatoire Objectifs du cours Connaitre les fonctions de base de l électronique numérique Comprendre la logique combinatoire et synchrone

Plus en détail

Cours Premier semestre

Cours Premier semestre C.Belleudy, D.Gaffé Université de Nice-Sophia Antipolis DEUG Première année SM,MP,MI UECS EEA Électronique Numérique Cours Premier semestre C. Belleudy, D.Gaffé version 3. 2 Électronique Numérique Chapitre

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

1 - Les systèmes de Numération

1 - Les systèmes de Numération Les systèmes de Numération 1 - Les systèmes de Numération 1) Calculer l équivalent décimal des nombres 54 8, 587 8, 110 3, 1101 2, AB9 16 2) Calculer l équivalent binaire et octal des nombres décimaux

Plus en détail

Type de document : Cours

Type de document : Cours Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Les opérations arithmétiques sur les nombres binaires Domaine d application : Traitement programmé de l information Type de document

Plus en détail

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique.

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Il permet à l étudiant de comprendre le fonctionnement de circuits logiques

Plus en détail

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis Logique combinatoire Kachouri Abdennaceur ENIS Département GE Université Virtuelle de Tunis 2006 Nouvelle page 1 Introduction Ce module porte sur les circuits logiques combinatoire... Il couvre plus spécifiquement

Plus en détail

MPI Activité.10 : Logique binaire Portes logiques

MPI Activité.10 : Logique binaire Portes logiques MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement

Plus en détail

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX LES AUTOMATISMES ALGEBRE LOGIQUE GJC Lycée L.RASCOL 10,Rue de la République BP 218. 81012 ALBI CEDEX SOMMAIRE BASES DE NUMERATION CORRESPONDANCE ENTRE LES BASES CHANGEMENT DE BASE Passage d une base «B»

Plus en détail

Algèbre de Boole. Chapitre. 2.1 Notions théoriques

Algèbre de Boole. Chapitre. 2.1 Notions théoriques Chapitre 2 Algèbre de Boole G oerge Boole (1815-1864), mathématicien autodidacte anglais, a développé une algèbre permettant de manipuler les propositions logiques au moyen d équations mathématiques où

Plus en détail

Électronique Numérique

Électronique Numérique Électronique Numérique Séance 6 Logique combinatoire Pr. Khalid ASSALAOU Plan Circuits logiques combinatoires de base Conception de circuits logiques combinatoires Propriété universelle du NON-ET et NON-OU

Plus en détail

Fonction booléennes et portes logiques

Fonction booléennes et portes logiques ISN- semaine16 Fonction booléennes et portes logiques I Portes logiques de base 1.Porte logique OUI C'est la porte la plus basique qui soit, et aussi la plus simple à comprendre. En effet, la sortie de

Plus en détail

Chapitre 3 :Algèbre de Boole

Chapitre 3 :Algèbre de Boole hapitre 3 :lgèbre de oole. Introduction Les machines numériques sont constituées d un ensemble de circuits électroniques. haque circuit fournit une fonction logique bien déterminée ( addition, comparaison,.).

Plus en détail

Objet du cours. Etudier les circuits logiques combinatoires opposés aux circuits logiques séquentiels. x 1

Objet du cours. Etudier les circuits logiques combinatoires opposés aux circuits logiques séquentiels. x 1 Introduction Électronique numérique ou digitale (microprocesseurs, ordinateurs, calculatrices, ) et l électronique analogique (radio, télévision, amplificateurs, ). Interface : les convertisseurs numériques-analogiques

Plus en détail

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE 22 CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE rappel du chap. : -on emploie un système binaire limité à 2 états, -problème: étant donné une relation entrée/sortie binaire, faire le design du hardware qui

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition LOGIQUE COMBINATOIRE Sommaire : La logique combinatoire : définition Conventions Etats des contacts et des récepteurs Etat d un circuit électrique Définitions Contact NO Contact NC Fonctions logiques Oui

Plus en détail

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Cours sur la numération La numération Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Le système décimal Les nombres que nous utilisons

Plus en détail

Électronique Numérique Portes logiques (1)

Électronique Numérique Portes logiques (1) Électronique Numérique Portes logiques (1) Pr. Khalid ASSALAOU Plan Inverseurs ; Portes ET (AND) ; Portes NON-ET (NAND) ; Portes OU (OR); Portes NON-OU (NOR) ; Exercices ; 2/23 Inverseurs Inverseur Inverseur

Plus en détail

1 Représentation de l information

1 Représentation de l information nnée 2010-2011 1ère session Exercices de Logique ombinatoire EN 101 amille LEROUX - Dominique Dallet Filière : TELEOM nnée : 2012-2013 Semestre : 6 SUJET 1 Représentation de l information Exercice 1 Nous

Plus en détail

Numération Page 1 sur 5

Numération Page 1 sur 5 Numération Page sur 5 Sommaire : I- Introduction II- III- IV- Différentes bases Base Base Base 6 Correspondance Conversion décimal -> binaire binaire -> décimal hexadécimal -> binaire hexadécimal -> décimal

Plus en détail

Plan. Définition. Introduction. Fonctions logiques (ET, OU, NON) Règles de l Alg. Algèbre de Boole. orème de De Morgan

Plan. Définition. Introduction. Fonctions logiques (ET, OU, NON) Règles de l Alg. Algèbre de Boole. orème de De Morgan Plan Définition Introduction onctions logiques (ET, OU, NON) Règles de l lg l lgèbre de oole Théor orème de De Morgan Simplification des fonctions logiques Définition Définit en 847 par Georges oole (85-864),

Plus en détail

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be Techniques digitales V. Pierret vpierret@iset-liege.be vpierret@scarlet.be PREMIERE PARTIE RAPPELS L ALGEBRE DE BOOLE Les fonctions logiques de base: NON, ET, OU Les fonctions logiques de base La fonction

Plus en détail

ALM (Hard) : Travail pratique N 1 Réalisation d un circuit combinatoire simple : l additionneur binaire

ALM (Hard) : Travail pratique N 1 Réalisation d un circuit combinatoire simple : l additionneur binaire 1 UFR IMAG - Université Joseph Fourier Polytech Grenoble RICM 3 ALM (Hard) : Travail pratique N 1 Réalisation d un circuit combinatoire simple : l additionneur binaire 1 Introduction 1.1 But d ensemble

Plus en détail

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées

Plus en détail

Logique combinatoire. Tous droits réservés www.depannezvous.com

Logique combinatoire. Tous droits réservés www.depannezvous.com Logique combinatoire Tous droits réservés www.depannezvous.com Combinatoire Lorsque l état de la sortie dépend exclusivement de l état des entrées. On appel cette logique la logique combinatoire. Exemple

Plus en détail

CHAPITRE 3 LES CIRCUITS LOGIQUES.

CHAPITRE 3 LES CIRCUITS LOGIQUES. chapitre 3 : algèbre de oole et circuit logiques HPITRE 3 LES IRUITS LOGIQUES. 1. Les circuits logiques L'ordinateur est un dispositif électronique sophistiqué qui traite l'information mise sous forme

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires Systèmes logiques combinatoires Table des matières 1. Variable binaire...2 2. Fonctions logiques de base...2 2.1. Fonction OUI (YES)...2 2.2. Fonction NON (NOT)...2 2.3. Fonction ET (AND)...3 2.4. Fonction

Plus en détail

NUMERATION ET CODAGE DE L INFORMATION

NUMERATION ET CODAGE DE L INFORMATION NUMERATION ET CODAGE DE L INFORMATION La nécessité de quantifier, notamment les échanges commerciaux, s'est faite dés la structuration de la vie sociale. Les tentatives de représentation symbolique de

Plus en détail

FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES

FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES - I.1 - CHAPITRE I : FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES Après une brève présentation de l'algèbre de Boole ( 1.1.), les fonctions booléennes

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

ELP304/203 : ELECTRONIQUE NUMERIQUE

ELP304/203 : ELECTRONIQUE NUMERIQUE Catherine Douillard ndré Thépaut ELP34/23 : ELECTRONIQUE NUMERIQUE Polycopié /2 Logique combinatoire et circuits MOS nnée scolaire 28-29 Sommaire Sommaire Chapitre : Représentation de l information numérique

Plus en détail

Architecture des ordinateurs Corrigé du TD 3 : Algèbre de Boole

Architecture des ordinateurs Corrigé du TD 3 : Algèbre de Boole rchitecture des ordinateurs Corrigé du TD 3 : lgèbre de Boole rnaud Giersch, Benoît Meister et Frédéric Vivien. Montrer comment l opérateur et peut être obtenu à partir des opérateurs ou et non. De même

Plus en détail

A - PREPARATION. Fonctions logiques. TP2_Annexe FONCTION MAJORITE 2001-2002 ETUDE D'UN CIRCUIT DECODEUR. A.1. Identification de la fonction

A - PREPARATION. Fonctions logiques. TP2_Annexe FONCTION MAJORITE 2001-2002 ETUDE D'UN CIRCUIT DECODEUR. A.1. Identification de la fonction Page /5 2-22 ETUDE D'UN CIRCUIT DECODEUR STI2 A.. Identification de la fonction A - PREPARATION A... Présentation de la fonction La fonction permet d allumer une LED (Diode électroluminescente) si deux

Plus en détail

EXERCICES DE LOGIQUE BINAIRE

EXERCICES DE LOGIQUE BINAIRE EXERCICES DE LOGIQUE BINAIRE 1 1. Serrure de coffre Quatre responsables d'une société (A, B, C et D) peuvent avoir accès à un coffre. Ils possèdent chacun une clé différente (a, b, c et d) et il a été

Plus en détail

Informatique? Informatique?

Informatique? Informatique? M5E2 Informatique 2 E2: Informatique 2 himmi@fsr.ac.ma Département de physique Informatique 2 Objectifs Expliquer les principes de fonctionnement d'un ordinateur; Expliquer comment l'information est représentée,

Plus en détail

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire:

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: Laurent MURA. 1 SOMMAIRE: 1. Introduction 2. Les fonctions logiques élémentaires 3. La forme algébrique 4 Fonctions logiques OU-NON

Plus en détail

Systèmes logiques combinatoires exercices

Systèmes logiques combinatoires exercices xercice n 1 Systèmes logiques combinatoires exercices Considérons la fonction booléenne : y = ( a+ b) + ( a. b)c. 1 - Représenter y par un tableau de Karnaugh. 2 - Simplifier l expression par la méthode

Plus en détail

Bases des systèmes Numériques

Bases des systèmes Numériques ases des Systèmes Numériques. Oumnad ases des systèmes Numériques. Oumnad ases des Systèmes Numériques. Oumnad Chapitre I -- Systèmes de Numération... 3 I. -- Système décimal... 3 I. -- Système Octal...

Plus en détail

Cours de mathématiques BTS SIO première année. Nicolas FRANCOIS nicolas.francois@free.fr

Cours de mathématiques BTS SIO première année. Nicolas FRANCOIS nicolas.francois@free.fr Cours de mathématiques BTS SIO première année Nicolas FRANCOIS nicolas.francois@free.fr 24 mars 2012 2 I Numération 1 I Introduction : que signifie 1789?................................... 2 II Les numérations

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Architecture des ordinateurs

Architecture des ordinateurs Architecture des ordinateurs Cours 1 17 septembre 2012 Archi 1/48 Avant de commencer contact : carine.pivoteau@univ-mlv.fr page web du cours : http://http://www-igm.univ-mlv.fr/~pivoteau/archi/ planning,

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Additionneur 4 bits. Additionneur soustracteur. Comparateur.

Additionneur 4 bits. Additionneur soustracteur. Comparateur. - Additionneur 4 bits. Additionneur soustracteur. Comparateur. 1. Additionneur 4 bits: 1-1.introduction: Un additionneur sur 4 bits est un circuit qui permet de faire l addition de deux nombres A et B

Plus en détail

Recueil d'exercices sur les propriétés des variables. et fonctions logiques

Recueil d'exercices sur les propriétés des variables. et fonctions logiques Recueil d'exercices sur les propriétés des variables 1. Énoncé des exercices et fonctions logiques Exercice 1 Établir les tables de vérité des fonctions suivantes, puis les écrire sous les deux formes

Plus en détail

Les différents codes utilisés en électronique

Les différents codes utilisés en électronique Section : Technicien Supérieur Electronique Discipline : Génie Electronique Les différents codes utilisés en électronique Domaine d application : Traitement des signaux numériques Type de document : Cours

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Algèbre de Boole. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique.

Algèbre de Boole. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Algèbre de Boole Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Algèbre de Boole Système algébrique constitué de l'ensemble { 0, 1 } Variable booléenne

Plus en détail

INTRODUCTION A L ARCHITECTURE DES ORDINATEURS

INTRODUCTION A L ARCHITECTURE DES ORDINATEURS INTRODUCTION A L ARCHITECTURE DES ORDINATEURS Jean-Christophe BUISSON 14 novembre 2012 2 Chapitre I. Principes généraux I.1. Organisation générale d un ordinateur I.1.1. Le modèle de Von Neumann La plupart

Plus en détail

Calcul Booléen et Circuits Logiques

Calcul Booléen et Circuits Logiques Chapitre 7 Calcul Booléen et Circuits Logiques 7.1 Traitement Logique et Machine 7.1.1 Exemple Nos raisonnement sont usuellement simples : si ma voiture ne marche pas et il pleut alors je prends le metro

Plus en détail

Systèmes de Numération & Codage

Systèmes de Numération & Codage Systèmes de Numération & Codage Objectif : L électronicien est amené à manipuler des valeurs exprimées dans différentes bases (notamment avec les systèmes informatiques). Il est essentiel de posséder quelques

Plus en détail

CIRCUITS LOGIQUES COMBINATOIRES

CIRCUITS LOGIQUES COMBINATOIRES CIRCUITS LOGIQUES COMINTOIRES Chap-III: Portes logiques CIRCUITS LOGIQUES COMINTOIRES Portes logiques TRELSI Hichem ttention! Ce produit pédagogique numérisé est la propriété exclusive de l'uvt. Il est

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Architecture des ordinateurs première partie des annales

Architecture des ordinateurs première partie des annales rchitecture des ordinateurs première partie des annales rnaud Giersch, enoît Meister et Frédéric Vivien TD : rithmétique des ordinateurs et codage. Donner la valeur décimale des entiers suivants, la base

Plus en détail

Cours d Architecture des ordinateurs

Cours d Architecture des ordinateurs Cours d Architecture des ordinateurs L2 Informatique 214/215 version du 23 septembre 214 Séverine Fratani Peter Niebert 2 Table des matières 1 Codage 9 1.1 Systèmes de numération.................................

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Question 1 Algèbre de Boole (6 pts 20 minutes)

Question 1 Algèbre de Boole (6 pts 20 minutes) ELE1300 Automne 2008 - Examen intra 1/10 Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B et C sont des variables booléennes. Démontrer que : a) A (A+ B )( A +B) = A B A (A+ B )( A +B) =

Plus en détail

Opérations Arithmétiques

Opérations Arithmétiques 1 Addition en Binaire 1.1 Principe Opérations Arithmétiques L addition de deux nombres binaires est réalisée de la même façon que l addition décimale. L addition est l opération qui consiste à effectuer

Plus en détail

Cours de logique combinatoire

Cours de logique combinatoire Cours de logique combinatoire Eric SIMON Ludovic MACAIRE IUT A Département Génie Mécanique et Productique Janvier 2015 Table des matières Chapitre 1 NUMERATION ET CODAGE...4 1.Introduction...4 2.Les systèmes

Plus en détail

UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE

UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE 2009 UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE Rotation des travaux pratiques : 1 : Fonctions logique Combinatoire Elémentaires. 2 : Circuits logiques. 3 : Réalisation d additionneurs.

Plus en détail

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique Objectifs : Exploiter les codes numériques & Convertir une information d un code à un autre. I- Mise en situation Réaliser l activité de découverte page 6 ; Manuel d activités II- Systèmes de numération

Plus en détail

AP1.2: Traitement de l information Binaire et logique combinatoire. Binaire et logique combinatoire

AP1.2: Traitement de l information Binaire et logique combinatoire. Binaire et logique combinatoire STI2D Option SIN Première AP1.2: Traitement de l information Binaire et logique combinatoire Binaire et logique combinatoire Centre d intérêt : découverte du numérique et de la logique binaire Durée prévue

Plus en détail

TP 7 : Vendredi 6 Décembre Type de donnée : booléen. Compétence :

TP 7 : Vendredi 6 Décembre Type de donnée : booléen. Compétence : TP 7 : Vendredi 6 Décembre 2013 1. Type de donnée : booléen 2. Caractère et chaîne de caractères : comment sont-ils représentés dans la machine? Représentation binaire : Un ordinateur est une machine qui

Plus en détail

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique?

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique? Domaine Sciences et Technologies Licence d informatique Automates et circuits 2ième Devoir Surveillé Durée : 2 heures Année 2012-13 Aucun document autorisé Calculatrice interdite Nous vous recommandons

Plus en détail

Cours. La numération

Cours. La numération Cours La numération Cours sur la numération P V1.6 1/10 Lycée Jules Ferry Versailles - CRDEMA 2007-2008 TABLE DES MATIERES : 1 INTRODUCTION....3 1.1 LA BASE....3 2 LES SYSTEMES DE NUMERATION...3 2.1 LE

Plus en détail

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire Plan Les Systèmes de Numération Fonctions et Circuits Logiques Simplification des Fonctions Logiques Les Différents Codes -1- Fonctions et Circuits Logiques Définition Algèbre de commutation ou algèbre

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Codage des nombres en informatique

Codage des nombres en informatique Codage des nombres en informatique Licence 1 ère année Notes de Cours Philippe Le Parc & Pascal Ballet Philippe.Le-Parc@univ-brest.fr Pascal.Ballet@univ-brest.fr Introduction Codage Circuits logiques Micro

Plus en détail

UNIVERSITE PARIS XI U.F.R SCIENTIFIQUE D ORSAY. L2 Mention Physique Phys 141 DECOUVERTE DE L ELECTRONIQUE NUMERIQUE

UNIVERSITE PARIS XI U.F.R SCIENTIFIQUE D ORSAY. L2 Mention Physique Phys 141 DECOUVERTE DE L ELECTRONIQUE NUMERIQUE UNIVERSITE PARIS XI U.F.R SCIENTIFIQUE D ORSAY L2 Mention Physique Phys 141 DECOUVERTE DE L ELECTRONIQUE NUMERIQUE Année 2006/2007 H. Mathias M. Poirier-Quinot Table des matières Sujet 1 : Initiation à

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION Page 1/6 I- SYSTEMES SYSTEMES DE NUMERATION I-1- DECIMAL (base l0) C'est le système le plus utilisé. On peut représenter un nombre décimal sous la forme :... (1997) 10 = 1 10 3 + 9 10 2 + 9 10 1 + 7 10

Plus en détail

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen 1 Calcul des propositions 1.1 Propositions, valeurs de vérité

Plus en détail

Ecole Centrale Marseille 2006-2007 Electronique Numérique 1 ère année TDS

Ecole Centrale Marseille 2006-2007 Electronique Numérique 1 ère année TDS Ecole Centrale Marseille 2006-2007 Electronique Numérique 1 ère année TDS I. Conversions 1. Convertir de la base décimale en binaire :(27) 10 ; (12,3) 10 ; 2. On souhaite faire une mesure de distance entre

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

LES FONCTIONS LOGIQUES

LES FONCTIONS LOGIQUES I ciences de A2. ANALYR L YTÈM ystèmes logiques évènementiels Page:1/9 L FONCTION LOGIQU Objectifs du COUR : Ce cours traitera essentiellement les points suivants : - Généralités et normalisation des -

Plus en détail

Conservatoire National des Arts et Métiers

Conservatoire National des Arts et Métiers Conservatoire National des Arts et Métiers Polycopié de cours Electronique A4 Version provisoire du lundi 19 janvier 2004 Circuits numériques : 1 ère partie C.ALEXANDRE Conservatoire National des Arts

Plus en détail

PF1 Principes de Fonctionnement des machines binaires

PF1 Principes de Fonctionnement des machines binaires PF1 Principes de Fonctionnement des machines binaires Jean-Baptiste Yunès Jean.Baptiste.Yunes@univ-paris-diderot.fr Version 1.1 Calcul propositionnel et Algèbre de Boole Le calcul propositionnel ou calcul

Plus en détail

Plan du cours. Architecture des Ordinateurs. Licence Informatique 3ème Année. Plan du cours. Plan du cours. Architecture des ordinateurs

Plan du cours. Architecture des Ordinateurs. Licence Informatique 3ème Année. Plan du cours. Plan du cours. Architecture des ordinateurs Architecture des Ordinateurs Licence Informatique 3ème Année Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Plan du cours Architecture des ordinateurs Des concepts et théories

Plus en détail

LOGIQUE ET FONCTIONS COMBINATOIRES

LOGIQUE ET FONCTIONS COMBINATOIRES I. Définitions I.1. Variable binaire / Bit LOGIQUE ET FONCTIONS COMBINATOIRES On appelle variable binaire (ou logique), une variable prenant ses valeurs dans l ensemble {0, 1}. Il s'agit d'un bit (Binary

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail