Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013

Dimension: px
Commencer à balayer dès la page:

Download "Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013"

Transcription

1 LCD Physique ebc 1 Exercices M1: Cinémaique du poin A) Quesions de compréhension 1) Un voyageur dans un rain en mouvemen à viesse consane laisse omber un obje. Esquisser l allure de la rajecoire : pour un observaeur exérieur, immobile sur le rooir, pour le voyageur dans le rain, pour un voyageur dans un aure rain qui dépasse le premier. ) Un poin mobile M se déplace dans un plan. On le repère par ses coordonnées x e y dans un repère orhonormé (O, i, j). Les équaions horaires de son mouvemen son : x = 3 1 ; y = 4 1 (x e y en cm, en s) a) Eablir l équaion y = f(x) de sa rajecoire. Quelle es sa naure? b) Déerminer la disance parcourue par M enre les daes = 0s e = 1s. c) Déerminer la disance parcourue par M enre les daes e 1 s. Conclure. 3) (Fig. à droie) Dans la figure suivane, deux courbes A e B représenen des relaions enre la posiion x e le emps. Ces courbes représenen-elles oues les deux un mouvemen possible? Jusifiez une évenuelle réponse négaive. x A 4) Vrai ou faux? Un mouvemen reciligne es di uniforme si le mobile parcour des disances égales en des durées égales. Dans un diagramme (,v), la disance parcourue par le mobile n es pas représenée. Si la viesse d un poin mobile es consane, le mouvemen de ce poin es nécessairemen reciligne. Dans un diagramme (,x), la viesse du mobile n es pas représenée. Un mouvemen dans lequel le veceur viesse e le veceur accéléraion son consans es possible. Si un mouvemen es uniforme, le veceur accéléraion es oujours nul. La donnée «a 10ms» signifie que la viesse du corps considéré augmene de 1ms 1 en 10s. Lorsque l accéléraion du cenre d inerie d un solide es nulle, le solide n es soumis à aucune force. La viesse moyenne sur un raje es oujours égale à la moyenne algébrique des viesses sur les différenes éapes du raje. Un chario accéléré à parir du repos parcour m en 1s. En s il parcour 4m. Le veceur accéléraion es en ou poin angen à la rajecoire. Lorsqu on parcour la moiié du chemin à 10 km/h, e l aure moiié à 0 km/h, la viesse moyenne vau 15 km/h. B

2 LCD Physique ebc b) Lorsqu on parcour la moiié du emps à 10 km/h, e l aure moiié à 0 km/h, la viesse moyenne vau 15 km/h. 5) Dessiner x = f() d un mobile animé d un MRUA el que : x 0 > 0 ; v 0x < 0 e a x > 0. 6) Deux véhicules A e B, iniialemen au repos à la même posiion dans l espace, on même accéléraion. Quels son les rappors enre leurs viesses e leurs posiions si A accélère deux fois plus longemps que B? 7) Bernard e Francesco roulen côe à côe à bicyclee à la viesse de 36 km/h. Subiemen Bernard accélère e prend 4,5 m d avance au bou de 3 s. La viesse de Francesco n a pas varié. L accéléraion de Bernard es-elle la même suivan qu on prend comme référeniel la Terre ou Francesco? Expliquer. 8) Dans un es auomobile, on li : Dépar : 0-100km/h :8,3s Reprises: km/h :5,6s A quelles grandeurs physiques ces données se réfèren-elles?calculez-les. 9) Voici les représenaions graphiques de deux mouvemens différens (1) e (). Indiquer sur les représenaions (1) e () les poins pour lesquels la viesse v x es nulle. Décrire l évoluion de la viesse v x lors du mouvemen (1), e de l accéléraion a x lors du mouvemen (). 10) a) Une boule es lancée sur un plan incliné avec une viesse iniiale posiive. Le sens posiif correspond à l ascension. Commen évoluen les signes de la viesse e de l accéléraion? b) Une voiure, animée d une viesse v x = -15 m/s à un insan, accélère avec une accéléraion qui vau a x = - m/s. Quelle sera sa viesse à l insan 1 s? 11) Mouvemen curviligne Voici le veceur accéléraion représené en différenes posiions A, B, C, D, E occupés successivemen par le mobile. Décrire, pour chacune de ces posiions, si la viesse du mobile es en rain d augmener, de diminuer ou de reser consane. A sens du mouvemen B C E D

3 LCD Physique ebc 3 B) Exercices officiels C1 Eude sroboscopique d un mouvemen Le diagramme ci-dessous représene les posiions d'un même mobile enre son dépar A e son arrê B, noées à inervalles de emps réguliers (comme sur une phoographie sroboscopique). Quel es le diagramme viesse-emps qui figure le mieux ce mouvemen? C Avion à pédales En 1979, Brian Allen parcourai la disance séparan Folkesone, en Grande-Breagne, du Cap Gris-Nez, en France, à bord de l'avion à pédales Gossamer Albaross. Il parcouru une disance en ligne droie de 38,5 km en h 49 min. Quelle éai sa viesse moyenne? (v m = 13,7 km/h = 3,80 m/s) C3 Dupond e Dupon Dupond e Dupon fon une randonnée à bicyclee à ravers l'oesling. Avan de parir, Dupond se plain de la longueur e de la difficulé du parcours vallonné, long de 50 km. Dupon lui répond : «Ean donné que nous reviendrons en fin de promenade à nore lieu de dépar, nous aurons auan de monées que de descenes. Après chaque effor duran la monée, u pourras e reposer en descendan en roue libre. Ainsi, si u mones à une viesse de 5 km/h, u pourras descendre les côes à 45 km/h, ce qui donnera une viesse moyenne de 5 km/h. Nous serons donc de reour dans heures.» Dupon a--il raison? Au bou de combien de emps seron-ils de reour? ( =5,56 h)

4 LCD Physique ebc 4 C4 Eude qualiaive de mouvemens recilignes. Compléez, pour les mouvemens recilignes suivans, le ableau suivan : posiion x en foncion du emps : x ( ) composane de la viesse selon x : v x en foncion du emps : v ( ) Coure descripion du mouvemen 1 x ( ) v x ( ) x ( ) v x ( ) Coure descripion du mouvemen v x ( ) a x ( ) : 3

5 LCD Physique ebc 5 C5 Accéléraion moyenne Déerminez l'accéléraion moyenne dans chacun des cas suivans. Un DC10 paran du repos aein sa viesse de décollage de 360 km/h en 50 s. Un avion Corsair de la marine s'approche d'un pore-avions à 180 km/h e il es arrêé par un file en 4 s. Une capsule d'enraînemen aein 1440 km/h en s. (a x = m/s ; a x =-1,5 m/s ; a x =00 m/s ) C6 Veceur accéléraion La figure ci-conre monre les veceurs viesse insananée à deux insans séparés de 1 s. Les direcions des veceurs formen un angle de 35 e la valeur de la viesse passe de 4 m/s à 6 m/s. a) Déerminer graphiquemen le veceur variaion de viesse. b) Déerminer la valeur de l accéléraion. C7 Le graphique ci-dessus monre la viesse d un mobile en mouvemen reciligne en foncion du emps. a) Calculez les accéléraions des différenes phases du mouvemen. Tracez une graphique de l accéléraion en foncion du emps ( à l échelle ). b) Déerminer la disance parcourue par le mobile pendan les 50 premières secondes? v(m/s),0 10 (s )

6 LCD Physique ebc 6 C8 Evoluions de mouvemens accélérés Voici deux siuaions disinces ; la flèche représene l accéléraion. Expliquez commen von évoluer la rajecoire e la viesse (moivez)! C9 Eude graphique du MRUV Voici l'enregisremen du mouvemen d'un chario sur un rail incliné ,5 1 1,5,5 3 3, (s) a) Précisez laquelle des courbes es la posiion : x, respecivemen la composane de l accéléraion selon Ox : a x. Moivez vore choix. b) Eablissez l'expression de x(), de v x () e de a x () à parir du graphique. c) Rajouez la composane de la viesse selon Ox : v x () sur le graphique. d) Où le mouvemen es-il accéléré, où es-il freiné? Expliquez! (x() = - 35 e v x () = -43) (décéléraion dans le sens des x croissan enre 0 e 0,75 s e accéléraion dans le sens des x décroissans enre 0,75 s e 4s.) C10 TGV Un rain à grande viesse de masse M = 400 onnes roule sur une voie horizonale à la viesse 5 km/h. Le conduceur provoque le ralenissemen de la rame e obien une décéléraion consane de 0,75 m/s. Calculer la disance parcourue, lorsque la viesse du rain es ombée à 108 km/h. ( x =,67 km)

7 LCD Physique ebc 7 C11 Freinage sur auoroue Un auomobilise roule sur un ronçon d'auoroue reciligne à la viesse de 130 km/h. Soudain, un obsacle fixe apparaî sur la voie à une disance d = 10 m. Le conduceur freine immédiaemen e rédui sa viesse à 105 km/h au bou d'une durée = 1 s. a) Calculer la valeur de la décéléraion. b) Si l'on suppose que la décéléraion de l'auomobile rese consane, à quelle disance de l'obsacle la voiure va--elle s arrêer? c) On envisage mainenan cee évenualié : le conduceur ne réagi pas ou de suie e commence à freiner une seconde après l'appariion de l'obsacle. Il impose alors à son véhicule la décéléraion calculée au poin a). À quelle disance de l'obsacle l'auomobile va--elle s arrêer? ( a x = - 6,94 m/s b) x = 6,1 m c) d=10 m derrière l obsacle => choc.) C1 Piéons Deux piéons A e B se déplacen dans le même sens sur une roue reciligne. La viesse de A es 5,4 km/h, celle de B es 3,6 km/h. La disance qui les sépare à = 0 es 80 m, B éan en avance sur A. a) A quelle dae A dépassera--il B? b) Quelle sera alors la disance parcourue par chaque piéon depuis l origine des emps? c) Représenez sur un graphique la posiion des piéons en foncion du emps. ( a) = 160s ; b) x A =40 m e x B =160 m) C13 Paris-Luxembourg A Luxembourg, un voyageur prend à 06.00h du main le rain pour Paris. Ce rain roule à une viesse de 100 km/h. A 07.00h, un second voyageur par de Paris en direcion de Luxembourg, à la viesse de 150 km/h. A Reims, qui se rouve à 150 km de Paris, le rain ombe en panne e doi s arrêer pendan une heure, puis repar avec la même viesse vers le Luxembourg. Trouver graphiquemen le lieu e la dae de la renconre, sachan que la disance Paris- Luxembourg vau 400 km. (=8h30 à Reims) C14 Poursuie Un auomobilise roule à la viesse consane de 10 km/h sur une roue reciligne où la viesse es limiée à 90 km/h. Un moard de la Police par à sa poursuie. Il démarre au momen précis où l auo passe devan lui. Le moard es animé d un mouvemen reciligne uniformémen accéléré qui le fai passer de 0 à 100 km/h en 10 s. a) Calculez la durée de la poursuie. b) Déerminez la disance parcourue lors de la poursuie. c) Inerpréez les résulas sur un graphique (pas nécessairemen à l échelle). d) Calculez la viesse du moard lorsqu il rarape l auo. ( a) =4s b) x M = x A =800m d) v xm =66,7m/s=40km/h) C15 Rien ne ser de courir... Sur le quai d une gare, une voyageuse, en reard, cour à une viesse consane de 8 m/s pour essayer d araper son rain. Le rain démarre alors qu elle es à une disance d du dernier wagon e décri un MRUA d accéléraion a = 0,5 m/s.

8 x en m LCD Physique ebc 8 a) Monrez que pour d = 100 m, la voyageuse ne peu pas rejoindre son rain. Déerminez la disance minimale séparan la pauvre voyageuse du rain. b) Déerminez à quelle dae la voyageuse rejoin le rain, si d = 40 m. c) Déerminez quelle devrai êre la disance maximale d max pour que la voyageuse puisse aeindre le dernier wagon. d) Inerpréez les résulas sur un graphique (pas nécessairemen à l échelle). ( a = <0 pas de solu. pour l éq. du e degré ; d min =36m b) =6,0s (e =5,8s) c) d max =64m) Exercices supplémenaires : 16) Une locomoive iniialemen immobile passe en 10s à une viesse de 8m/s. a) Calculez son accéléraion. b) Quel es le chemin parcouru au bou de ces 10s? c) En supposan que la locomoive poursui son mouvemen reciligne uniformémen accéléré, au bou de combien de emps aura--elle parcouru 50m? Quelle sera alors sa viesse? d) A 50m elle obien le sigbal de s arrêer à nouveau e elle décélère avec a =-1,6m/s jusqu à l arrê. Calculer la durée Δ e le raje Δx correspondan à cee phase de freinage. e) Calculer la viesse moyenne sur ou le parcours dépar-arrê. 17) (Fig. à droie) On donne la représenaion x() d'un mouvemen reciligne uniformémen accéléré. a) Déduire x o, v o e a. b) Représener v() enre 0 e 4s c) Prévoir l'insan où x=-10m 18) On lance succesivemen deux balles de ennis avec une viesse v o =10m/s vericalemen vers le hau. L'écar enre le lancemen de la première e de la deuxième balle es de 1s. Quand e où von se renconrer les deux balles? Rép : Equaion du MRUA avec a=-g=-10m/s 1ère balle: y 1 =- 1 / g v 0 eme balle: y =- 1 / g (-1) v 0 (-1) car pour =1s, y =0 Renconre: y 1 =y - 1 / g v 0 ==- 1 / g ( -1) v 0 -v 0 g - 1 / g-v 0 =0 1 g v0 quand?: R = =1,5s g où? y R = 1 / g v 0 =3,75m en s 19) a) Une voiure roule à 50km/h avan de freiner avec une décéléraion a=3m/s. Déerminer la disance de freinage d parcourue jusqu'à l'arrê. b) La même voiure roule mainenan à 70km/h avan de freiner sous les même condiions. c) Quelle sera la viesse après la disance de freinage d obenue sous a)? Commener.

9 LCD Physique ebc 9 Rép. a) v 0 =50km/h=13,9m/s a=-3m/s v 0 v durée du freinage: a= a b) v 0 =70km/h=19,44m/s a=-3m/s viesse après freinage sur une disance d a d=v -v 0 v= v 0 a d v 0 13,9 3 =13,6m/s=49km/h 4,63s disance: d= v 0 0 3,m Une voiure qui roule à 50km/h avan de freiner devan un obsacle à 3 m pourra s'arrêer. La même voiure roulan à 70km/h enre en collision avec 50km/h!! 0) (Fig. à droie) Un véhicule se déplace à parir de x 0 =0 sur un raje reciligne. Sa viesse es caracérisée par le diagramme suivan. a) Indiquer sur les 5 inervalles de emps : 1. la valeur algébrique de l'accéléraion a.. le déplacemen x b) Déerminer à la fin du mouvemen à =100s 1. la posiion x finale. le chemin parcouru en valeur absolue Rép.a) 0<<30s 30<<50s 50<<60s 60<<80 80<<100 a 1 =1m/s a =0 a 3 =-3m/s a 4 =0 a 5 =-1,5m/s x 1 =450m x =600m x 3 =150m x 4 =0 x 5 =-300m b) abscisse finale : x=x 0 x i =900m ; chemin parcouru : l= x i =1500m 1) (Fig. à droie) Sur l'enregisremen suivan =0,05s a) Calculer la viesse moyenne sur le parcours M 0 e M 10 b) Consruire le veceur viesse en M 5 (0,1m/s 1cm). M 0 M1 ) (Fig. à gauche) Sur l'enregisremen suivan =0,05s a) Consruire le veceur viesse en M 1 e M 9. b) Déduire le veceur accéléraion moyenne. Échelle: viesse (0,1m/s 1cm) accéléraion (0,5m/s 1cm) M 0

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Exercices Cinématique 3

Exercices Cinématique 3 Exercices Cinémaique 3 1. Quelle différence y a--il enre la viesse insananée e la viesse moyenne? 2. Parmi les objes suivans, lesquels pourraien avoir une viesse moyenne idenique à leur viesse insananée?

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

L = 15 m. 1) Modéliser le pont ainsi que ses appuis (fibre moyenne et représentation des appuis).

L = 15 m. 1) Modéliser le pont ainsi que ses appuis (fibre moyenne et représentation des appuis). ESTP TP1 nnée 2008-2009 PPLICTION 1 : POUTRES DROITES ISOSTTIQUES EXERCICE 1 On considère un pon en béon, de longueur 15 m, don la secion es une dalle en béon armé de largeur 5m e d épaisseur 0,9 m. Le

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

2 ème Partie Cinématique: Déplacement, vitesse, accélération

2 ème Partie Cinématique: Déplacement, vitesse, accélération ème Parie Cinémaique: Déplacemen, viesse, accéléraion Inroducion Noes de cours de Licence de A. Colin de Verdière Un obje es en mouvemen si sa posiion mesurée par rappor à un aure obje change. Si cee posiion

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301 FSMH TOULOUSE Biomécanique L1 UE11 Suppor de cours Amaranini Waier Duclay Laurens Julien DUCLAY julien.duclay@univ-lse3.fr Pôle Spor - Bureau 31 z (m) Exemple 1 : équaions horaires O ez Chue libre vericale

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Exercices supplémentaires Série 1

Exercices supplémentaires Série 1 PHYSIQUE Phy-5042 Exercices supplémenaires Série 1 NE PAS ÉCRIRE SUR CE DOCUMENT Version du 24 noembre 2003 Rédigé par Séphane Laoie laoie.sephane@csdgs.qc.ca Dimension 2.1 1. Quel graphique représene

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP "marche-arrêt" (2 sens de marche)

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP marche-arrêt (2 sens de marche) BS Mainenance Indusrielle Elecroechnique Eude d un mone charge Moeur asynchrone deux sens de roaion e 2 viesses enroulemens séparés Rappels emporisaions Présenaion es manuenions dans un grand magasin son

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30 USTHB Faculé de Physique Année 011-01 1ère année ST Corrigé de la série cinémaique Secions 16 à 30 Hachemane Mahmoud (ushbs10@gmail.com) Monsieur A. Dib e Mademoiselle R. Yekken son remerciés pour leurs

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2 Mécanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEMATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

459,6nm 450nm,750nm qui

459,6nm 450nm,750nm qui Exercice : Travaux dirigés de l opique géomérique SVT 03,. T =,533.0-5 4 s, d où la fréquence : = A.N. : = 6,53.0 Hz T c c. 0 = c.t = =. A.N. : 0 459,6nm 0, 4596m f 3. Oui, cee radiaion es visible à l

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

5.1 La conception d'animation

5.1 La conception d'animation ANIMATIONS Flash CS6 5.1 La concepion d'animaion A- Le concep d'animaion dans Flash Flash perme de créer des animaions. Lorsque vous animez un obje, vous gérez deux espaces : l'espaceemps dans le panneau

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Sommaire de la séquence 11

Sommaire de la séquence 11 Sommaire de la séquence 11 Séance 1........................................................................................................ Je calcule des longueurs, des aires e des volumes....................................................

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Temporisation et monostable Contrôleurs de rotation XSA-V

Temporisation et monostable Contrôleurs de rotation XSA-V Temporisaion e monosable Conrôleurs de roaion XSA-V Manuel didacique Version Française TE Sommaire Chapire Page Temporisaion - Lecure des hisogrammes 3. Définiion 3.2 Bu 3.3 Principe de foncionnemen 3.3.

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés Le redressemen c'es la ransformaion de l'énergie élecrique alernaive du réseau en énergie coninue. Symbole : ~ = Les redresseurs se divisen en deux grands groupes : les redresseurs demi onde, à une alernance

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent Lycée Viee TSI 1 T.P. cours 04 oscilloscope G.B.F. mulimères I. Principe de foncionnemen de l oscilloscope à ube cahodique 1. Descripion F C W A 1 A 2 vide spo P DV P DH écran fluorescen F filamen C cahode

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

Chapitre 1. La cinématique. 1.1 Définitions

Chapitre 1. La cinématique. 1.1 Définitions Chapire 1 La cinémaique La cinémaique es la descripion mahémaique du mouvemen, souven considérée comme la base de la physique. Le mouvemen le plus fondamenal auquel on puisse penser es la chue libre. Expérimenée

Plus en détail

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Indusrielle ETUDE D UN SYSTEME PLURITECHNIQUE Coefficien : 6 Durée de l épreuve : 4 heures PROPOSITION DE BAREME Analyse du sysème Quesion

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. Objecifs ANALYSER MODELISER A l issue de la séquence, avec l aide du cours sur les ransformées de Laplace, l élève doi êre capable

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

DEVOIR DE SYNTHESE N 1 SECTION TECHNIQUE

DEVOIR DE SYNTHESE N 1 SECTION TECHNIQUE LYCEE KHAZNADAR DEVOIR DE SYNTHESE N 1 Proposé par : MLAOUHI S & ABAAB T Disciplines echniques SECTION TECHNIQUE Consiuion du suje : un dossier echnique : pages 1/4 2/4 3/4 e 4/4 Des feuilles réponses

Plus en détail

Année scolaire 2009-2010 TS3 Lycée Louis-Le-Grand Paris. Les Bermudes et la science : un triangle problématique

Année scolaire 2009-2010 TS3 Lycée Louis-Le-Grand Paris. Les Bermudes et la science : un triangle problématique Année scolaire 2009-2010 TS3 Lycée Louis-Le-Grand Paris Les Bermudes e la science : un riangle problémaique Olympiades de Physique 2009-2010 Olivier CARREAU Emeric DE WAZIERS Nahan LOMBARD 2 Inroducion

Plus en détail

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel Chapire 2 Cinémaique 2.1 Inroducion La cinémaique es l éude du mouvemen des corps. Nous ne considérerons que des corps de faibles dimensions de sore qu ils seron oujours assimilés à des poins appelés mobiles.

Plus en détail

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1.

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1. MESURE DE VISCOSITÉ I - QUELQUES ÉLÉMENTS DE RHÉOLOGIE La mesure de la viscosié d'un fluide fai parie de la rhéologie, qui es la science des écoulemens de la maière. Dans la suie, on noera : -la viscosié

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail