Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale."

Transcription

1 Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre est de présenter un algorithme stochastique de calcul approché d une intégrale I = f(x) dµ(x), E où E est un espace mesurable, et µ une probabilité sur E. Cette méthode s appuie sur une la loi des grands nombres pour les sommes de v.a.i.i.d. Il s agit de la méthode de Monte Carlo avec tirages indépendants. Dans le chapitre suivant, nous verrons un autre algorithme stochastique pour la calcul approché d une intégrale, la méthode MCMC (Monte Carlo Markov Chains) qui s appuie sur le théorème ergodique pour les chaînes de Markov. Principe de la méthode. Cette méthode s appuie sur la loi des grands nombres pour des sommes de v.a.i.i.d : Si X i sont des v.a.i.i.d. de loi µ, et si E( f(x ) ) <, alors Ī n n n f(x i ) p.s. E(f(X )) = I = E f(x) dµ(x). Ainsi, si l on sait simuler des variables de loi µ, pour avoir une approximation de I, il suffit de tirer un grand nombre de variables de loi µ, et de calculer Īn. Vitesse de convergence. La vitesse de convergence dans la méthode de Monte-Carlo est donnée par le TLC. Si X i sont des v.a.i.i.d. de loi µ, et si E( f(x ) ) <, alors n (Īn I ) var(f(x )) loi Z, où Z N(0, ). () Comme P [ Z.96 = 0.9, on a donc pour n grand, [ var(f(x )) var(f(x )) P Ī n.96 I n Īn n Ainsi, la vitesse de la méthode de Monte Carlo est en n, ce qui est assez mauvais si l espace E est de petite dimension quand on compare cette méthode à n importe quelle méthode déterministe (trapèzes...). En revanche, cette vitesse est indépendante de la dimension. Ainsi, la méthode de Monte-Carlo devient performante lorsque l espace E est de grande dimension, voire de dimension infinie.

2 Méthodes de réduction de variance. L approximation faite est d autant meilleure que la variance de f(x ) est faible. On peut estimer cette variance par la variance empirique S n n n (f(x i ) Īn) p.s. var(f(x )). () On déduit des résultats de convergence () et () que n S n (Īn I) loi Z, Z N(0, ). On a donc à nouveau lorsque n est grand [ P Ī n.96 S n I n Īn.96 S n 0.9. () n Nous présentons dans la suite quelques méthodes classiques qui permettent de réduire la variance de la méthode de Monte-Carlo.. Échantillonnage préférentiel. Supposons ici que E = R d et qu on veuille calculer I = f(x)g(x)dx où g est une densité de probabilité sur R d. Une première méthode est d approcher I par n n f(x i) où les X i sont des v.a.i.i.d. de loi de densité g. Soit maintenant f une autre densité de probabilité telle que f > 0. On peut récrire I sous la forme I = f(x)g(x) f(x) dx. Cette écriture suggère d approcher I par f(x) n fg n f (Y i), où les Y i sont des v.a.i.i.d. de loi de densité f. On a gagné quelque chose si ( ) [ (fg ) var fg f (Y ) var(f(x )) E (Y ) E [ f f (X ) f (x)g (x) dx f f(x) (x)g(x) dx. (4) On doit donc choisir f de telle sorte que : f soit facile à simuler ; f vérifie (4). Une façon d obtenir (4), est de choisir f proche de fg (ce qui suppose que f est positive), afin d avoir une variance proche de zéro, et de renormaliser afin de faire de f une probabilité.. Variables de contrôle. Soit à approcher I = E[f(X). On peut toujours écrire I = E(f(X) h(x)) E(h(X)). Supposons que l on sache calculer E(h(X)) de façon explicite. Le calcul approché de I se ramène au calcul approché de E(f(X) h(x)). On a gagné quelque chose si var(f(x) h(x)) var(f(x)).

3 . Variables antithétiques. Soit toujours à calculer I = E(f(X)). Supposons que[ pour une transformation T, X et T (X) ait la même loi. On peut alors écrire I = E f(x)f(t (X)), et approcher I par n f(x i )f(t (X i )) n. On a ( ) [ ( ) var f(x )f(t (X )) = E f(x )f(t (X )) I = 4 (E[f (X ) E[f(X )f(t (X ))) I car X loi = T (X), (E[f (X ) E[f (X )) I = var(f(x ) par Hölder On gagne donc toujours en terme de qualité de l approximation Monte-Carlo. 4 Travaux Pratiques. Le but du TP est d estimer par Monte-Carlo le prix d options call et put basées sur un ou plusieurs actifs risqués. 4. Cas d un seul actif risqué. Le call est une option d achat basée sur un actif à risque de prix (S t ; t 0). A l instant 0, l acheteur d une option call achète à un prix C, le droit d acheter à l échéance T, l actif S à un prix K fixé, et ce quel que soit le prix de l action à l instant T. Si S T K, le détenteur du call exerce son droit, et achète l action au prix K. Si on note r le taux d intérêt de l actif sans risque, son gain est alors de S T K Ce rt = (S T K) Ce rt. En revanche, si S T < K, il n exerce pas son droit, n achète pas l action, et son gain (qui est une perte) est donc de Ce rt = (S T K) Ce rt. Pour que le jeu soit équitable (une condition raisonnable pour que deux joueurs acceptent d y jouer), il faut donc que le prix C de l option d achat soit tel que C = E [(e rt S T Ke rt ). L espérance E est ici l espérance sous la probabilité P dite risque neutre sous laquelle le prix actualisé S t = e rt S t est une martingale. Une modélisation couramment utilisée pour le prix d une action est la suivante : S t = S 0 exp(µt σb t ) où (B t, t 0) est un mouvement Brownien, et on a ) S t = S 0 exp ( σ t σb t où (Bt, t 0) est un mouvement Brownien sous P. Ainsi ) ) C = E [( S T Ke rt ) = E [(S 0 exp ( σ T σb T Ke rt [( ) ) = E S 0 exp ( σ T σ T Z Ke rt où Z est une variable N(0, ).

4 De la même façon, le put est une option de vente. A l instant 0, l acheteur du put achète à un prix P le droit de vendre à l instant T une action donnée à un prix K fixé, et ce quel que soit le prix de l action à l instant T. Si S T K, le détenteur du put n exerce pas son droit, et ne vend pas l action. Son gain est donc de P exp(rt ) = (K S T ) P exp(rt ). En revanche, si S T < K, il exerce son droit, vend l action, et son gain est donc de (K X T ) P exp(rt ) = (K X T ) P exp(rt ). Ainsi, on a [( P = E [(Ke rt S T ) = E Ke rt S 0 exp )) ( σ T σ T Z Dans toute la suite, on va supposer que K =, σ T =, S 0 = et r = σ /. Ainsi, C exp(/) = E[(exp(Z) ), P exp(/) = E[( exp(z)), où Z N(0, ). On va utiliser différentes méthodes de Monte-Carlo pour estimer C = C exp(/) et P = P exp(/). Exercice : Calcul exact de C et P. Soit Φ la fonction Φ(x) = P (Z x) = x e y dy π. Vérifiez que Exercice : Méthode de Monte-Carlo pour C et P. C = e Φ( ) ; () P = e Φ( ). (6). Mettre en oeuvre une méthode de Monte-Carlo pour le calcul de C. Tracer sur un même graphe la valeur de C donnée par (), la valeur approchée de C donnée par la méthode de Monte Carlo, et les bornes de l intervalle de confiance donné par (), en fonction du nombre de simulations.. Même question pour P.. Commenter. Exercice : Échantillonage préférentiel pour le calcul de C. On a C = 0 (ex )e x / dx π. Pour x petit, e x x. On écrit alors C = 0 e x x xe x / dx = π 0 e [ y y dy e = e Y E, Y E(). y π π Y (7) Estimez C par une méthode de Monte-Carlo basée sur l expression (7). Comparez à la méthode de l exercice, en terme de précision de l approximation, et en terme de temps calcul. Exercice 4: Variables de contrôle pour le calcul de C. On a C P = E(e Z ) = e / ; i.e. C = P e. Pour avoir une valeur approchée de C, il suffit d avoir une valeur approchée de P. Estimez C par une méthode de Monte-Carlo basée sur le calcul approché de P. Comparez aux méthodes des exercices et, en terme de précision de l approximation, et en terme de temps calcul. Exercice : Variables antithétiques pour le calcul de C. Comme Z et Z ont même loi, on peut approcher C par n n (ez i ) (e Z i ). Comparez cette méthode aux méthodes précédentes. 4

5 4. Cas de plusieurs actifs risqués. Même si un grand nombre d options portent sur un seul actif sous jacent, il en existe qui portent sur plusieurs actifs risqués à la fois. Un premier exemple typique est le cas des options spread, qui portent sur l écart entre les prix de deux actifs, i.e. H = (ST S T ), où S et S sont les prix de deux actifs risqués. Un second exemple est constitué par les options sur portefeuille appelées aussi options paniers (basket option en Anglais). Les options sur indice (type CAC 40) en sont un exemple. Une option de vente (put) sur portefeuille est un moyen d assurer son portefeuille. Étant donné un portefeuille composé de a i actions de prix St i à l instant t, i =,..., d, un put qui paye (K n a ist i ) garantit que le portefeuille pourra être revendu au moins au prix K à l échéance. Supposons que, outre l actif non risqué, qui cote R t = e rt à l instant t le marché est composé de d actifs risqués, dont les prix St, i i =,..., d, fluctuent suivant le modèle [ St i = S0 i exp µ i t σ ij B j t, i d, t 0. j= En supposant Σ = (σ ij ) inversible, on peut montrer l existence d une probabilité risque neutre P équivalente à la probabilité P, sous laquelle le processus des prix actualisés { S t = e rt S t = e rt (St,..., St d ), t 0} est une martingale. La formule pour le prix du call (resp. du put) devient ) C = E [( resp. P = E [(e rt K a i Si T e rt K ) a i Si T où sous P la loi de L t = (log S t,..., log S t d ) est la loi de Gauss vectorielle ( N log(s 0 ) T ) s, ΣΣ T, avec l abus de notation log(s 0 ) = (log(s0),..., log(s0)) d et σ σ d s Σ =.., s =., où s i = σ d σ dd Ainsi, on a maintenant ( ) C = a i e x i e rt K R d s d, j= σ ij. ( d π det(σσ T ) e x log(s 0 ) T s ) ΣΣ T dx dx d Les méthodes déterministes de calcul approché d intégrales deviennent vite impraticables quand le nombre d d actifs sous-jacents augmente. C est dans une telle situation que la méthode de Monte-Carlo est vraiment utile. Notons que la formule de parité call put prend maintenant la forme [ C P = E a i Si T e rt K = a i S0 i e rt K.

6 On va appliquer la méthode de Monte Carlo au calcul du call dans le cas de l option panier, avec d =, a = 4, S 0 = 7, K = 700, rt = 0, 0, T Σ = 0, , 0, , , 0 0, 0, , , , 0, 0 0, 0, , 0 0 0, 0, 0, , , 0, 0, 0, , 0, 0, , 0, , 0, 0,6 0, , 0, 0, 0, 0, 0,7 0, , ,4 0, 0, 0, 0, 0 0 0, , , , , , 0 0 0, , , 0 0 0, , , , , 0 0, 0 0, 0, , , , 0 0, , 0, 0, , , 0, 0, 0, , 0 0 0, , 0, 0, 0 0, , , 0, 0, 0 0, , , , , 0 0 0, , , 0, 0 0 0, , 0, 0, 0, , ,4 Exercice 6: Calculer le prix du call en appliquant la méthode de Monte Carlo à la formule pour C avec N tirages. On prendra soin d évaluer (de façon approchée) la variance de la v.a. dont on cherche à estimer l espérance, on choisira N de telle sorte que le chiffre des dizaines soit correct avec une très grande probabilité (9%), et on donnera un intervalle de confiance pour la quantité cherchée. Exercice 7: Refaire le calcul du prix du call (y compris l intervalle de confiance), en utilisant. 6

7 la méthode de Monte Carlo (avec le même nombre de tirages), pour le calcul approché du prix du put, et la formule de parité call put. Comment les deux approches se comparent-elles? 7

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance Master Modélisation Statistique M2 Finance - chapitre 0 Introduction au cours de finance Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Couverture et calcul de Malliavin

Couverture et calcul de Malliavin Couverture et calcul de Malliavin L. Decreusefond TPT L. Decreusefond (TPT) Couverture et calcul de Malliavin 1 / 1 Modèle binomial L. Decreusefond (TPT) Couverture et calcul de Malliavin 2 / 1 Modèle

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel Évaluation des options américaines par méthodes de Monte-Carlo Jacky Mochel 3 décembre 2002 1 2 TABLE DES MATIÈRES Table des matières 1 Introduction 3 1.1 Définitions et notations..............................

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

Portefeuille - Probabilité risque neutre

Portefeuille - Probabilité risque neutre Portefeuille - Probabilité risque neutre Marché complet sans opportunité d arbitrage ½/ Actifs risqué et non risqué Constitution du portefeuille On notera F n l information dont on dispose à l instant

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

Note finale:... Q1 :... Q2 :... Q3 :... Q4 :... Bonus :... Total :...

Note finale:... Q1 :... Q2 :... Q3 :... Q4 :... Bonus :... Total :... FACULTE DES HAUTES ETUDES COMMERCIALES DE L'UNIVERSITE DE LAUSANNE Professeurs : D. Andrei C. Bobtcheff Matière : Principes généraux de finance Session : Automne 2012 Informations générales: o Documentation

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Master 2 IMOI - Mathématiques Financières

Master 2 IMOI - Mathématiques Financières Master 2 IMOI - Mathématiques Financières Exercices - Liste 1 1 Comportement d un investisseur face au risque Exercice 1 Soit K la matrice définie par 1 2 [ 3 1 1 3 1.1 Montrer que K est la matrice de

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES)

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) Depuis sa publication en 1973, la formule de Black et Scholes s est imposée comme la référence pour la valorisation

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

3- Valorisation d'options

3- Valorisation d'options 3- Valorisation d'options Valorisation des options classiques : options d'achat (call) options de vente (put) Une pierre angulaire de la finance moderne : décisions d'investissement (options réelles) conditions

Plus en détail

Tutorat 3 de Mathématiques (2ème année)

Tutorat 3 de Mathématiques (2ème année) Tutorat 3 de Mathématiques (2ème année) Marches aléatoires et marchés financiers Groupe 4 tuteur : J. Bouttier 8 février 2010 Résumé Depuis la thèse de Bachelier, les marchés nanciers ont constitué un

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Introduction aux produits de taux d intérêts

Introduction aux produits de taux d intérêts Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits

Plus en détail

Chapitre 9 Le modèle Cox-Ross-Rubinstein

Chapitre 9 Le modèle Cox-Ross-Rubinstein Chapitre 9 Le modèle Cox-Ross-Rubinstein Considérons un actif valant S 0 à la période initiale et qui, à chaque période, peut être haussier (et avoir un rendement u) avec une probabilité p ou baissier

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail