ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )"

Transcription

1 ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel ( e ) en volt/mètre Intensité du courant ( I ) en ampère absorbée par un récepteur ( W ) en joule Puissance absorbée par un récepteur ( P ) en watt Loi d ohm Effet Joule En rotation : W =.q = F.r e = P = W t eo. Q S W = VAB. Q e = VA - VB AB I = Q t W = U. Q F : force ( Newton ) d : déplacement ( mètre ) : moment de la force q : rotation ( radians ) oment d une force par rapport à son axe de rotation. F : force r : rayon ( mètre ) Travail fourni par seconde ( t en seconde ) Q : quantité d électrons ( Coulomb ) S : surface traversée ( mètre carré ) e o : permittivité du vide =, - Q : quantité d électrons ( Coulomb ) VAB : tension appliquée a une charge Q ( volt ) VA VB : différence de potentiel (volt) AB : distance ( mètre ) L ampère est l intensité d un courant constant qui transporte coulomb par seconde. U : tension ( volt ) Q : charge ( coulomb ) P = U. I I : intensité ( ampère ) U = R. I W = R. I. t P = R. I P = U.I = U R Force de Laplace ( F ) en newton F = q. V. B Flux magnétique ( F ) en wéber Force magnétomotrice ( Fm ) en ampère-tour Excitation magnétique ( H ) en ampère-tour / mètre Induction magnétique du vide ( Bo ) en tesla Induction magnétique ( B ) en tesla Loi de Laplace Travail des forces électromagnétiques (W) en joule F = B. S. cos a F = N. I H = F L ( Uniquement pour les conducteurs passifs ) R : résistance du conducteur ( ohm ) W : énergie calorifique ( joule ) P : puissance calorifique ( watt ) q : charge ( coulomb ) V : vitesse ( mètre/seconde) B : induction ( tesla ) a ( degré ) : angle que fait le vecteur induction B avec la normale à la surface S N : nombre de spires F : force magnétomotrice L : longueur du conducteur ( mètre ) Bo = mo. H mo : perméabilité dans le vide = p. - B = m. Bo = m. mo. H F = B. I. L sin a W = F. I m : perméabilité relative du matériau L intensité est maximale lorsque le courant et l induction font un angle de 0 EENTO ÉLECTRICITÉ

2 ÉLECTRICITÉ / F.E. induite E = B. L. v B : induction ( tesla ) L : longueur ( mètre ) v : vitesse ( mètre/seconde ) E = - Dj Dt Dj : variation du flux Dt : variation du temps Fréquence ( f ) en hertz Pulsation d un courant ( w ) en radian/seconde f = T w = p. f T : période du signal ( seconde ) Impédance ( Z ) en ohm PUISSANCE ONOPHASEE : Puissance active : ( P ) en watt Z = U I P = U. I. cos j valable en notation complexe ( module et argument ) Cos j = facteur de puissance Puissance réactive : ( Q ) en voltampère réactif Puissance apparente ( S ) en voltampère PUISSANCE TRIPHASEE : Puissance active : ( P ) en watt P = Q = U. I. sin j S = U. I. U. I. cos j tan j = Q P, cos j = P S, sin j = Q S Puissance réactive : ( Q ) en voltampère réactif Q =. U. I. sin j Ces trois formules sont valables quelque soit le couplage du récepteur Puissance apparente ( S ) en voltampère ACHINE A COURANT CONTINU : Couple F.E.. ( ) en Newton-mètre F.E.. d un transformateur Rapport de transformation F.E. d une machine à courant alternatif OTEUR ASYNCHRONE : Vitesse de rotation ( W ) en radian/seconde Glissement ( g ) Fréquence des courants rotoriques (fr) en hertz Puissance perdue dans le rotor Rendement du moteur S =. U. I = K. F. I E = K. F. W E = N. n. F E =, N. f. B. S m = U U = N N K = p N a p N : nombre de conducteurs actifs W : vitesse angulaire ( radian/seconde ) p : nombre de paires de pôles a : nombre de paires de voies d enroulement S en mètre carré N : nombre de spires au primaire N : nombre de spires au secondaire U : tension primaire U : tension secondaire E = K. f. N. F K : coefficient de Kapp», W = ( g ). Ws g = Ws - W Ws fr = g. f = - W Ws Pr = g.. Ws h = Pu Pa g : glissement ( sans unité ) Ws : vitesse de synchronisme f : fréquence d alimentation : couple moteur électromagnétique EENTO ÉLECTRICITÉ

3 ÉLECTRICITÉ / Résistance ( R ) en ohm DIPOLES FONDAENTAUX Résistance : R = r. L S R = Ro. ( + at + bt ) r : résistivité du matériau ( W.m ) Ro : résistance du matériau à O C a : coefficient de température Couplage en série Re = R + R + R Re : résistance équivalente Re = + + R R R Couplage en parallèle Impédance ( Z ) en ohm Ge = G + G + G G : conductance = R Z = R Déphasage j = 0 Code des couleurs Charge ( Q ) en coulomb Condensateur : Q = C. U Capacité ( C ) en farad C = eo. er. S d C = C + C+ C Couplage série C = C + C + C Couplage parallèle Constante de temps ( charge ) ( t ) en seconde ( Wc ) en joule t = R. C Wc =. C. U U : tension ( volt ) C : Capacité ( farad ) e o : permittivité du vide =, - er : permittivité relative ou constante diélectrique du milieu isolant R : résistance en ohm mise en réserve dans le condensateur Code des couleurs F.E.. d auto-induction ( e ) en volt Bobine : Flux ( F ) en wéber F= L. I L : unité d inductance ( henry ) e = - L. di dt Constante de temps ( t ) en seconde t = L R L : unité d inductance ( henry ) R : résistance en ohm EENTO ÉLECTRICITÉ

4 ÉLECTRICITÉ / Circuit générateur CIRCUITS ELECTRIQUES Circuit ouvert I=0 U=E Tension V A V B = U = E ri Puissance P = EI ri Circuit récepteur W = EI.t ri t r résistance interne E f.e.m en Volts U différence de potentiel en Volts P en Watts W en Joules et t en secondes Tension U= E + ri Puissance P = U I = EI + ri Circuit conducteur W = E.I.t + ri.t Chute de tension en ligne U U = r l I Puissance et perdue Lois de Kirchhoff P = r l I W = r l I t. Loi des noeuds i + i + i = i + i Au nœud (N) : la somme des courants égale à O. Loi des mailles V A V D = V AD V AD = E r.i V BC = E r.i V AD - V AB - V BC = 0 Loi d ohm (Conducteurs passifs) U = R. I R : résistance du conducteur ( ohm ) EENTO ÉLECTRICITÉ

5 ÉLECTRICITÉ / Principe de superposition TRANSFORATIONS DE CIRCUITS () est la superposition de () et () () = () + () Théorème de Thévenin exemple : i = i + i Théorème de Norton E th : tension mesurée entre A et B à vide. R th : résistance vu des bornes A et B lorsqu on annule toutes les Sources (courant = circuit ouvert, tension = fil). Pont de Wheaston (mesure de résistance) Io : courant circulant entre les bornes A et B en court circuit. rn : résistance vu des bornes A et B lorsqu on annule toutes les Sources (courant = circuit ouvert, tension = fil). A l équilibre : V A V B = 0 r.i = r.i r.i = x.i d où x = r r. r EENTO ÉLECTRICITÉ 0

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail

EPREUVE N 1. Sciences et techniques des installations. (durée : 4 heures ; coefficient 3) Aucun document n est autorisé.

EPREUVE N 1. Sciences et techniques des installations. (durée : 4 heures ; coefficient 3) Aucun document n est autorisé. CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2006 CONCOURS : INTERNE Section : Electrotechnique et électronique maritime EPREUVE N 1 Sciences et

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2)

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2) CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2015 Concours : EXTERNE Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE

Plus en détail

PUISSANCE ELECTRIQUE

PUISSANCE ELECTRIQUE PUISSANCE ELECTRIQUE I COURANT CONTINU 1 absorbée par un récepteur 2 Puissance thermique et effet Joule 3 Bilan des puissances a) Conducteur ohmique Conducteur P abs Ohmique P ut = P j le rendement est

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel TABLE DES MATIERES I PREAMBULE : Objectif et Motivations CHAPITRE I : Cinématique du point matériel I.1 : Introduction I.2 : Cinématique à 1 dimension I.2.1 : Repérage du mobile I.2.2 : La vitesse moyenne

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

LES UNITES DE MESURE

LES UNITES DE MESURE Sciences et Technologies de l Industrie et du Développement Durable Les unités de mesure utilisées en sin 1 ère STI2D CI5 : Solutions constructives de la chaine d information Cours sin 1. Introduction

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

PRINCIPE DE FONCTIONNEMENT.

PRINCIPE DE FONCTIONNEMENT. PRINCIPE DE FONCTIONNEMENT. Le stator crée un champ inducteur tournant à la vitesse de synchronisme. La pulsation des courants stator est = p S. Pour que le rotor tourne, il faut qu'il y ait du courant

Plus en détail

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones Gérard-ndré CPOLINO 1 Machine à pôles lisses Concept (machine à 2 pôles) Le stator est un circuit magnétique circulaire encoché Un bobinage triphasé est placé dans les encoches Le rotor est également un

Plus en détail

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU CONVERTIR L ENERGIE MACHINES A COURANT CONTINU Les machines à courant continu sont réversibles. Elles peuvent devenir génératrices ou moteur. Energie mécanique GENERATRICE CONVERTIR L ENERGIE Energie électrique

Plus en détail

Chapitre 3 : Plan du chapitre. 2. Tensions simples et tension composées 3. Couplage étoile/triangle 4. Mesure de puissance en triphasé 5.

Chapitre 3 : Plan du chapitre. 2. Tensions simples et tension composées 3. Couplage étoile/triangle 4. Mesure de puissance en triphasé 5. Chapitre 3 : Réseau triphasé Plan du chapitre 1. Présentation 2. Tensions simples et tension composées 3. Couplage étoile/triangle i l 4. Mesure de puissance en triphasé 5. Résumé Plan du chapitre 1. Présentation

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Module d Electricité. 1 ère partie : Electrocinétique. Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere

Module d Electricité. 1 ère partie : Electrocinétique. Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere Module d Electricité 1 ère partie : Electrocinétique Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere 1 Sommaire 1- Introduction : les grandeurs périodiques 2- Représentation des

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Cours d électrotechnique

Cours d électrotechnique Cours d électrotechnique LES MACHINES A COURANT ALTERNATIF MACHINE STATIQUE A COURANT ALTERNATIF Les machines électriques statiques à courant alternatif - Table des matières générales TABLE DES MATIERES

Plus en détail

Faculté: Génie Mécanique Département: Génie Mécanique. Support de Cours (3ème Année Licence, 1 ère Année Master) Electricité Générale

Faculté: Génie Mécanique Département: Génie Mécanique. Support de Cours (3ème Année Licence, 1 ère Année Master) Electricité Générale République Algérienne Démocratique et Populaire Ministère de l'enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d'oran - MOHAMED BOUDIAF Faculté: Génie

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur:

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur: EXERCICE N 1 Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor sont en

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE S e s s i o n 2 0 0 8 PHYSIQUE APPLIQUÉE Série : Spécialité : Sciences et Technologies industrielles Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'usage

Plus en détail

15 exercices corrigés d Electrotechnique sur la machine à courant continu

15 exercices corrigés d Electrotechnique sur la machine à courant continu 15 exercices corrigés d Electrotechnique sur la machine à courant continu Sommaire Exercice MCC01 : machine à courant continu Exercice MCC02 : machine à courant continu à excitation indépendante Exercice

Plus en détail

GENERALITES ELECTRICITE.

GENERALITES ELECTRICITE. GENERALITES ELECTRICITE. 1) STRUCTURE DE LA MATIERE: La MOLECULE est la plus petite partie d un corps simple ou composé. Le corps simple: Le corps composé: Est formé de 1 ou plusieurs atomes semblables.

Plus en détail

Cours d électrocinétique EC4-Régime sinusoïdal

Cours d électrocinétique EC4-Régime sinusoïdal Cours d électrocinétique EC4-Régime sinusoïdal 1 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes transitoires des circuits comportant conducteur ohmique,

Plus en détail

Syllabus d électricité. G. Barmarin

Syllabus d électricité. G. Barmarin Syllabus d électricité G. Barmarin 2012-2013 1 2 3 Table des matières 4 Electrostatique Histoire 5 Expérience : Conclusion : il existe deux types de charges que l on qualifiera de positive et négative

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 3 : MACHINE ASYNCHRONE Exercice 1 Un moteur asynchrone tétrapolaire, stator monté en triangle, fonctionne dans les conditions suivantes : tension entre phases U = 380 V ; fréquence f

Plus en détail

Chapitre 1 Circuits parcourus par un courant continu

Chapitre 1 Circuits parcourus par un courant continu Chapitre 1 Circuits parcourus par un courant continu NTRODUCTON 3 1. GENERALTES SUR LES CRCUTS ELECTRQUES 4 1.1. Notion de circuit électrique 4 1.2. Le courant électrique continu 4 1.3. La mesure de l

Plus en détail

Lois générales dans le cadre de l ARQS

Lois générales dans le cadre de l ARQS MPS - Électrocinétique - Lois générales dans le cadre de l AQS page /6 Lois générales dans le cadre de l AQS AQS=Approximation des égimes Quasi Stationnaires, consiste à négliger les temps de propagation

Plus en détail

TABLE DES MATIERES. Mécanique du solide... 17 I. Introduction...17 II. Définitions...17 III. Energies...21 IV. Les lois de la mécanique...

TABLE DES MATIERES. Mécanique du solide... 17 I. Introduction...17 II. Définitions...17 III. Energies...21 IV. Les lois de la mécanique... Table des matières iii TABLE DES MATIERES RESUME DE COURS Grandeurs périodiques. Circuits linéaires en régime sinusoîdal... 3 I. Propriétés des grandeurs périodiques...3 II. Régime sinusoïdal...3 III.

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Les machines électriques Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 e-mail : Christophe.Palermo@univ-montp2.fr

Plus en détail

Electrotechnique triphasé. Chapitre 11

Electrotechnique triphasé. Chapitre 11 Electrotechnique triphasé Chapitre 11 CADEV n 102 679 Denis Schneider, 2007 Table des matières 11.1 GÉNÉRALITÉS... 2 11.1 1 DÉFINITION TENSIONS TRIPHASÉES... 2 11.1.2 COURANTS TRIPHASÉS... 2 11.1.3 AVANTAGE

Plus en détail

Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal

Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal NTRODUCTON 3 1. GÉNÉRALTÉS SUR LES CRCUTS MONOPHASÉS 1.1. Définitions et caractéristiques 4 1.2. Représentation vectorielle de Fresnel

Plus en détail

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT ALTERNATIF MODULE N : 8 ELECTROTECHNIQUE SECTEUR :

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT ALTERNATIF MODULE N : 8 ELECTROTECHNIQUE SECTEUR : OFPPT ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES MODULE N : 8 ANALYSE

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

1 Grandeurs sinusoïdales

1 Grandeurs sinusoïdales 1 Grandeurs sinusoïdales Dans un circuit fonctionnant en régime sinusoïdal, tous les courants et toutes les tensions dans le circuit sont sinusoïdaux, de même pulsation que la source d alimentation. 1.1

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Master ISIC Introduction 1. F. Wagner. 6 * 3h de cours + 1h d'exam écrit

Master ISIC Introduction 1. F. Wagner. 6 * 3h de cours + 1h d'exam écrit Master ISIC Introduction 1 F. Wagner 6 * 3h de cours + 1h d'exam écrit Master ISIC Introduction 2 Bref Historique de l instrumentation Science relative à la conception et l utilisation rationnelle d instruments

Plus en détail

Les grandeurs physiques et leurs unités

Les grandeurs physiques et leurs unités Les grandeurs physiques et leurs unités Introduction Les lettres grecques L'alphabet grec comporte les lettres suivantes: α (alpha), β (bêta), γ (gamma), δ (delta), ε (epsilon), ζ (dzêta), η (êta), θ (thêta),

Plus en détail

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX)

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) Le phénomène d induction électromagnétique peut être mis en évidence par les deux expériences simples suivantes.

Plus en détail

Etude d'un monte-charge

Etude d'un monte-charge BTS ELECTROTECHNIQUE Session 1998 3+

Plus en détail

Partie A : Principe du moteur asynchrone (37%)

Partie A : Principe du moteur asynchrone (37%) Les trois parties A, B et C de cette épreuve sont indépendantes. Partie A : Principe du moteur asynchrone (37%) Aucune connaissance préalable du moteur asynchrone n est nécessaire pour l étude de cette

Plus en détail

BEP ET Leçon 25 Le transformateur monophasé Page 1/8 I 2 N 2 U 2

BEP ET Leçon 25 Le transformateur monophasé Page 1/8 I 2 N 2 U 2 BEP ET Leçon 25 Le transformateur monophasé Page 1/8 1. DESCRIPTION I 1 I 2 N 1 N 2 U 1 U 2 Schéma électrique I 1 I 2 U 1 U 2 Un transformateur est constitué : D une armature métallique servant de circuit

Plus en détail

Unités spécifiques : ELECTRICITE

Unités spécifiques : ELECTRICITE Référentiel BAC PRO Sciences Physiques : ELECRICITE Page /6 BACCALAUREATS PROFESSIONNELS Unités spécifiques : ELECTRICITE E REGIME SINUSOÏDAL Durée indicative: 0 heures Régime sinusoïdal monophasé - Valeur

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Concours d entrée en Ingénierie, 2012

Concours d entrée en Ingénierie, 2012 Concours d entrée en Ingénierie, 2012 Nom : Prénom : Test des connaissances professionnelles en électricité-électronique TCP-E Durée : 3 heures 1. Cocher la réponse exacte 1 En continu, une capacité se

Plus en détail

ELECTROTECHNIQUE - ELECTRONIQUE

ELECTROTECHNIQUE - ELECTRONIQUE CONCOURS GÉNÉRAL SÉNÉGALAIS 1/5 Durée : 06 heures SESSION 2014 ELECTROTECHNIQUE - ELECTRONIQUE Le sujet est composé de trois problèmes (A, B, et C) pouvant être traités de façon indépendante. Il comporte

Plus en détail

Site : http://genie.industriel.iaa.free.fr MOTEUR ASYNCHRONE. Richard MATHIEU BTS IAA D4.43 Chap 3 : Electricité en Iaa

Site : http://genie.industriel.iaa.free.fr MOTEUR ASYNCHRONE. Richard MATHIEU BTS IAA D4.43 Chap 3 : Electricité en Iaa MOTEUR ASYNCHRONE Richard MATHIEU BTS IAA I. DEFINITION Site : http://genie.industriel.iaa.free.fr La machine asynchrone est la machine électrique la plus utilisée dans le domaine des puissances supérieures

Plus en détail

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V 1 Transformateur parfait : transformateurs : 1) On désire alimenter sous une tension de 220 V un récepteur monophasé absorbant 50 A avec un facteur de puissance de 0,6 arrière (inductif). Ce récepteur

Plus en détail

Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur

Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur 16 2006 Bibliographie L. Quaranta, JM Donnini, Dic. physique tome 4 nouvelle édition, Pierron H. Prépa Electronique

Plus en détail

Gestion de l énergie sur le réseau de transport d électricité

Gestion de l énergie sur le réseau de transport d électricité Gestion de l énergie sur le réseau de transport d électricité Cette série d exercices aborde plusieurs aspects des problèmes liés au transport et à la gestion de l énergie électrique. Ces exercices indépendants

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

Extraits de récents DS

Extraits de récents DS 1 Extraits de récents DS Chap. 3 : Magnétostatique 2 UT MARSELLE GE 1 Année D.S. d'électricité n 3 avec Corrigé 29 Mars 1997 2 ème exercice. Circuit avec mutuelle. M i 1 (t) Le primaire du circuit ci-contre

Plus en détail

T.P. numéro 27 : moteur asynchrone.

T.P. numéro 27 : moteur asynchrone. T.P. numéro 27 : moteur asynchrone. Buts du TP : le but de ce TP est l étude du moteur asynchrone triphasé. On étudie la plaque signalétique du moteur, puis on effectue un essai à vide et enfin un essai

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

BANQUE D ÉPREUVES DUT-BTS -SESSION 2015- É P R E U V E D ÉLECTRICITE - ÉLECTRONIQUE CODE ÉPREUVE : 968. Calculatrice et Objets communicants interdits

BANQUE D ÉPREUVES DUT-BTS -SESSION 2015- É P R E U V E D ÉLECTRICITE - ÉLECTRONIQUE CODE ÉPREUVE : 968. Calculatrice et Objets communicants interdits BANQUE D ÉPREUVES DUT-BTS -SESSION 2015- É P R E U V E D ÉLECTRICITE - ÉLECTRONIQUE CODE ÉPREUVE : 968 Calculatrice et Objets communicants interdits Les valeurs numériques seront considérées justes à 10

Plus en détail

Courant alternatif. Université de Genève 21.1 M. Pohl

Courant alternatif. Université de Genève 21.1 M. Pohl Courant alternatif Au lieu d avoir toujours la même polarité, chaque borne d un générateur de tension alternative est positive puis négative en alternance. Les électrons du courant se déplacent dans un

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

MESURE DES TENSIONS ET DES COURANTS

MESURE DES TENSIONS ET DES COURANTS Chapitre 7 MESURE DES TENSIONS ET DES COURANTS I- MESURE DES TENSIONS : I-1- Généralités : Pour mesurer la tension UAB aux bornes d un récepteur, il faut brancher un voltmètre entre les points A et B (

Plus en détail

Chapitre 2 Transformateurs et Redresseurs à diodes

Chapitre 2 Transformateurs et Redresseurs à diodes Chapitre Transformateurs et Redresseurs à diodes Frédéric Gillon - Iteem Sommaire La conversion d énergie Équations Physiques de la conversion d énergie magnétique Le Transformateur Monophasé Le Transformateur

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

ELEC218 Machines électriques

ELEC218 Machines électriques ELEC218 Machines électriques Jonathan Goldwasser 1 Lois de la conversion électromécanique de l énergie f.e.m de transformation e it = inductance * dérivées du courant par rapport au temps. f.e.m de rotation

Plus en détail

Electricité : bases et application aux datacentres. www.ecoinfo.cnrs.fr

Electricité : bases et application aux datacentres. www.ecoinfo.cnrs.fr Electricité : bases et application aux datacentres www.ecoinfo.cnrs.fr Octobre 2011 SOMMAIRE - Un peu de théorie - c est quoi un courant électrique? - intensité, tension et résistance - quelques lois fondamentales

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone Chap. 8 : Le moteur asynchrone I.Principe Le stator est formé de 3 bobines dont les axes font entre eux un angle de. Il est alimenté par un réseau triphasé équilibré, qui crée dans l entrefer un ( radial

Plus en détail

LES COURANTS ALTERNATIFS

LES COURANTS ALTERNATIFS Chapitre VI LES CONTS LTENTIFS près avoir traité dans le chapitre III les circuits en régime continu, nous abordons maintenant, l étude des circuits alimentés par des tensions alternatives sinusoïdales..

Plus en détail

Couple électromagnétique (couple moteur)

Couple électromagnétique (couple moteur) Principe de fonctionnement Le rotor, alimenté en courant continu, par un système de contacts glissants (bagues), crée un champ magnétique rotorique qui suit le champ tournant statorique avec un retard

Plus en détail

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue.

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue. Chapitre 3 Électricité 3.1 Tension et énergie électriques 3.1.1 Énergie électrique Expérience 3.1 On relie les calottes d une lampe à lueur aux sphères métalliques d une machine de Wimshurst (figure 3.1).

Plus en détail

Actionneurs électriques 1. Introduction

Actionneurs électriques 1. Introduction Actionneurs électriques 1. Introduction Master Spécialisé 1 Mécatronique Faculté des Sciences de Tétouan Février-Juin 2014 Jaouad Diouri Projet du cours Contenu Circuits magnétiques, transformateurs, puissance,

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Électrotechnique énergie équipements communicants Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques :

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

3 exercices corrigés d Electrotechnique sur le régime triphasé

3 exercices corrigés d Electrotechnique sur le régime triphasé 3 exercices corrigés d Electrotechnique sur le régime triphasé Exercice Tri01 : régime triphasé Soit un récepteur triphasé équilibré constitué de trois radiateurs R = 100 Ω. Ce récepteur est alimenté par

Plus en détail

E = k. La vitesse est nulle, la FEM E est nulle aussi. Ce = k. Um = E + R Im. 2 π 60 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU

E = k. La vitesse est nulle, la FEM E est nulle aussi. Ce = k. Um = E + R Im. 2 π 60 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 A PRÉSENTATION Beaucoup d'appplications nécessitent un couple de démarrage élevé. Le Moteur à

Plus en détail

1995 724.247.2 f. Générateurs et installations électriques

1995 724.247.2 f. Générateurs et installations électriques 1995 724.247.2 f Générateurs et installations électriques ÉNERGIES RENOUVELABLES Office fédéral des questions conjoncturelles Petites centrales hydrauliques Générateurs et installations électriques De

Plus en détail

ES 206 : Systèmes mécatroniques asservis

ES 206 : Systèmes mécatroniques asservis Systèmes mécatroniques asservis 2. Actionneurs : Modélisation ENSTA Plan du cours 1 Machines tournantes classiques 2 Moteur à réluctance variable Moteur piézoélectrique Moteur pas à pas 3 Principe de fonctionnement

Plus en détail

Electricité et magnétisme - TD n 1 Loi de Coulomb

Electricité et magnétisme - TD n 1 Loi de Coulomb 1. Force électrique Electricité et magnétisme - TD n 1 Loi de Coulomb Calculer le rapport entre force gravitationnelle et électrique entre le proton et l électron dans l atome d hydrogène. Soit a 0 la

Plus en détail

Serie1 : Exercices Réseaux Triphasés

Serie1 : Exercices Réseaux Triphasés Serie1 : Exercices Réseaux Triphasés Etoile équilibré 1. Un moteur triphasé porte les indications suivantes : U 400V / 230V ; cos φ= 0,95 ; η= 0,83. En charge le courant de ligne est de 25 A. Quelle est

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable Calcul d un flux On peut montrer, dans le cadre de la mécanique des fluides, que le champ de vitesse pour un fluide visqueux incompressible, de coefficient

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES «Génie Électronique» Session 2012 Épreuve : PHYSIQUE APPLIQUÉE Durée de l'épreuve : 4 heures Coefficient : 5 Dès que le sujet vous est

Plus en détail

. LE TRANSFORMATEUR REEL

. LE TRANSFORMATEUR REEL Transfo réel - Cours - 1/19. LE TRANSFORMATEUR REEL. I Présentation Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant.

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

EXAMEN DE FIN DE FORMATION SESSION: MAI 2012. Ministère de l Education Nationale

EXAMEN DE FIN DE FORMATION SESSION: MAI 2012. Ministère de l Education Nationale B EXAMEN DE FIN DE FORMATION T S SESSION: MAI 2012 E Epreuve de : Electrotechnique L T Durée : 4 heures Directives aux candidats : L'usage de la calculatrice est autorisé. Aucun document n est autorisé.

Plus en détail

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES - La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation des copies. - Conformément au dispositions

Plus en détail

Les Mesures Électriques

Les Mesures Électriques Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de

Plus en détail

TENSIONS TRIPHASEES. Un alternateur triphasé est formé de 3 générateurs délivrant trois fem sinusoïdales formant un système triphasé équilibré.

TENSIONS TRIPHASEES. Un alternateur triphasé est formé de 3 générateurs délivrant trois fem sinusoïdales formant un système triphasé équilibré. TESOS TRHASEES - DEFTOS. Système triphasé Trois tensions sinusoïdales de même fréquence et de même valeur efficace, déphasées les unes par rapport aux autres de π/ forment un système triphasé équilibré.

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Travaux dirigés. Direction Génerale des Etudes Technologiques ÈLECTROTECHNIQUE. Licence génie électrique niveau 2. Amari Mansour

Travaux dirigés. Direction Génerale des Etudes Technologiques ÈLECTROTECHNIQUE. Licence génie électrique niveau 2. Amari Mansour Direction Génerale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Nabeul ÈLECTROTECHNIQUE Travaux dirigés Licence génie électrique niveau 2 Amari Mansour Janvier 2014 2 Table

Plus en détail

CHAPITRE CP2 C Conversions électromécaniques

CHAPITRE CP2 C Conversions électromécaniques PSI rizeux Ch. CP2: Conversions électromécaniques 13 CHAPITRE CP2 C Conversions électromécaniques Comme nous allons le voir, il est possible (et nécessaire ) de convertir l énergie électrique en énergie

Plus en détail