Econométrie et applications

Dimension: px
Commencer à balayer dès la page:

Download "Econométrie et applications"

Transcription

1 Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet Université Paris 1 & Ecole d Economie de Paris N. Jacquemet (EEP Université Paris 1) Econométrie et applications ENPC ParisTech 1 / 136

2 Inférence Les MCO sous hypothèse de normalité 1 Inférence Les MCO sous hypothèse de normalité Le modèle linéaire normal Intervalles de confiance Test d hypothèses Conclusion : Robustesse de l hypothèse de normalité N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 53 / 136

3 Le modèle linéaire normal Le modèle linéaire normal Chapitre III : moments de l estimateur déduites de restrictions sur les moments de u. Absence de biais = situation moyenne / valeur vraie Précision et efficacité = oscillations autour de cette valeur Forme de ces oscillations = distribution de l estimateur. Permet de probabiliser l écart entre la vraie valeur et l estimation obtenue. H MCO 5 : u N (0, σ 2 I N ). Le terme d erreur suit une loi normale (multivariée) d espérance nulle et de matrice de variance-covariance σ 2 I N.! Forme de la distribution est la seule contrainte nouvelle ; Termes d erreur indépendants, d où u i N (0, σ 2 ) u i. P[u i U] = P[ u i σ U σ ] = Φ( U σ ). N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 54 / 136

4 RAPPELS Loi normale I Le modèle linéaire normal Loi normale de moyenne µ et de variance σ 2 : N (µ, σ 2 ). N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 55 / 136

5 RAPPELS Loi normale II Le modèle linéaire normal Propriétés : Symétrique : P[N (µ, σ 2 ) µ + t] = P[N (µ, σ 2 ) µ t] Centrée sur sa moyenne : P[N (µ, σ 2 ) µ] = P[N (µ, σ 2 ) µ] = 0.5. Toute combinaison linéaire de lois normales suit une loi normale. Soit Z N (µ, σ 2 ) alors Z = Z µ σ N (0, 1) (loi normale centrée réduite tabulations connues) Soit Z N (0, 1), alors : Z = σz + µ N (µ, σ 2 ). Lois composées : χ 2 Si Z l N (0, 1) alors Z Z = L Student Z 1 N (0, 1) Z 2 χ 2 (ν) : l=1 Z 2 l χ 2 (dim(z )). Z 1 Z2 /ν T (ν). Fisher Q 1 χ 2 (q 1 ), Q 2 χ 2 (q 2 ), et Q 1 Q 2 : Z = Q 1/q 1 F(q 1, q 2 ). Q 2 /q 2 Notations Densité : φ(z 0 ) = 1 2π exp( (z 0 µ) 2 ) ; 2σ 2 Fonction de répartition Φ(z 0 ) = P[Z z 0 ]. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 56 / 136

6 Loi des observations I Le modèle linéaire normal Sous H1 MCO H5 MCO : y i X i N (X i b, σ 2 ) : loi (supposée) des observations, qui dépend de b. Loi des observations, si les données sont i.i.d : P(Y X, b ) = N φ(y i X i, b ) = L(Y, b X) i=1 fonction de vraisemblance de l échantillon b MV = ArgMaxL(Y, b X) Pour des raisons pratiques, on minimise l inverse du log. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 57 / 136

7 Loi des observations II Le modèle linéaire normal Exemple modèle linéaire normal lnl(y, b, σ 2 X) = 0.5N log(2π) 0.5N log(σ 2 ) 0.5(Y Xb) (Y Xb)/σ 2 b MV lnl b σ 2 MV lnl σ = 0 b MV = (X X) 1 X Y = 0 σ2 MV = û û N N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 58 / 136

8 Loi des estimateurs I Le modèle linéaire normal Proposition Dans le modèle linéaire Y = Xb + u, sous H MCO, l estimateur des MCO de b suit une loi normale : b MCO N (b, σ 2 (X X) 1 ) ; Démonstration. Moments établis au Chapitre IV. Distribution : Y X est de loi normale. b MCO = (X X) 1 X Y : combinaison linéaire de lois normales loi normale. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 59 / 136

9 Loi des estimateurs II Le modèle linéaire normal Distribution de µ MCO de µ : N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 60 / 136

10 Intervalles de confiance I Intervalles de confiance Definition On appelle intervalle de confiance du paramètre b au niveau 1 α, l intervalle : IC 1 α = [ b(y, X), b(y, X) ] tel que P (b IC 1 α ) = 1 α. Intervalle dans lequel la vraie valeur du paramètre a 1 α chances sur 100 de se trouver. b(y, X) et b(y, X) sont des fonctions des observations, des statistiques. Intervalle de confiance des MCO : Sous H5 MCO MCO, b k N (b k, σ 2 S k ), où S k désigne k ième élément diagonal (variance) de la matrice (X X) 1 ; MCO b k b k On a donc N (0, 1) ; σ2 S k N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 61 / 136

11 Intervalles de confiance II Intervalles de confiance Soit N α seuil tel que : P[N (0, 1) N α ] = α 2 et P[N (0, 1) N α] = α 2 ou encore : P[ N α N (0, 1) N α ] = 1 α. Alors : 1 α = P[ N α N (0, 1) N α ] = P[ N α MCO b k b k N α ] σ2 S k [ bmco ] MCO = P k N α σ2 S k b k b k + N α σ2 S k [ bmco IC au seuil 1 α des MCO : IC1 α MCO = ] k ± N α σ2 S k N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 62 / 136

12 Intervalles de confiance Intervalle de confiance estimé I Variance inconnue... estimée par σ 2 = û û/(n K 1) ; Proposition! û fonction de b MCO : variable aléatoire! Sous H MCO, (N K 1) σ2 σ 2 χ2 (N K 1) Démonstration. Loi de u i : u i N (0, σ 2 ) donc u i /σ N (0, 1). û = M X Y = M X u d où û /σû/σ = u M X u/σ 2 : somme de [N (0, 1)] 2. Dim(M) = N K 1 N K 1 termes û û/σ 2 χ 2 (N K 1) σ 2 = û û (N K 1) σ2 N K 1 χ 2 (N K 1). σ 2 N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 63 / 136

13 Intervalles de confiance Intervalle de confiance estimé II Loi jointe des estimateurs Corrélation? Proposition (Théorème de Cochran). b MCO et σ 2 sont indépendants. Démonstration. On a : X b MCO = PY et (N K 1) σ 2 = û û = Y MY. Par définition, P et M orthogonaux. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 64 / 136

14 Intervalles de confiance Intervalle de confiance estimé III Proposition Sous H MCO n, b k MCO b k σ 2 S k T N K 1 k Démonstration. Etant données les lois des composantes, et l indépendance : bmco k b k σ 2 S k = (N K 1) σ 2 (N K 1)σ 2 b k MCO b k σ 2 S k N (0, 1) χ 2 (N K 1) N K 1 T N K 1 N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 65 / 136

15 Intervalles de confiance Intervalle de confiance estimé IV Intervalle de confiance estimé : N K 1 Soit tα seuil tel que : P[T t N K 1 α P[ T N K 1 t N K 1 ] = α Alors : P[ t α N K 1 α b k b k σ k N K 1 ] = P[T N K 1 tα ] = α 2 t Intervalle de confiance : IC MCO 1 α N K 1 α ] = 1 α = [ˆb MCO k ± ˆσ 2 S k t 1 α ]. ILLUSTRATION IC 95% du rendement de l éducation :. reg lnw adfe exp exp lnw Coef. Std. Err. t P> t [95% Conf. Interval] adfe exp exp _cons N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 66 / 136

16 Intervalles de confiance APPLICATION Intervalles de prévision I Soit X p la valeur des exogènes pour un individu hors-échantillon ; GM Ŷ p = X p b MCO est l estimateur BLUE de Y p (Chap IV). Ŷ p Y p = X p b MCO X p b u p = X p ( b MCO b) u p Moments : E(Ŷ p ) = Y p et : V (Ŷ p ) = E[(Ŷ p Y p )(Ŷ p Y p ) ] = E [[X p ( b MCO b) u p][x p ( b MCO b) u p] ] (absence de corrélation) = E[X p ( b MCO b)( b MCO b) X p ] + σ 2 = E[X p ((X X) 1 X u)((x X) 1 X u) X p ] + σ 2 = E[X p (X X) 1 X uu X(X X) 1 X p ] + σ 2 = X p (X X) 1 X I N σ 2 X(X X) 1 X p + σ 2 = σ 2 [X p (X X) 1 X p + 1] Variance estimée : V (Ŷ p ) = σ 2 [X p (X X) 1 X p + 1]. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 67 / 136

17 Intervalles de confiance APPLICATION Intervalles de prévision II Loi : H5 MCO : Ŷ p combinaison linéaire de lois normales. Variance estimée Ŷ p Y p T V (Ŷ p N K 1. ) Intervalle de prévision : IP 1 α = [Ŷ p N K 1 ± tα V (Ŷ p )]. APPLICATION Salaire moyen à la fin de L3. reg lnw adfe exp exp2. scalar Vprev = 1.96*sqrt(_se[_cons]^2+e(rmse)^2). scalar lnwnoexp = _b[ _cons] + _b[adfe]*21. scalar winf0 = exp(lnwnoexp - Vprev). scalar wsup0 = exp(lnwnoexp + Vprev). display "IP à 95%, sortie de L3: [" winf0 "," wsup0 "]" IP à 95%, sortie de L3: [ , ]. scalar lnwnoexp = _b[ _cons] + _b[adfe]*21 + _b[exp]*10 + _b[exp2]*100. scalar winf10 = exp(lnwnoexp - Vprev). scalar wsup10 = exp(lnwnoexp + Vprev). display "IP à 95%, 10 ans d expérience: [" winf10 "," wsup10 "]" IP à 95%, 10 ans d expérience: [ , ] N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 68 / 136

18 Test d hypothèses Tests d hypothèses : définitions I On dispose d un estimateur θ de la vraie valeur d un paramètre, θ. Inférence : loi de l estimateur (distribution de probabilité) en fonction de la valeur vraie IC : Ensemble de valeurs susceptible de contenir la valeur vraie Test d hypothèses : probabilité que la valeur vraie soit égale à une valeur particulière. Structure d un test : Hypothèses sur la valeur vraie du paramètre : H 0 (θ) (Hypothèse nulle) contre H 1 (θ) (Hypothèse alternative) ; { H0 : θ = θ Par exemple, test d égalité : 0 H 1 : θ θ 0 N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 69 / 136

19 Test d hypothèses Tests d hypothèses : définitions II On cherche à prendre une décision : d 0 l hypothèse H 0 n est pas rejetée par l estimation fournie par les données ; l hypothèse H 0 est rejetée, H 1 est vraie. d 1 A partir d un estimateur du paramètre, θ, un test repose sur une statistique de test S( θ) = S(Y, X). La loi de S dépend de celle de θ, donc de la vraie valeur θ : L S (θ). La loi de S( θ) sous H 0 (i.e. sous l hypothèse que H 0 est vraie) est L S (H 0 (θ)) = L 0 S ; Soit s une valeur calculée de la statistique On peut calculer la probabilité d observer s si la loi de S est L 0 S Probabilité faible : s est une observation improbable de L 0 S il est improbable que L 0 S soit la loi qui a produit s d 1. La région critique correspond à l ensemble des valeurs de θ (i.e. des échantillons) conduisant à la décision d 1 : { } W = (Y, X) S(Y, X) > S N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 70 / 136

20 Test d hypothèses Tests d hypothèses : définitions III Un test n est jamais parfait conclusion probabiliste (décision vraisemblable au regard des faits) entre les deux décisions. Caractéristiques d un test : Risque de première espèce rejeter H 0 alors que H 0 est vraie α(w ) = P[ d 1 H0 ] = P[ W H0 ] Probabilité de condamner un innocent ; Risque de deuxième espèce accepter H 0 alors que H 1 est vraie β(w ) = P[ d 0 H1 ] = 1 P[ W H1 ] Probabilité de relâcher un coupable ; Puissance rejeter H 0 quand H 1 est vraie γ(w ) = P[ d 1 H1 ] = P[ W H1 ] = 1 β(w ) Probabilité de condamner un coupable. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 71 / 136

21 Test d hypothèses Tests d hypothèses : critères de sélection I On souhaite minimiser les deux risques...! Min α(w ) = Min P[d 1 H0 ] =... = d 0 S(Y, X) W W! Min β(w ) = Min P[d 0 H1 ] =... = d 1 S(Y, X) W W... et maximiser la puissance.! Max γ(w ) = Max [1 β(w )] = Min β(w ) = d 1 S(Y, X) W W W Principe de Neyman : choisir le test qui maximise la puissance à risque de première espéce donné. Niveau d un test = risque de première espèce maximum. Test de niveau α 0 (5%,... ) : test (région critique) qui conduit à rejeter à tord l hypothèse nulle dans au plus α 0 % des cas. Règle alternative : Probabilité critique α c (p-value) Probabilité qu un tirage dans la loi de S sous H 0 fournisse une statistique au moins égale à celle obtenue. α c = P[L S( θ)] N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 72 / 136

22 Test d hypothèses Test sur la valeur d un paramètre I On sait que ˆb k MCO b k ˆσ 2 S k T N K 1. Si b k = b 0 alors ˆb k MCO b 0 ˆσ2 S k T N K 1 ; Si b k b 0 alors ˆb k MCO b 0 ˆσ2 S k ne suit pas T N K 1 Loi de Student : N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 73 / 136

23 Test d hypothèses Test sur la valeur d un paramètre II Test d égalité d un paramètre : { H0 : b k = b k 0 H 1 : b k b k 0 Statistique de test : t(b0 k) = ˆb k MCO b0 k. ˆσ 2 S k Région critique : Sous H 0 : t(b0 k) T N K 1. Loi de student : P[T N K 1 t N K 1 α ] = α P[t(b0 k) H0 N K 1 tα ] = α = risque de première espèce. Région critique de niveau α 0 : W = { (Y, X) : t(b k 0 ) } > t N K 1 α 0 En pratique : Choix d un niveau : α 0 ( 10%, 5%, 1%) ; Connaissant b MCO, on peut calculer t(b0) k ; Si t(b 0) k N K 1 t α 0 ou P[ T N K 1 t(b k 0 ) ] < α0 très improbable que cette statistique soit un T N K 1 i.e. on a au plus α 0 % de chances de se tromper en rejettant H 0 rejet. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 74 / 136

24 Test d hypothèses APPLICATION Test de nullité d un paramètre I Dans le modèle Y = Xb + u, Test de nullité : { H0 : b k = 0 H 1 : b k 0 Test de significativité des paramètres : la valeur vraie est elle différente de 0? La variable correspondante est-elle pertinente dans le PGD vrai? Statistique de test : t = b k MCO ; σ 2 S k Sous H 0 : t T N K 1 Région critique : rejet de H 0 dès lors que t > tα Probabilité critique : p telle que P[ T N K t ] = p N K 1. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 75 / 136

25 Test d hypothèses APPLICATION Test de nullité d un paramètre II ILLUSTRATION Mincer : t de Student et probabilités critiques.. reg lnw adfe exp exp lnw Coef. Std. Err. t P> t [95% Conf. Interval] adfe exp exp _cons Test de nullité à 5% : N K 1 lim t 5% = 1.96 N K 1 Tous coefficients significatifs à 5% Probabilités critiques : également à 1% Tests d égalité. t(b adfe = 0.065) = = < 1.96 accepté à 5% ; t(b adfe = 0.064) = = > 1.96 rejeté à 5% ; t(b adfe = 0.082) = = < 1.96 accepté à 5% ; t(b adfe = 0.083) = = < 1.96 rejeté à 5% ; L intervalle de confiance à 95% recouvre la région critique des tests à 5%! N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 76 / 136

26 Conclusion : Robustesse de l hypothèse de normalité Robustesse de l hypothèse de normalité Connaissant la loi de u i, inférence (i.e. conclusions probabilistes) sur la vraie valeur des paramètres.! Tous résultats vrais ssi la loi supposée pour les résidus est vraie. Hypothèse simplificatrice : Théorème de la limite centrale : pour toute suite de N variables aléatoires i.i.d., la moyenne tend vers une distribution normale lorsque N tend vers l infini. Illustration : Simulations On suppose une loi quelconque pour une variable aléatoire Z i ; On tire un échantillon de 6 observations ; On calcule la moyenne Z Z 1 ; On répète R fois l opération méta -échantillon de R moyennes ; Tracé de la distribution. N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 77 / 136

27 TCL Loi bimodale Conclusion : Robustesse de l hypothèse de normalité Variable aléatoire de loi bimodale : non centrée, non symétrique ; Distribution de la moyenne : N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 78 / 136

28 TCL Loi exponentielle Conclusion : Robustesse de l hypothèse de normalité Variable aléatoire de loi exponentielle : non centrée, non symétrique, strictement décroissante ; Echantillons de 6 observations ; Distribution de la moyenne : N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 79 / 136

29 TCL Loi normale Conclusion : Robustesse de l hypothèse de normalité! Propriétés asymptotiques échantillons de taille importante. Variable aléatoire de loi normale ; Echantillons de 6 observations Distribution de la moyenne : N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 80 / 136

30 Conclusion : Robustesse de l hypothèse de normalité Inférence sans l hypothèse de normalité Sous H3 MCO et H4 MCO, les résidus sont i.i.d. ; b MCO = (X X) 1 X Y = b + (X X) 1 X u = b + ( X X N ) 1 X u N b MCO est une fonction de la moyenne des X u. Pour toute distribution de u, TCL s applique. Permet de retrouver les résultats de distribution sans supposer la normalité.! Vrai lorsque l échantillon est grand Propriétés asymptotiques des MCO. Econométrie linéaire M1 (Chap. 2-3). N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap 3 81 / 136

31 Conclusion : Robustesse de l hypothèse de normalité ABOWD, J. M., F. KRAMARZ, ET D. N. MARGOLIS (1999) : High Wage Workers and High Wage Firms, Econometrica, 67(2), ANGRIST, J. D., ET G. W. IMBENS (1999) : Comment on James J. Heckman, "Instrumental Variables : A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations", Journal of Human Resources, 34(4), ANGRIST, J. D., ET A. B. KRUEGER (1991) : Does Compulsory School Attendance Affect Schooling and Earnings?, Quarterly Journal of Economics, 106(4), ASHENFELTER, O., ET A. KRUEGER (1994) : Estimates of the Economic Return to Schooling from a New Sample of Twins, American Economic Review, 84(5), BECKER, G. S., ET N. TOMES (1986) : Human Capital and the Rise and Fall of Families, Journal of Labor Economics, 4(3), S1 S39. BLACK, S. E. (1999) : Do Better Schools Matter? Parental Valuation of Elementary Education, Quarterly Journal of Economics, 114(2), CARD, D. (1995) : Using Geographic Variation in College Proximity to Estimate the Return to Schooling, in Aspects of Labour Market Behavior : Essays in Honour of John Vanderkamp, ed. by L. N. Christofides, E. K. Gran, et R. Swidinsky, pp University of Toronto Press, Toronto. DEZHBAKHSH, H., ET J. M. SHEPHERD (2006) : The Deterrent Effect of Capital Punishment : Evidence from a "Judicial Experiment", Economic Inquiry, 44(3), N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap / 136

32 Conclusion : Robustesse de l hypothèse de normalité GALTON, F. (1886) : Regression Towards Mediocrity in Hereditary Stature, Journal of the Anthropological Institute, 15, LONGLEY, J. W. (1967) : An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User, Journal of the American Statistical Association, 62(319), MINCER, J. (1958) : Investment in Human Capital and Personal Income Distribution, Journal of Political Economy, 66(4), (1974) : Schooling Experience and Earnings. National Bureau of Economic Research, New York. SOLON, G. (1992) : Intergenerational Income Mobility in the United States, American Economic Review, 82(3), TREISMAN, D. (2000) : The causes of corruption : a cross-national study, Journal of Public Economics, 76(3), WOLFERS, J., ET J. J. DONOHUE (2005) : Uses and Abuses of Empirical Evidence in the Death Penalty Debate, Stanford Law Review, 58, N. Jacquemet (EEP Université Paris 1) Econométrie et applications CJ-Chap / 136

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

ECONOMETRIE LINEAIRE. Bruno Crépon

ECONOMETRIE LINEAIRE. Bruno Crépon ECONOMETRIE LINEAIRE Bruno Crépon Novembre 25 ii Table des matières 1 Introduction 1 1.1 Lemodèle... 1 1.2 D oùvientlemodèle?-1delathéorieéconomique... 1 1.3 Lesdonnées... 3 1.4 L estimation... 4 1.5 Pourquoiestimerlemodèle?...

Plus en détail

Économétrie 6-806-85, Automne 2002. Professeur: D. Vencatachellum, Bureau: 4.155

Économétrie 6-806-85, Automne 2002. Professeur: D. Vencatachellum, Bureau: 4.155 Économétrie 6-806-85, Automne 2002 Professeur: D. Vencatachellum, Bureau: 4.155 www.hec.ca/pages/dv dv@hec.ca Consultation: mercredi de 14:00 à 15:00 et sur rendez-vous pris par courrier électronique.

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Jackknife, bootstrap et cross-validation

Jackknife, bootstrap et cross-validation But de l inférence statistique On a X = (X 1,..., X n) un échantillon i.i.d. de fonction de répartition F θ(f ) une quantité d intérêt, qui dépend de F T (X ) une statistique, estimateur de θ(f ), on voudrait

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Econométrie. février 2008. Boutin, Rathelot

Econométrie. février 2008. Boutin, Rathelot 5ème séance Xavier Boutin Roland Rathelot Supélec février 2008 Plan Variables binaires La question y = β 0 + β 1 x 1 +...β k x k + u Que se passe-t-il lorsque y est une variable {0, 1} et non plus une

Plus en détail

Dossier / TD Econométrie. Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls

Dossier / TD Econométrie. Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls Dossier / TD Econométrie Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls Source : Greene "Econometric Analysis" Prentice Hall International, 4 ème édition, 2000 Council

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Inspiré du cours de Bruno Crepon

Inspiré du cours de Bruno Crepon Économétrie Inspiré du cours de Bruno Crepon 21 février 2003 1 2 1 INTRODUCTION : LE MODÈLE LINÉAIRE 1 Introduction : le modèle linéaire On considère le modèle : y = b 0 + x 1 b 1 + + x k b k + u Où y

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli?

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Bayesian Experimental Design: A Review Statistical Science, Vol. 10, No. 3 Sophie Ancelet 1, 2 1 UMR 518 AgroParisTech/INRA, Département

Plus en détail

Probabilités et inférence statistique (STAT-S202)

Probabilités et inférence statistique (STAT-S202) Probabilités et inférence statistique (STAT-S202) Partie 2: Inférence statistique Catherine Dehon 2014-2015 (2e édition) Université libre de Bruxelles Solvay Brussels School of Economics and Management

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007 LESAUX Loïc MAROT Gildas TANGUY Brewal Économétrie - Une Étude de la Création d Entreprise entre 1994 et 007 Charpentier Arthur Semestre 008 Master 1 Cadoret Isabelle 1 Plan Introduction... 3 Présentation

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres 1 Introduction Le nombre de piles obtenus au cours d une série de n lancers de pile ou face ou plus généralement dans

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Lois de probabilité 3/3. Anita Burgun

Lois de probabilité 3/3. Anita Burgun Lois de probabilité 3/3 Anita Burgun Contenu des cours Loi binomiale Loi hypergéométrique Loi de Poisson Loi normale Loi du Chi2 Loi de Student Loi normale VA continue X Densité de probabilité de X" Loi

Plus en détail

Bootstrap et procédures de rééchantillonnage

Bootstrap et procédures de rééchantillonnage Bootstrap et procédures de rééchantillonnage Alain MORINEAU www.deenov.com L'analyse des données au XXI ème siècle Alain Morineau 1 Notions utiles (en bref) Population, échantillon, variabilité Estimation,

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

Une illustration de l utilisation des modèles de durée en actuariat

Une illustration de l utilisation des modèles de durée en actuariat Une illustration de l utilisation des modèles de durée en actuariat Olivier Lopez Université Paris VI, LSTA Formation IPR ENS Cachan Bretagne, 28-09-11 Outline 1 Introduction 2 Tarification d une rente

Plus en détail

1 Définition de la non stationnarité

1 Définition de la non stationnarité Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Méthodes d analyse empirique

Méthodes d analyse empirique Méthodes d analyse empirique Partie Quantitative Michel Beine (suppl. S. Laurent) michel.beine@uni.lu Université du Luxembourg http://www.michelbeine.be Méthodes d analyse empirique p. 1/? Méthodes d analyse

Plus en détail

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse M1 IMAT, Année 2009-2010 MODELES LINEAIRES C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse Table des matières 1 Préambule 1 1.1 Démarche statistique...................................

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

y i = αx i + β + u i,

y i = αx i + β + u i, I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b). 160 150 consommation Y 140 130 10 (x i, ŷ i ) e i 110 100 110 10 130 140 150 160 170 180 )a). Sous forme exacte y i

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2.

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2. Économétrie Économétrie L3 Économétrie L3 MASS Prof. Philippe Polomé, U. Lyon 2 Année 2014-2015 Économétrie Rappel 1. E (e i )=0 8i : Espérance nulle 2. X var (e i )=s 2 8i : Homoscédasticité 3. X cov

Plus en détail

MODELE A CORRECTION D ERREUR ET APPLICATIONS

MODELE A CORRECTION D ERREUR ET APPLICATIONS MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques

Plus en détail