Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Dimension: px
Commencer à balayer dès la page:

Download "Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot"

Transcription

1 Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une lo détermnée en générl r l entrée e(t). Un ytème et jugé r tblté, r l récon vec lquelle l ut l lo d entrée. Le ource d erreur ont à l fo le vrton de l entrée m u le effet de erturbton On dtngue deux tye d erreur L erreur ttque : c et l erreur en régme ermnent entre l orte et l lo d entrée. Pour détermner cette erreur on oumet le ytème à de entrée cnonque: échelon, on rle lor d erreur ndcelle; rme, erreur de trînge ou erreur de ourute; ccélérton, erreur en ccélérton. L erreur dynmque : c et l écrt ntntné entre l orte et l entrée lor de l he trntore uvnt l lcton de l entrée ou rè une erturbton (hor du rogrmme).. Donnée Dn l ute, on uoer que l foncton de trnfert en boucle ouverte du ytème étudé eut être me ou l forme : FTBO O F R (retour non untre) FTBO O F (retour untre) L FTBO eut écrre dn tou le c ou l forme N( ) O D vec N( ) 1 D( ) 1 cle gn ttque B. Erreur ttque 1. Ecrt en régme ermnent - erreur ttque ) Défnton, C d un ytème à retour non untre : E() () S() F() R() C d un ytème à retour untre : E() () S() F() L écrt en régme ermnent et l lmte qund t tend ver l nfn de e(t)-(t). Un ytème er réc cet écrt tend ver, c et à dre que l orte tend ver l vleur écfée de l entrée. Remrque: dn le c d un retour non untre, l écrt e meure entre e(t) et m(t), vec m(t) meure de (t). Pr l ute nou condéron le c de ytème à retour untre. O ( ) E( ) S( ) E( ) E( ) 1 + O en remlçnt ( ) D( ) N D 1 E( ) N 1+ donc : ( ) D( ) + D N E Nou uoeron our l ute que le ytème et tble, donc nou ouvon utlez le théorème de l vleur fnle: 8/1/3 Sytème erv ge 1/5

2 Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot lmt t () lm [ S( ) ] Ic on eut donc écrre our l écrt : lm ( ) D( ) lm O E( ) D( ) + N( ) [ ] On le vot l erreur ttque déend de l nture de l entrée m u de l foncton de trnfert en boucle ouverte, Nou llon dn l ute étuder en foncton de entrée tye (échelon, rme, ccélérton) et de l nture du ytème l erreur ttque. Réone à un échelon : Erreur ndcelle L erreur ndcelle et l erreur entre une entrée en échelon et l orte du ytème. et E ut L entrée et donc de l forme : () dn le domne ymbolque : E( ) E D( ) ( ) lm [ ( ) ] lm O D + N D( ) E lm O E lm D + N on vot que l récon et foncton de l cle du ytème ) ytème de cle E E + lm 1+ b) ytème de cle > E lm lm + E + E L écrt de ourute et l erreur entre l orte et une entrée de tye rme ( E( ) 3. Réone à une rme : Erreur de ourute, erreur de trînge et t ut) d où D( ) ( ) lm [ ( ) ] O lm N( ) D( ) + 1 D( ) 1 lm O D( ) + N( ) enfn lm O + ) ytème de cle 1 L FTBO ne oède d ntégrton : lm O Le ytème n et réc, l n et cble de rejondre l entrée ouhtée 8/1/3 Sytème erv ge /5

3 Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot b) ytème de cle 1 L FTBO oède une ntégrton : lm O + c) ytème de cle > 1 L FTBO oède lu d une ntégrton : lm O Réone à une entrée rbolque - Erreur en ccélérton Echelon d ccélérton et () t ut () d où E( ) 3 Pr nloge vec l étude récédente, en foncton de l cle du ytème, on eut dédure l récon du ytème. + entrée ) ytème de cle < b) ytème de cle c) ytème de cle > 5. Tbleu réctultf Entrée en échelon cle, d ntégrton E 1 + Cle du ytème Cle 1 Cle cle > 1 ntégrton ntégrton Entrée rme + Entrée rbolque + + ) Remrque mortnte: Il ne fut dédure rdement du tbleu qu l ufft de rjouter une ntégrton our que le ytème ot réc, en effet chque ntégrton joute u un déhge de -9, le ytème rque donc de devenr ntble. 8/1/3 Sytème erv ge 3/5

4 Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot C. Effet d une erturbton ur l récon 1. Préentton du roblème F 1 ) Schém bloc 1 N1 1 D et F ( ) 1 N ( ) 1 D ( ) 1 cle gn ttque N D E() + - () F1() P(t) + + F() S() b) Ecrt ( ) E( ) S( ) ( ) E( ) F( ) ( F1( ) ( ) P( ) ) ( ) ( 1+ F( ) F1( ) ) E( ) F( ) P( ) 1 F ( ) F( ) E F Erreur ttque + F F P + S on e lce dn le c ou e(t), et (t). F ( ) ( ) P 1 + F F d ou l écrt ttque déendnt de l erturbton [ ] () t lm lm t O lm O 1+ ( ) F lm O 1+ F F1 P N( ) D ( ) 1 N1( ) D1 ( ) 1 D1( ) N( ) N D lm O on donc deux c: ytème de cle v à v de l erturbton 1 D D + N N P 1 O + P lm P Sytème de cle > v à v de l erturbton 1 > L erreur ttque et nulle. L erreur et non nulle. Pour que l erreur ermnente ne déende de l erturbton, l fut u mon une ntégrton lcée en mont de l erturbton. 3. Erreur de trînge Nou ouvon réler cette étude our d utre entrée tye de erturbton, nou obtenon de réultt nlogue ux entrée de congne. 8/1/3 Sytème erv ge 4/5

5 Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot Index Erreur de ourute, erreur de trînge, Erreur ndcelle, Erreur ttque, 1 Précon de ytème erv, 1 8/1/3 Sytème erv ge 5/5

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

COMPORTEMENT ET PERFORMANCES DES SYSTEMES ASSERVIS

COMPORTEMENT ET PERFORMANCES DES SYSTEMES ASSERVIS COMPORTEMENT ET PERFORMANCES DES SYSTEMES ASSERVIS - CARACTERISTIQUES D UN SYSTEME ASSERVI On conidère un ytème ervi, reréentble r le chém-bloc globl uivnt : H( S( ortie entrée Soumi, r exemle, à une entrée

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Seule l erreur en régime permanent est au programme de MP!!

Seule l erreur en régime permanent est au programme de MP!! Cous 0 Pécision des SLCI Lycée Bellevue Toulouse CPGE MP Pécision des SLCI Uno I (Concet initil) Uno III Le scoote Uno III est un fit exemle de système ssevi qui doit ête nécessiement stble ou un bon fonctionnement

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Introduction à l optique non-linéaire. Lionel Canioni

Introduction à l optique non-linéaire. Lionel Canioni STGE LSERS INTENSES Du 15 au 19 ma 006 COURS Introducton à l otque non-lnéare Lonel Canon CPMOH, Unverté Bordeaux 1 l.canon@cmoh.u-bordeaux1.fr Introducton otque non Lnéare Lonel Canon Formaton Laer Intene

Plus en détail

Cf. Document : Les différents modes de financement des entreprises

Cf. Document : Les différents modes de financement des entreprises / 7 3 e rtie : Les modes de finncement (à moyen et long terme) Cf. Document : Les différents modes de finncement des entrerises Cf. Fiche conseil.37 : Les modes de finncement des investissements - L utofinncement

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Biostatistiques et statistiques appliquées aux sciences expérimentales

Biostatistiques et statistiques appliquées aux sciences expérimentales Biosttistiques et sttistiques liquées ux sciences exérimentles ANOVA à deux fcteurs Pscl Bessonneu, Christohe Llnne et Jérémie Mttout* Cogmster A4 2006-2007 * jeremiemttout@yhoo.fr. 1/16 Progrmme de l

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012 Ecrt CAPES Mthémtques Décomoston d un enter en rodut de cteurs remers vec TI nsre. Alcton u rolème du concours générl 0. Décomoston d un nomre enter en rodut de cteurs remers.. Créton d une lste de nomres

Plus en détail

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5)

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5) www.mthsenlgne.com STI2D - 1N5 - FNCTIN DERIVEE ET APPLICATINS CURS (1/5) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Dérvton Nomre dérvé d une foncton en un pont. Le nomre dérvé est défn comme lmte du f(

Plus en détail

Conseil économique et social

Conseil économique et social Na t i ons U ni e s E / C N. 1 7 / 20 0 1 / PC / 1 7 Conseil économique et social D i s t r. gé n é r a l e 2 ma r s 20 0 1 F r a n ç a i s O r ig i n a l: a n gl a i s C o m m i s s io n d u d é v el

Plus en détail

Les langages de programmations.

Les langages de programmations. Communiction technique: L utomte progrmmle industriel (les lngges) Leçon Les lngges de progrmmtions. Introduction : L écriture d un progrmme consiste à créer une liste d instructions permettnt l exécution

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases.

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases. Exercce 5 ASSERVISSEMENT DE VITESSE CORRECTION AVEC UN P.I.D. -Détermner K 3 K = 3 t mn K = 5 t mn V 6 V - Détermner les transmttances G, T,et A, avec C(p) =, sachant que le gan en boucle ouverte est égal

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 2 MODÉLISATION DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS TRANSFORMÉE DE LAPLACE TRAVAIL DIRIGÉ Robot Ericc Le robot

Plus en détail

TRAITEMENT des IMAGES. VISION par MACHINE

TRAITEMENT des IMAGES. VISION par MACHINE TRAITEENT des IAGES et VISION pr ACHINE ASTER PRO INFO / Jen-rc Vézen Jen-rc.Vezen@lms.fr Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Avnt trtement

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Chapitre 6- Schéma fonctionnel et graphe de fluence

Chapitre 6- Schéma fonctionnel et graphe de fluence Chptre 6 : chém fonctonnel et grphe de fluence Chptre 6 chém fonctonnel et grphe de fluence 6.. chém fonctonnel 6... Défnton Un schém fonctonnel est une représentton smplfée d un processus ms en œuvre.

Plus en détail

C a fé E u ro p e D é b a t. Les jeunes [fra nç a is ] en ont-ils m a rre des politiques?

C a fé E u ro p e D é b a t. Les jeunes [fra nç a is ] en ont-ils m a rre des politiques? C a fé E u ro p e D é b a t Les jeunes [fra nç a is ] en ont-ils m a rre des politiques? O rig ine S oc ia le des E lus O rig ine S oc ia le des D éputés en 2007 E n % O rig ine s oc ia le des M a ires

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

FACULTÉ DES SCIENCES LMD : 1 IÈRE ANNÉE DE L INGÉNIEUR. e II. Chapitre. I. Rappel sur le. Champ

FACULTÉ DES SCIENCES LMD : 1 IÈRE ANNÉE DE L INGÉNIEUR. e II. Chapitre. I. Rappel sur le. Champ ACULTÉ D CINC D L INGÉNIUR CTION TRON COUN LD LD : IÈR ANNÉ Cous Phsque : lectcté et gnétsme Chte e II Chm et Potentel lectque I Rel su le chm et otentel gvttonnel Chm Il est ben étbl qu'une msse m, stuée

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine ARBRES Arbre ordinire : A = (N,P) - N ensemble des nœuds - P reltion binire «prent de» - r N l rcine x N un seul chemin de r vers x r = y o P y P y... P y n = x 0 r n ps de prent x N - { r } x exctement

Plus en détail

Travaux Dirigés de Langages & XML - TD 2

Travaux Dirigés de Langages & XML - TD 2 TD Lngges - XML Exercices Corrigés TD 2 Trvux Dirigés de Lngges & XML - TD 2 Automtes deterministes Exercice Dns chcun des cs suivnts, donner un utomte déterministe reconnissnt le lngge sur l lphet {,

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

J apprends à lire avec Pilou et Lalie

J apprends à lire avec Pilou et Lalie J rends à lre vec Plou et Lle Le fréquent rrtge sur nternet nous oblge à récser ce qu sut. Ce lvre est rotégé r l lo. Il ft l objet d un déôt légl. Vendre ce lvre ou même le dffuser grtutement ne sont

Plus en détail

Le manuel d utilisation du jeu Rody & Mastico II

Le manuel d utilisation du jeu Rody & Mastico II Le mnuel d utilistion du jeu Rody & Mstico II Mnuel rélisé pr : Fredo_L Site web : http://www.lnkhor.net E-mil : fred@lnkhor.net Remrque : les erreurs du mnuel d origine ont volontirement étient reproduites

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

FICHE MATIERE. Unité d enseignement : Electronique 1

FICHE MATIERE. Unité d enseignement : Electronique 1 FCHE MATERE Unté d enegnement : Electronque 1 ECUE n 1 : Electronque Générale Chaptre 1 La ode à Joncton Nombre d heure/chaptre : 4h Cour ntégré Sytème d évaluaton : Contnu OBJECTFS E L ENSEGNEMENT : -

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

1. Contribution au raccordement

1. Contribution au raccordement TARIFS 215 CHAUFFAGE A DISTANCE CONTRIBUTIONS AU RACCORDEMENT 1. Contribution u rccordement 1.1 L contribution u rccordement est clculée en fonction des kw th souscrits dns le cdre des puissnces normlisées.

Plus en détail

Solution - TD Feuille 2 - Automates finis et expressions rationnelles

Solution - TD Feuille 2 - Automates finis et expressions rationnelles Solution - TD Feuille 2 - Automtes finis et expressions rtionnelles Informtique Théorique 2 - Unité JINPW Licence 3 - Université Bordeux Solution de l exercice : Pour tout l exercice, on note A = {, }.

Plus en détail

CHAPITRE 13 : MODÉLISATION

CHAPITRE 13 : MODÉLISATION CHAPIE 13 : ODÉLISAION ODÉLISAION... 181 INODUCION... 18 EUE DES ÉQUAIONS ÉCANIQUES... 18 rnltion... 18 ottion... 184 Engrenge... 186 ACIONNEUS... 187 oteur DC à contrôle d induit... 187 ppel de loi électromgnétique...

Plus en détail

Apprentissage Par Projet de la Programmation avec Python Corrigé du TP5

Apprentissage Par Projet de la Programmation avec Python Corrigé du TP5 IGI-8 ESIEE Pris 5-6 Apprentissge Pr Projet de l Progrmmtion vec Python Corrigé du TP5 Jen-Clude GEORGES Listes, tuple et fichiers Les listes et les tuples sont des collections de données dont les données

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

La lumière : une onde

La lumière : une onde P g e TS Physique Exercice résolu Enoncé Remrque : les 3 prties sont indépendntes. e texte ci-dessous retrce succinctement l évolution de quelques idées à propos de l nture de l lumière : Pr nlogie à l

Plus en détail

PROCEDURE DE MISE EN SERVICE SUR INDEX AUTORELEVE D UN SITE RESILIE AVEC ALIMENTATION MAINTENUE. CLIENTS RESIDENTIELS BT 36 kva

PROCEDURE DE MISE EN SERVICE SUR INDEX AUTORELEVE D UN SITE RESILIE AVEC ALIMENTATION MAINTENUE. CLIENTS RESIDENTIELS BT 36 kva PROCEDURE DE MISE EN SERVICE SUR INDEX AUTORELEVE D UN SITE RESILIE AVEC ALIMENTATION MAINTENUE CLIENTS RESIDENTIELS BT 36 kva Livrable issu des travaux GTE 2007 Version : 1 10 novembre 2008 Nombre de

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE SUPPORTS DE COMMUNICATION SPONSORING Dns s démrche de prtenrit, l ssocition Grndeur Nture dispose d offre de sponsoring. Au-delà de l intérêt personnel que vous pouvez voir pour l culture ou certines ctions

Plus en détail

ROBUROC 6 : PLATEFORME D EXPLORATION TOUS TERRAINS

ROBUROC 6 : PLATEFORME D EXPLORATION TOUS TERRAINS PS/MP ROBUROC 6 Lycée Paul Valéry ROBUROC 6 : PLATEFORME D EXPLORATON TOUS TERRANS Le RobuROC 6 (hotograhie ci-dessous) est un robot mobile déveloé ar la société ROBOSOFT. Cette late-forme robotisée a

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

Définitions D'un point de vue fonctionnel, un amplificateur est un convertisseur tel que : v s. ; v s = a.v e ; a 1.

Définitions D'un point de vue fonctionnel, un amplificateur est un convertisseur tel que : v s. ; v s = a.v e ; a 1. G. Pinson - Physique Appliquée Fonction mplifiction - A1 / 1 A1 - Fonction mplifiction Définitions D'un point de vue fonctionnel, un mplificteur est un convertisseur tel que : ; =. ; 1. Le coefficient

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Plan de lecture. Pour lire la Bible en 1 an

Plan de lecture. Pour lire la Bible en 1 an Plan de lecture Pour lire la Bible en 1 an Le plan de lecture ci-après permet de lire toute la Bible en 1 an avec une lecture matin et soir, par exemple, ou en 2 ans avec lecture de l Ancien Testament

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement.

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement. Rcines crrées. 1. Générlités : ) Déinition : b) Nottion. c) Exemples.. Propriétés. ) Produits de rcines crrées. b) Quotient de rcines crrées. c) Lien vec les puissnces. d) Modiiction d écritures vec des

Plus en détail