Automatique (AU3): Précision. Département GEII, IUT de Brest contact:

Dimension: px
Commencer à balayer dès la page:

Download "Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr"

Transcription

1 Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact:

2 Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée de type échelon Entrée de type rampe Résumé Exercices 3 Influence des perturbations Expression Systèmes sans intégration Intégration en amont Intégration en aval Exercices

3 Introduction 3/ 32 Rappel des objectifs : Comparateur Correcteur Système E(p) ɛ(p) S(p) C(p) F(p) G(p) Capteur Dans l ensemble de ce chapitre, nous allons admettre que le système bouclé est stable. Sous cette hypothèse, nous allons nous focaliser sur une caractéristique importante du système corrigé : sa précision. Qu est ce que la précision? Comment obtenir un système précis? Comment les perturbations extérieures influencent-elles la précision?

4 Écart statique: Définition 4/ 32 Définition : Considérons le système bouclé suivant E(p) ɛ(p) H(p) S(p) G(p) La précision est mesurée via ɛ(t), l écart entre l entrée et la mesure. Un système précis donnera un écart nécessairement faible. En pratique, nous nous intéressons à l écart en régime permanent c-a-d lorsque t. Écart statique : L écart en régime permanent, nommé écart statique, correspond à la grandeur : ɛ( ) = lim t ɛ(t) = lim p 0 pɛ(p)

5 Écart statique: Définition 5/ 32 Définition : Considérons le système suivant : E(p) ɛ(p) 2 3p S(p) sortie e(t) s(t) ɛ( ) sortie e(t) s(t) ɛ( ) t (s) (a) Écart statique lorsque l entrée est un échelon unitaire t (s) (b) Écart statique lorsque l entrée est une rampe de pente unitaire

6 Écart statique: Expression 6/ 32 Expression : Sauf indication contraire, nous allons nous intéresser au cas des systèmes avec retour unitaire. E(p) ɛ(p) FTBO(p) S(p) Quelle est la valeur de l écart statique ɛ( )? Dans le domaine de Laplace, l écart ɛ(p) est donné par : ɛ(p) = E(p) S(p) () = E(p) FTBF(p)E(p) (2) ( = E(p) FTBO(p) ) E(p) = (3) FTBO(p) FTBO(p)

7 Écart statique: Expression 7/ 32 Expression : En utilisant le théorème de la valeur finale, nous obtenons ɛ( ) = lim pɛ(p) (4) p 0 ( ) pe(p) = lim (5) p 0 FTBO(p) Pour un système à retour unitaire, l écart statique est donné par la relation ( ) pe(p) ɛ( ) = lim p 0 FTBO(p) (6) La valeur de l écart statique dépend : de la consigne : E(p). de la fonction de transfert en boucle ouverte (FTBO) : FTBO(p).

8 Écart statique: Expression 8/ 32 Influence de la consigne : Nous allons nous intéresser aux consignes de type : échelon unitaire, rampe avec pente unitaire. Influence de la FTBO : Pour étudier les propriétés de l écart statique, nous allons considérer que : FTBO(p) = G (p z m) (p z ) p l (p p n ) (p p ) (7) avec p u 0 et z u 0. l correspond à la classe du système (classe ordre) et détermine le nombre d intégrateurs de la boucle ouverte.

9 Écart statique: Entrée de type échelon 9/ 32 Définition : L écart permanent (relatif) correspond à l écart statique lorsque l entrée est un échelon unitaire c-a-d e(t) = u(t). Expression : En posant E(p) = dans les expressions précédentes, nous trouvons : p ɛ( ) = lim p 0 ( ) H(p) = FTBO(0) (8) Si la boucle ouverte possède un gain statique infini alors l écart permanent (relatif) est nul.

10 Écart statique: Entrée de type échelon 0/ 32 Considérons une FTBO de classe l : FTBO(p) = G (p z m) (p z ) p l (p p n ) (p p ) (9) Classe l = 0 : Lorsque l = 0, FTBO(0) = K est fini (et correspond au gain statique de la FTBO), donc ɛ( ) = K Classe l : Lorsque l =, nous obtenons FTBO(0) = et donc : ɛ( ) = 0 La présence d au moins un intégrateur dans la boucle ouverte permet d annuler l écart permanent

11 Écart statique: Entrée de type échelon / 32 Exemple : Considérons le système suivant : E(p) ɛ(p) 2 3p S(p) Quelle est la valeur de l écart permanent relatif? Comme la FTBO est de classe l = 0 et possède un gain statique K = 2, nous obtenons : ɛ( ) = K = 3 (0)

12 Écart statique: Entrée de type échelon 2/ 32 Exemple :.5 sortie 0.5 e(t) s(t) ɛ( ) t (s) Figure: Réponse indicielle lorsque l entrée est un échelon unitaire.

13 Écart statique: Entrée de type échelon 3/ 32 Exemple : Considérons le système suivant : E(p) ɛ(p) 2 p 3p S(p) Quelle est la valeur de l écart permanent relatif ɛ( )? La fonction de transfert en boucle ouverte est égale à : FTBO(p) = 2 p( 3p) () Comme la FTBO est de classe l =, nous obtenons ɛ( ) = 0

14 Écart statique: Entrée de type échelon 4/ 32 Exemple : La précision devient parfaite...mais le système perd en stabilité!.5 s(t) e(t) ɛ( ) sortie t (s) Figure: Réponse indicielle lorsque l entrée est un échelon unitaire.

15 Écart statique: Entrée de type rampe 5/ 32 Définition : L écart de trainage (relatif) correspond à l écart statique lorsque l entrée est une rampe de pente unitaire c-a-d e(t) = t (t 0). Expression : En posant E(p) = p 2 dans les expressions précédentes, nous trouvons : ɛ( ) = lim p 0 p pftbo(p) = lim p 0 pftbo(p) (2)

16 Écart statique: Entrée de type rampe 6/ 32 Considérons une FTBO de classe l : FTBO(p) = G (p z m) (p z ) p l (p p n ) (p p ) (3) Classe l = 0 : Lorsque l = 0, la limite lim p 0 pftbo(p) = 0 est nulle et donc : ɛ( ) = Classe l = : Lorsque l =, la limite lim p 0 pftbo(p) = K 2 est finie et donc : ɛ( ) = K 2 Classe l 2 : Lorsque l = 2, la limite lim p 0 pftbo(p) = est infinie et donc : ɛ( ) = 0 La présence d au moins deux intégrateurs dans la boucle ouverte permet d annuler l écart de trainage.

17 Écart statique: Entrée de type rampe 7/ 32 Exemple : Considérons le système suivant : E(p) ɛ(p) 2 3p S(p) Quelle est la valeur de l écart de trainage relatif? Comme la FTBO est de classe l = 0, l écart de trainage relatif est infini ɛ( ) = (4)

18 Écart statique: Entrée de type rampe 8/ 32 Exemple : 5 ɛ( ) sortie 0 5 e(t) s(t) t (s) Figure: Réponse à une rampe unitaire.

19 Écart statique: Entrée de type rampe 9/ 32 Exemple : Considérons le système suivant : E(p) ɛ(p) 2 p 3p S(p) Quelle est la valeur de l écart de trainage relatif? La FTBO est de classe l = et possède donc un écart de trainage fini. La valeur de K 2 est donnée par L écart de trainage relatif est alors donné par K 2 = lim p 0 pftbo(p) = 2 (5) ɛ( ) = K 2 = 2 (6)

20 Écart statique: Entrée de type rampe 20/ 32 Exemple : 5 ɛ( ) sortie 0 5 e(t) s(t) t (s) Figure: Réponse à une rampe unitaire.

21 Écart statique: Résumé 2/ 32 Résumé : Le tableau suivant récapitule l expression de l erreur statique en fonction de l entrée et de la classe du système. Classe Entrée l = 0 l = l = 2 échelon K 0 0 rampe K 2 0 Table: Expression de l erreur statique relative e( ) où K et K 2 sont respectivement donnés par K = FTBO(0) (7) K 2 = lim p 0 pftbo(p) (8)

22 Écart statique: Exercices 22/ 32 Exercice : Considérons le système suivant : E(p) ɛ(p) H(p) S(p) Déterminez l écart permanent relatif, l écart permanent (e(t) = 3u(t)) puis l écart de trainage lorsque : H(p) = H(p) = 0 (p ) 3 (9) 3 0p (20) H(p) = 450p3 5750p p p 4 40p 3 04p 2 064p (2)

23 Influence des perturbations: 23/ 32 Influence des perturbations : Jusqu à présent, nous avons négligé l influence des perturbations extérieures. N(p) E(p) ɛ(p) H(p) F(p) S(p) Dans cette section, nous allons relâcher cette hypothèse et nous allons étudier l influence des perturbations sur la précision du système. Nous admettrons que : H : le système possède un retour unitaire H2 : La perturbation est un échelon (N(p) = N p )

24 Influence des perturbations: Expression 24/ 32 Expression : L erreur statique s exprime sous la forme : ɛ(p) = E(p) S(p) (22) La sortie S(p) s obtient en utilisant le théorème de la superposition. Après quelques calculs, nous trouvons : ( ɛ(p) = H(p)F(p) ) ( E(p) F(p) H(p)F(p) ) N(p) La valeur de l écart statique s obtient en utilisant le théorème de la valeur finale (avec N(p) = N p ) : ( ) pe(p) N ɛ( ) = lim p 0 FTBO(p) } {{ } lim p 0 Ecart statique F(p) lim H(p) p 0 } {{ } Erreur causée par la perturbation (23)

25 Influence des perturbations: Systèmes sans intégration 25/ 32 Systèmes sans intégration Soit H(p) et F(p) deux systèmes de classe l = 0. Dans ce cas, l écart permanent lié à la perturbation est donné par : ɛ 2 ( ) = Pour diminuer l écart permanent, il faut donc : N F(0) H(0) (24) Augmenter la valeur du gain statique en amont de la perturbation c-a-d H(0) Diminuer la valeur du gain statique en aval de la perturbation c-a-d F(0)

26 Influence des perturbations: Intégration en amont 26/ 32 Intégration en amont de la perturbation Soit H(p) de classe l = et F(p) un système de classe l = 0. Dans ce cas, L écart permanent lié à la perturbation est alors nul. lim H(p) = (25) p 0 La présence d un intégrateur en amont permet d annuler l écart permanent lié à la perturbation.

27 Influence des perturbations: Intégration en amont 27/ 32 Exemple : Considérons le système suivant 0.25 p E(p) ɛ(p) p 2 3p S(p) où l entrée est un échelon d amplitude unitaire c-a-d E(p) = p. Comme le système en amont de la perturbation possède un intégrateur, l écart permanent lié à la perturbation est nul.

28 Influence des perturbations: Intégration en amont 28/ 32 Exemple :.5 s(t) e(t) ɛ( ) sortie t (s) Figure: Réponse indicielle (ɛ 2 ( ) = 0)

29 Influence des perturbations: Intégration en aval 29/ 32 Intégration en aval de la perturbation Soit H(p) de classe l = 0 et F(p) un système de classe l =. Dans ce cas, lim H(p) = H(0) (26) p 0 lim p 0 F(p) = 0 (27) L écart permanent lié à la perturbation est alors égale à N H(0). La présence d un intégrateur en aval ne permet pas d annuler l écart permanent lié à la perturbation.

30 Influence des perturbations: Intégration en aval 30/ 32 Exemple : Considérons le système suivant 0.25 p E(p) ɛ(p) 2 3p p S(p) où l entrée est un échelon d amplitude unitaire c-a-d E(p) = p. Comme seul le système en aval de la perturbation possède un intégrateur, l écart permanent lié à la perturbation est non nul.

31 Influence des perturbations: Intégration en aval 3/ 32 Exemple :.5 s(t) e(t) ɛ( ) sortie t (s) Figure: Réponse indicielle (ɛ 2 ( ) = 0.25)

32 Influence des perturbations: Exercices 32/ 32 Exercice : Considérons le système suivant p E(p) ɛ(p) 000 F(p) S(p) Déterminez l écart permanent lié à la perturbation pour e(t) = u(t) lorsque F(p) = F(p) = F(p) = p 000 p(p 25) 2 p 4 (28) (29) (30)

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

Chapitre 4 : Identification

Chapitre 4 : Identification Chapitre 4 : Identification 1- Généralités - Identification en boucle ouverte.1 Méthodologie. Méthode directe : confrontation de la réponse théorique et expérimentale.3 Méthode de Strejc.4 Méthode de Broida.5

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

TABLE DES MATIÈRES. 1.6.1 Schéma fonctionnel ou schéma bloc... 27

TABLE DES MATIÈRES. 1.6.1 Schéma fonctionnel ou schéma bloc... 27 TABLE DES MATIÈRES Caractérisation et étude des systèmes asservis. Systèmes asservis................................. Structure d un système asservi.....................2 Régulation et asservissement....................

Plus en détail

Cours de Systèmes Asservis

Cours de Systèmes Asservis Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

SYSTÈMES ASSERVIS CORRECTION

SYSTÈMES ASSERVIS CORRECTION SYSTÈMES ASSERVIS CORRECTION //07 SYSTÈMES ASSERVIS CORRECTION ) Introduction... 3.) Les différents systèmes de commande... 3.2) Performances des systèmes asservis... 4.3) Fonction de transfert en boucle

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

Automatique (AU3): Introduction à l automatique. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Introduction à l automatique. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Introduction à l automatique Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation 1 Considérations pratiques 2 Introduction Définitions Exemple

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES IUT Toulouse II - Automatique et Systèmes Génie Industriel et Blagnac Maintenance GIM 2 Promo 14 Année 2007-2008 AUTOMATIQUE et SYSTEMES Les cours, TD et TP seront entièrement programmés en 2 ème année.

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 2 MODÉLISATION DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS TRANSFORMÉE DE LAPLACE TRAVAIL DIRIGÉ Robot Ericc Le robot

Plus en détail

Automatique: Commande des Systèmes Linéaires

Automatique: Commande des Systèmes Linéaires Automatique: Commande des Systèmes Linéaires - Introduction - Carolina ALBEA-SANCHEZ, MC Université de Toulouse LAAS-CNRS, Toulouse, France 05 61 33 78 15, calbea@laas.fr C. Albea Sanchez UPS 1 Objectifs

Plus en détail

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus. CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs

Plus en détail

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE INSTRUMENTATION ET RÉGULATION

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE INSTRUMENTATION ET RÉGULATION SESSION 1995 BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE INSTRUMENTATION ET RÉGULATION Durée : 4 heures Coefficient : 5 Le sujet comporte 10 pages, dont 2 annexes qui seront rendues avec la copie.

Plus en détail

Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide

Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide Damien Poinsot 1/6 Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide Damien POINSOT Directeur(s) de thèse : Caroline Bérard et Alain

Plus en détail

BTS Informatique Industrielle.

BTS Informatique Industrielle. BTS Informatique Industrielle. Session 00. I. Étude du récepteur optique. ) Expression de v : l'amplificateur opérationnel est en régime linéaire, donc nous avons v = R i (loi d'ohm). En remplaçant i par

Plus en détail

TP d asservissement numérique sur maquette Feedback

TP d asservissement numérique sur maquette Feedback SOUBIGOU Antoine GE3S Semestre 5 2002 PAILLARD Jean-Noël TP d asservissement numérique sur maquette Feedback ECOLE NATIONALE SUPERIEURE DES ARTS ET INDUSTRIES DE STRASBOURG 24, Boulevard de la Victoire

Plus en détail

Cours d Automatique de la licence professionnelle Technologies avancées appliquées aux véhicules

Cours d Automatique de la licence professionnelle Technologies avancées appliquées aux véhicules Cours d Automatique de la licence professionnelle Technologies avancées appliquées aux véhicules Olivier Bachelier E-mail : Olivier.Bachelier@esip.univ-poitiers.fr Tel : 5-49-45-36-79 ; Fax : 5-49-45-4-34

Plus en détail

Traitement numérique du signal

Traitement numérique du signal Nº 754 BULLETIN DE L UNION DES PHYSICIENS 707 Traitement numérique du signal par J. ESQUIEU Lycée de Brive 1. TRAITEMENT Le traitement numérique du signal consiste à agir sur le signal à partir d échantillons

Plus en détail

REGULATION DE TEMPERATURE

REGULATION DE TEMPERATURE Cours 1ELEEC E2 ETUDE D UN OUVRAGE S4 : Communication et traitement de l information REGULATION DE TEMPERATURE S4.4 : Traitement de l information 1. MISE EN SITUATION : Une chaîne de traitement de surface

Plus en détail

Cours. Un premier pas en Automatique. Olivier BACHELIER Courriel : Olivier.Bachelier@univ-poitiers.fr Tel : 05-49-45-36-79 ; Fax : 05-49-45-40-34

Cours. Un premier pas en Automatique. Olivier BACHELIER Courriel : Olivier.Bachelier@univ-poitiers.fr Tel : 05-49-45-36-79 ; Fax : 05-49-45-40-34 2ème année d IUT de Mesures Physiques Cours Un premier pas en Automatique Olivier BACHELIER Courriel : Olivier.Bachelier@univ-poitiers.fr Tel : 5-49-45-36-79 ; Fax : 5-49-45-4-34 Les commentaires constructifs

Plus en détail

Module : systèmes asservis linéaires

Module : systèmes asservis linéaires BS2EL - Physique appliquée Module : systèmes asservis linéaires Diaporamas : les asservissements Résumé de cours 1- Structure d un système asservi 2- Transmittances en boucle ouverte et ermée 3- Stabilité

Plus en détail

SCIENCES INDUSTRIELLES (S.I.)

SCIENCES INDUSTRIELLES (S.I.) SESSION 2010 MPSI007 EPREUVE SPECIFIQUE - FILIERE MP SCIENCES INDUSTRIELLES (S.I.) Durée : 3 heures Les calculatrices sont autorisées * * * NB : Le candidat attachera la plus grande importance à la clarté,

Plus en détail

Une centrale nucléaire a pour fonction de produire de l'énergie électrique à partir d'énergie nucléaire (figure 2).

Une centrale nucléaire a pour fonction de produire de l'énergie électrique à partir d'énergie nucléaire (figure 2). CX9612 Banque commune École Polytechnique ENS de Cachan PSI Session 2009 Épreuve de Modélisation Durée : 5 heures Aucun document n est autorisé L usage de calculatrice électronique de poche à alimentation

Plus en détail

SCIENCES INDUSTRIELLES (S.I.)

SCIENCES INDUSTRIELLES (S.I.) SESSION 2014 PSISI07 EPREUVE SPECIFIQUE - FILIERE PSI " SCIENCES INDUSTRIELLES (S.I.) Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

IUT Caen - Département Génie Chimique et Procédés. Version du mercredi 22 septembre 2004 à 12 h 01. Cours de Régulation. Responsable Pédagogique :

IUT Caen - Département Génie Chimique et Procédés. Version du mercredi 22 septembre 2004 à 12 h 01. Cours de Régulation. Responsable Pédagogique : Université de Caen IUT Caen - Département Génie Chimique et Procédés Version du mercredi 22 septembre 24 à 2 h Cours de Régulation Responsable Pédagogique : Eric Magarotto : 2 3 45 27 9, email : eric.magarotto@greyc.ismra.fr

Plus en détail

Cours de Mathématiques du signal

Cours de Mathématiques du signal Cours de Mathématiques du signal Options Eln & RLI Raymond Quéré IUT du Limousin Département GEII Brive Septembre 212 Cours de Mathématiques du signal enseigné au département GEIII à Brive. Diverses disciplines

Plus en détail

Amélioration de la commande P&O par une détection synchrone du courant de batterie

Amélioration de la commande P&O par une détection synchrone du courant de batterie Revue des Energies Renouvelables ICESD 11 Adrar (2011) 113-121 Amélioration de la commande P&O par une détection synchrone du courant de batterie R. Merahi * et R. Chenni Département d Electrotechnique,

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR SCIENCES INDUSTRIELLES POUR L INGÉNIEUR Calculatrices autorisées. Système d ouverture de TGV Le sujet comprend : 11 pages dactylographiées ; 2 annexes ; 1 document réponse. Objet de l'étude Le transport

Plus en détail

Le Système de Récupération de l Energie Cinétique (SREC)

Le Système de Récupération de l Energie Cinétique (SREC) Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de

Plus en détail

ATS Génie électrique session 2005

ATS Génie électrique session 2005 Calculatrice scientifique autorisée Avertissements : Les quatre parties sont indépendantes mais il est vivement conseillé de les traiter dans l ordre ce qui peut aider à mieux comprendre le dispositif

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

DS MODELISATION Mars 2015

DS MODELISATION Mars 2015 DS MODELISATION Mars 205 ETUDE DE LA MACHINE-OUTIL URANE SX Le thème proposé porte sur l étude de la machine-outil URANE SX développée par la société COMAU (ex RENAULT AUTOMATION) de Castres L URANE SX

Plus en détail

Brevet de technicien supérieur. Le groupement A de 2001 à 2011

Brevet de technicien supérieur. Le groupement A de 2001 à 2011 A. P. M. E. P. Le groupement A de 00 à 0 Métropole 00.......................................... 3 Métropole 00.......................................... 7 Métropole 003.........................................

Plus en détail

TP - S2I Centre d intérêt N 4 : prévoir et vérifier les performances des systèmes linéaires continus invariants. TP «Ericc 4» ROBOT ERICC

TP - S2I Centre d intérêt N 4 : prévoir et vérifier les performances des systèmes linéaires continus invariants. TP «Ericc 4» ROBOT ERICC TP «Ericc 4» ROBOT ERICC 0. Objectifs du TP Documents à disposition - le dossier d étude (disponible ci-après) comprend les activités à mener pendant la durée de cette séance de travaux pratiques - le

Plus en détail

Identification et réglage assisté par ordinateur d un processus thermique

Identification et réglage assisté par ordinateur d un processus thermique I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Développement d un système de commande et de régulation de la température de l air d une soufflerie de séchage convectif

Développement d un système de commande et de régulation de la température de l air d une soufflerie de séchage convectif Revue des Energies Renouvelables SMSTS 08 Alger (2008) 67 77 Développement d un système de commande et de régulation de la température de l air d une soufflerie de séchage convectif Y. Bouteraa 1*, M.

Plus en détail

Etude et mise au point d une boucle de régulation en cascade Cascade control

Etude et mise au point d une boucle de régulation en cascade Cascade control PFE : 2011-2012 : Filière génie des procédés Etude et mise au point d une boucle de régulation en cascade Cascade control Application à la régulation en cascade de niveau d eau dans une cuve parfaitement

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

C09: Conception parallèle

C09: Conception parallèle méthodologie de conception en quatre étapes virtualisation applications structurées et non structurées aspect analytique: S, E Accélération Amdahl Accélération Gustafson Surcharge de parallélisation Conception

Plus en détail

TRANSISTOR BIPOLAIRE

TRANSISTOR BIPOLAIRE I Introduction I.1 Constitution Le transistor bipolaire est réalisé dans un monocristal comportant trois zones de dopage différentes. n p n collecteur base émetteur n C On reconnaît deux jonctions PN p

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Conception d un Correcteur RST Adapté aux Consignes Sinusoïdales: Application à un Convertisseur AC/DC

Conception d un Correcteur RST Adapté aux Consignes Sinusoïdales: Application à un Convertisseur AC/DC Conception d un Correcteur RST dapté aux Consignes Sinusoïdales: pplication à un Convertisseur C/DC Saantha LCROIX Laboratoire de Génie Electrique de Paris LGEP / SPEE-Labs, CNRS UMR 857, SUPELEC, Université

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations

Plus en détail

EPREUVE SPECIFIQUE - FILIERE TSI. PROJET de Sciences Industrielles pour l Ingénieur. Durée : 6 heures. Les calculatrices sont autorisées FARDELEUSE

EPREUVE SPECIFIQUE - FILIERE TSI. PROJET de Sciences Industrielles pour l Ingénieur. Durée : 6 heures. Les calculatrices sont autorisées FARDELEUSE SESSION 2011 TSIPR08 C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S EPREUVE SPECIFIQUE - FILIERE TSI PROJET de Sciences Industrielles pour l Ingénieur Durée : 6 heures N.B. : Le candidat attachera

Plus en détail

Université Mohammed Khidher Biskra A.U.: 2014/2015

Université Mohammed Khidher Biskra A.U.: 2014/2015 Uniersité Mohammed Khidher Biskra A.U.: 204/205 Faculté des sciences et de la technologie nseignant: Bekhouche Khaled Matière: lectronique Fondamentale hapitre 4 : Le Transistor Bipolaire à Jonction 4..

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

!-.!#- $'( 1&) &) (,' &*- %,!

!-.!#- $'( 1&) &) (,' &*- %,! 0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Propulsion et sustentation magnétiques

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Propulsion et sustentation magnétiques ÉCOLE POLYTECHNIQUE FILIÈRE MP Option Physique et Sciences de l Ingénieur CONCOURS D ADMISSION 2009 COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (Durée : 4 heures) L utilisation des calculatrices

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) - Physique et sciences de l ingénieur (PSI) Discipline

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE A. ANALYSE D'UNE FONCTION DE TRANSFERT Forme canonique ; Exemple ; Limites ; Fréquence de Coupure ; Bande Passante ;

Plus en détail

Station spatiale d'observation par interférométrie

Station spatiale d'observation par interférométrie CX9614 Banque commune Ecole Polytechnique ENS de Cachan PSI Session 2009 Épreuve de Sciences Industrielles pour l Ingénieur Durée : 5 heures Aucun document n est autorisé L usage de calculatrice électronique

Plus en détail

Commande industrielle GEL-4100 / GEL-7063

Commande industrielle GEL-4100 / GEL-7063 Commande industrielle GEL-4100 / GEL-7063 Cours 02 Éric Poulin Département de génie électrique et de génie informatique Automne 2011 Plan du cours 02 2. Réglage des régulateurs PID 2.6 Analyse des performances

Plus en détail

Les régimes périodiques (Chap 2)

Les régimes périodiques (Chap 2) Les régimes périodiques (Chap 2)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. Propriétés des grandeurs physiques : La période T, est le plus petit intervalle de temps, au bout duquel

Plus en détail

Rapport de projet de fin d étude

Rapport de projet de fin d étude Rapport de projet de fin d étude Réalisé Par : Encadré Par : -Soumya sekhsokh Mohammed RABI -Kawtar oukili Année Universitaire 2010/2011 ETUDE D UNE BOUCLE DE REGULATION DE NIVEAU : - IMPLEMENTATION DU

Plus en détail

Automatisation d une scie à ruban

Automatisation d une scie à ruban Automatisation d une scie à ruban La machine étudiée est une scie à ruban destinée à couper des matériaux isolants pour leur conditionnement (voir annexe 1) La scie à lame verticale (axe z ), et à tête

Plus en détail

REGULATION DE TEMPERATURE

REGULATION DE TEMPERATURE REGULATION DE TEMPERATURE I PRESENTATION DU TP I.1 Objectif : L objectif de ce TP est de réguler un système industriel à forte inertie. Après l identification du système en question, l étudiant devra déterminer

Plus en détail

Le transistor bipolaire

Le transistor bipolaire IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

OHANA-SPE-ALAR. OHANA : Spécifications Système d'alignement Automatique de la Ligne à Retard. Version 1.0

OHANA-SPE-ALAR. OHANA : Spécifications Système d'alignement Automatique de la Ligne à Retard. Version 1.0 -SPE-ALAR : Spécifications Système d'alignement Automatique de la Ligne à Retard Version 1.0 Observatoire de Paris 61, avenue de l Observatoire 75014 Paris France tél 33 (0)1 40 51 21 58 fax 33 (0)1 43

Plus en détail

Travaux pratiques d automatique. Ecole Nationale Supérieure de Physique de Strasbourg 1ère Année, 2007-2008

Travaux pratiques d automatique. Ecole Nationale Supérieure de Physique de Strasbourg 1ère Année, 2007-2008 Travaux pratiques d automatique Ecole Nationale Supérieure de Physique de Strasbourg 1ère Année, 2007-2008 Automatique, 1ère Année, 2007-2008 Travaux pratiques d automatique 1ère Année 1 Préparation Il

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

S2I. Chargement et déchargement des cargos porte-conteneurs

S2I. Chargement et déchargement des cargos porte-conteneurs S2I PSI 4 heures Calculatrices autorisées 2013 Chargement et déchargement des cargos porte-conteneurs I Performances et architecture des grues I.A Le rôle des ports dans le transport mondial des marchandises

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Etude d une Trottinette électrique

Etude d une Trottinette électrique A l attention de : M. Boitier M. Baget Rapport de projet : Etude d une Trottinette électrique Sommaire I. Présentation de la trottinette... 5 1. Caractéristiques principales... 5 2. Décomposition de la

Plus en détail

Epreuve de Sciences Industrielles A. L usage de calculatrices est interdit. Aucun document n est autorisé

Epreuve de Sciences Industrielles A. L usage de calculatrices est interdit. Aucun document n est autorisé !! 063 Epreuve de Sciences Industrielles A Durée 5 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef de salle, d autre part il

Plus en détail

S2I. La robotique au service du handicap

S2I. La robotique au service du handicap I Introduction S2I PSI 4 heures Calculatrices autorisées La robotique au service du handicap 2010 Les avancées technologiques récentes des actionneurs électriques ont permis le développement du champ d

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis)

Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis) Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis) Bibliographie. «Les capteurs en instrumentation industrielle», G. Asch & collaborateurs, DUNOD «Capteurs

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

AUTOMATIQUE Glossaire

AUTOMATIQUE Glossaire AUTOMATIQUE Glossaire J.J. Orteu 22 septembre 2005 Table des matières 1 Français Anglais 2 2 Anglais Français 5 1 1 Français Anglais Action dérivée Action intégrale Action proportionnelle Actionneur Amorti

Plus en détail

MPSI PCSI DS N 1 5 Octobre 2014 Système de mesure de cavité (D après concours CCP TSI 2010)

MPSI PCSI DS N 1 5 Octobre 2014 Système de mesure de cavité (D après concours CCP TSI 2010) MPSI PCSI DS N 1 5 Octobre 2014 Système de mesure de cavité (D après concours CCP TSI 2010) Nom : Prénom : Classe : Mise en situation Mise en situation et présentation de la mesure Le sous-sol français

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/83 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail